TOSHIBA PHOTOINTERRUPTER INFRARED LED + PHOTO IC

TLP1217(C2)

COPIER, LASER BEAM PRINTER

FACSIMILE, PRINTER, ELECTRONIC TYPEWRITER

AUTOMATIC VENDING MACHINE, TERMINAL EQUIPMENT IN BANKING FACILITIES

VARIOUS POSITION DETECTION SENSOR

The TLP1217 (C2) are digital output photointerrupters having a connector with a GaAs infrared LED and a high sensitivity low current consumption Si photo IC combined. The output becomes low level when the light is shielded.

This product is also usable in applications requiring severe using temperature condition such as detection of paper exit on copier, etc.

- Small package
- Mountable by one touch (Snap-in mounting type)
- Mountable to boards in 2 kinds of thickness (1.0mm, 1.2mm)
- For 5V of power supply voltage
- Digital output (open collector)

Gap : 5mm

Resolution : Slit width 0.5mm

Large operating temperature range : $T_{opr} = -25 \sim 90^{\circ}C$

Low current consumption $: I_{CC} = 16.5 \text{mA (Max.)}$

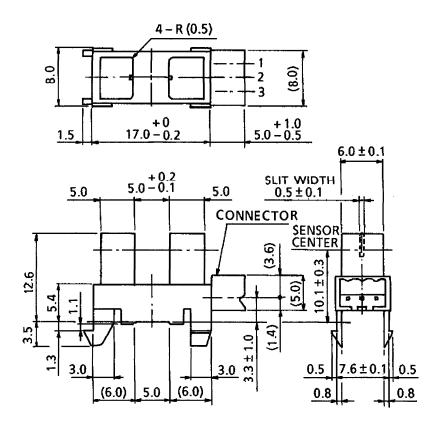
UL recongnized PWB adopted : UL94V-0

Material of the case : Polycarbonate

Connector

DF3-3P-2DSA (Hirose Electric Co., Ltd. made DF3 series connector)

961001EBC2


TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with domestic garbage.

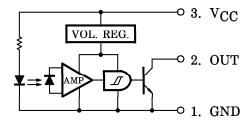
The products described in this document are subject to foreign exchange and foreign trade control laws.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of TOSHIBA CORPORATION or others.

OUTLINE DRAWINGS: TOSHIBA 11-15C3 Unit in: mm

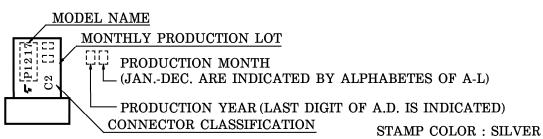
UNLESS OTHERWISE SPECIFIED

DIMENSION	TOLERANCE
6>	± 0.1
6<14	± 0.2


Weight: 1.1g (Typ.)

MAXIMUM RATINGS (Ta = 25°C)

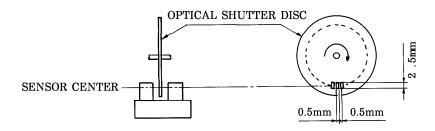
CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	v_{CC}	10	V
Output Voltage	v_0	28	V
Low Level Output Current	$I_{ m OL}$ 50		mA
Low Level Output Current Derating (Ta>25°C)	∆I _{OL} /°C	-0.67	mA/°C
Operating Temperature Range	$T_{ m opr}$	-25~90	°C
Storage Temperature Range	$ m T_{stg}$	-40~90	°C


(): REFERENCE VALUE

PIN CONNECTION

PRODUCT INDICATION

TYPE	ABBREVIATION
TLP1217 (C2)	P1217



RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	v_{CC}	4.5	5.0	5.5	V
Output Voltage	$v_{\mathbf{O}}$	-	5.0	17	V
Low Level Output Current	$I_{ m OL}$		_	16	mA
Operating Temperature	$T_{ m opr}$	-25	_	90	$^{\circ}\mathrm{C}$

CHARA	CTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Supply Volta	ıge	v_{CC}		4.5	5	5.5	V
Supply	High Level	I _{CCH}	Without Shutter		_	16.5	
Current	Low Level	I_{CCL}	Shutter In	_	_	16.5	mA
	High Level	v_{OH}	Without Shutter, RL=47k Ω	$0.9 { m V}_{ m CC}$	_	_	V
Output Voltage	Low Level	V _{OL}	Shutter In, I _{OL} =16mA, Ta=25°C	_ 0.07		0.35	v
			Shutter In, IOL=16mA	_	_	0.4	
Peak Emission Wavelength		$\lambda_{\mathbf{P}}$	Ta = 25°C	_	940	_	nm
Peak Sensiti	vity Wavelength	$\lambda_{\mathbf{P}}$	Ta = 25°C	_	900	_	nm
Response Fre	equency	f	$R_L = 47k\Omega$, $Ta = 25$ °C (Note)	3000	_	_	Hz
Rise Time		t _r	90%	_	8	_	
Fall Time		tf	$\frac{t_r}{t_f}$		0.03		μ s

(Note) A value measured when the disc shown in the following figure was rotated. No DC current shuld be output.

