

MOS INTEGRATED CIRCUIT μ PD16680

1/53, 1/40 DUTY, LCD CONTROLLER/DRIVER WITH BUILT-IN RAM

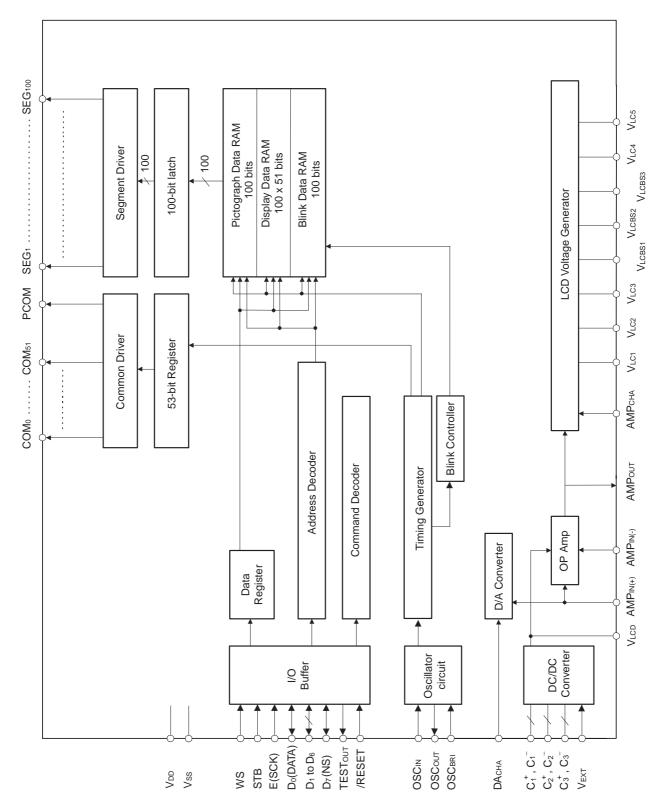
DESCRIPTION

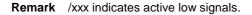
The μ PD16680 is a driver which contains a RAM capable of full - dot LCD display. The single μ PD16680 IC chip can operate a full - dot (up to 100 by 51 dots) LCD and pictographs (100 pictographs).

The μ PD16680 can operate on single 3 V-power supply, is suitable for graphic pagers and cellular.

FEATURES

- LCD driver with a built-in display RAM
- Can operate on single 3 V-power supply
- Booster circuit incorporated : Switchable 3 or 4 folds
- Dot display RAM : 100 x 51 bits
- Pictographic display RAM : 100 bits
- Pictographic display's duty changeable : 1/53 or 1/40 duty
- Output for full-dot : 100 segments and 52 commons
- Data input based on serial & 4-bit / 8-bit parallel switch over
- String resister to output bias level incorporated
- Selectable LCD driving bias level (select from 1/8 bias, 1/7 bias, 1/6 bias)
- Oscillation circuit incorporated
- D/A converter incorporated (for LCD driving voltage adjustment)

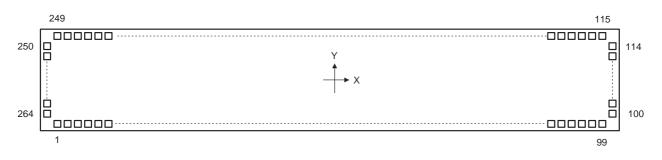

ORDERING INFORMATION


Part number	Package
μPD16680W/P	Wafer/Chip(Matched COG mounting)

Remark Purchasing the above products in term of chips per requires an exchange of other documents as well, including a memorandum on the product quality. Therefore those who are interested in this regard are advised to contact an NEC salesperson for further details.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

1. BLOCK DIAGRAM



Data Sheet S12694EJ2V0DS00

2. PIN CONFIGURATION (Top view)

Chip Size : 12.5 mm x 1.89 mm

Υ(*μ*m) -811.0 -682.2 -592.2 -502.2 -412.2 -322.2 -232.2 -142.2 -52.2 37.8 127.8 217.8

307.8 397.8 487.8 577.8 817.8 817.8 817.8 817.8 817.8 817.8 817.8 817.8 817.8 817.8 817.8 817.8 817.8 817.8 817.8 817.8 817.8 817.8

Table 2-1. Pad Layout (1/2)