TERMINAL STRENGTH (Ta = 25°C)

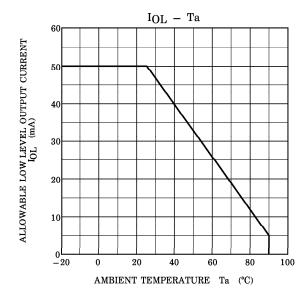
CHARACTERISTIC	TEST CONDITION		LIMIT
	DIRECTION	Α	
PULL	WEIGHT	19.6N	NO DEFECT OF
	TIME	5s/ONCE	ELECTRICAL
	DIRECTION	В	CHARACTERISTICS
BEND	WEIGHT	9.8N	
	TIME	5s/THRICE	

PRECAUTION

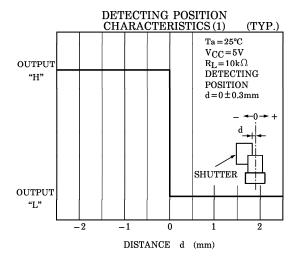
Please be careful of the followings.

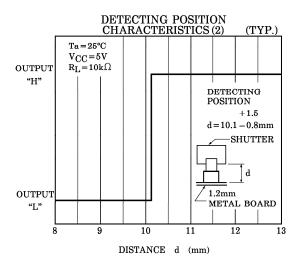
- 1. During $100\mu s$ after turning on VCC, output voltage changes for stabilizing the inner circuit.
- 2. When installing, avoid to work by holding the connector by hand. Always, install by holding the main body of the element while assuring the mounting board is not warped or twisted. The connectors shall be inserted or pulled out at normal temperature.
- 3. It is recommended to mount this product by inserting from the sheet metal pressed side.
- 4. The container is made of polycarbonate. Polycarbonate is usually stable with acid, alcohol, and aliphatic hydrocarbons however, with pertochemicals (such as benzene, toluene, and acetone), alkali, aromatic hydrocarbons, or chloric hydrocarbons, polycarbonate becomes cracked, swollen, or melted. Please take care when chosing a packaging material by referencing the table below.

<Chemicals to avoid with polycarbonate>

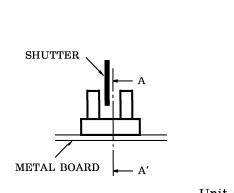

	PHENOMENON	CHEMICALS
A	Little deterioration but staining	nitric acid (low concentration), hydrogen peroxide, chlorine
В	Cracked, crazed, or swollen	 acetic acid (70% or more) gasoline methyl ethyl ketone, ehtyl acetate, butyl acetate ethyl methacrylate, ethyl ether, MEK acetone, m-amino alcohol, carbon tetrachloride carbon disulfide, trichloroethylene, cresol thinners, oil of turpentine triethanolamine, TCP, TBP
С	Melted { }: Used as solvent.	 concentrated sulfuric acid benzene styrene, acrylonitrile, vinyl acetate ethylenediamine, diethylenediamine chloroform, methyl chloride, tetrachloromethane, dioxane, 1, 2-dichloroethane
D	Decomposed	ammonia water other alkali

RECOMMENDABLE MATCHED CONNECTOR


Hirose Electric Co., Ltd. made DF3 series connector

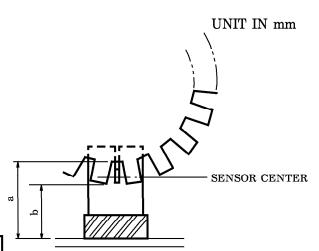

HOUSING	DF3-3S-2C				
	TYPE No.	PRODUCT FORM	MATERIAL	AWG SIZE	INSULATION DIAMETER
TERMINAL	DF3-2428 SC	LOOSEN	PHOSPHOR	AWC0400	0.01.4
	DF3-2428 SCF	LINKED	BRONZE AWG24~28		0.9~1.4mm

For details of the connectors, please refer to the connector maker.

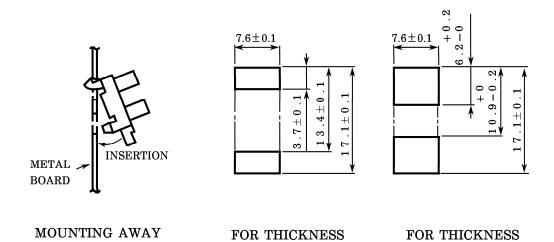


POSITIONING OF SHUTTER AND DEVICE

To operate correctly, make sure that the shutter and the device are positioned as shown in the figure below.


The shit pitch of the shutter must be set wider than the slit width of the device.

Determine the width taking the switching time into consideration.


Unit: mm

METAL BOARD THICKNESS	a SIZE	b SIZE
1.0	11.9MIN.	9.4MAX.
1.2	11.7MIN.	9.2MAX.

A-A' CROSS SECTION

RECOMMENDED MOUNTING HOLE

1.0mm

1.2mm