2 Dummy -6763.2 -811.0 68 C.* 216 3 Dummy -5643.2 -811.0 70 C3 227 4 V.cest -5403.2 -811.0 71 C3 2261 6 Dummy -5283.2 -811.0 71 C3 2261 7 V.cesz -6163.2 -811.0 73 Voo 2267 9 Dummy -4932.2 -811.0 75 Voo 2897 10 V.cess -4683.2 -811.0 77 Vccr 3335 13 AMPour -4433.2 -811.0 78 DAcraA 3357 14 AMPour -4233.2 -811.0 81 OSCien 3969 15 Dummy -3963.2 -811.0 81 OSCien 3956 16 AMPaie -3063.2 -811.0 85 Di 4191 20 AMPaie -3033.2 -811.0	Pin No.	Pin Name	X(μm)	Υ(<i>μ</i> m)	Pin No.	Pin Name	X(μm)
3 Dummy -6643.2 -811.0 69 C.* 227 4 Vicasi -553.2 -811.0 71 C.* 239 5 Vicasi -563.2 -811.0 72 C.* 239 7 Vicasi -6043.2 -811.0 73 Vicasi 263 9 Dummy -423.2 -811.0 74 Vicasi 299 10 Vicasis -483.2 -811.0 76 Dummy 311 11 Vicasis -483.2 -811.0 78 DAcia, 3350 13 AMPour -4443.2 -811.0 81 OSCior 371 14 AMPour -443.2 -811.0 83 OSCior 363 15 Dummy -323.2 -811.0 84 Do(DATA) 407 18 AMPaio -373.2 -811.0 84 Do(CATA) 407 21 Dummy -343.2 -811.0 87 D						C ₃ ⁺	2036.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2						2156.8
	3						2276.8
6 Dummy -5283.2 -811.0 72 $Ca^{}_{$	4						2396.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
8 VLCBS2 -5043.2 -811.0 74 Voo 287 9 Dummy -4923.2 -811.0 75 Voo 299 10 VLCBS3 -4803.2 -811.0 76 Dummy 311 11 VLCBS3 -4803.2 -811.0 77 RDACHA 356 13 AMPour -4443.2 -811.0 79 AMPCHA 347 14 AMPour -4423.2 -811.0 80 OSCort 371 16 AMPNO -4033.2 -811.0 81 OSCort 371 16 AMPNO -3963.2 -811.0 84 Do(DATA) 407 19 AMPNO -363.2 -811.0 86 D2 4311 20 AMPNO -343.2 -811.0 89 D5 4677 24 Dummy -343.2 -811.0 90 Da 479 25 VLc5 -2863.2 -811.0 91							2030.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							2876.8
10 VLCBS3 -4803.2 -811.0 76 Dummy 3111 11 VLCBS3 -4683.2 -811.0 77 VExt 3233 12 Dummy -4563.2 -811.0 78 DAcHA 3355 13 AMPour -4433.2 -811.0 80 OSCAN 3593 14 AMPour -4423.2 -811.0 81 OSCaN 3593 16 AMPINC -4083.2 -811.0 82 Vob 3833 17 AMPINC -3963.2 -811.0 84 Da(DATA) 4074 20 AMPINC -3603.2 -811.0 85 D1 4433 21 Dummy -3433.2 -811.0 87 D3 4433 22 Vob -3233.2 -811.0 89 D5 4677 24 Dummy -312.2 -811.0 90 D6 4796 25 VLcs -2283.2 -811.0 91 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2996.8</td>							2996.8
11 VLCBS -4863.2 -811.0 77 VExt 323 12 Dummy -4563.2 -811.0 79 AMPeuA 3367 13 AMPour -4443.2 -811.0 79 AMPeuA 3377 14 AMPour -4243.2 -811.0 80 OSCau 359 15 Dummy -4083.2 -811.0 81 OSCau 3830 17 AMPNt) -3663.2 -811.0 83 OSCau 3830 18 Dummy -3483.2 -811.0 85 D1 4199 20 AMPNt) -3633.2 -811.0 87 D3 4433 21 Dummy -3483.2 -811.0 89 D5 4677 24 Dummy -3432.2 -811.0 90 D6 4796 25 VLcs -2763.2 -811.0 91 D(INS) 4916 26 VLcs -2763.2 -811.0 95 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3116.8</td>							3116.8
							3236.8
14 AMPour -4203.2 -811.0 80 OSCN 359 15 Dummy -4203.2 -811.0 81 OSCN 351 16 AMPINC -9063.2 -811.0 82 Vob 383 17 AMPINC -9363.2 -811.0 83 OSCarl 395 18 Dummy -3843.2 -811.0 84 Da(DATA) 407 19 AMPINC -3723.2 -811.0 86 D1 4199 20 AMPINC -363.2 -811.0 87 D3 4433 21 Dummy -343.2 -811.0 90 D6 4799 24 Dummy -3243.2 -811.0 91 Dr(NS) 4916 25 VLcs -203.2 -811.0 92 WS 503 27 VLcs -223.2 -811.0 95 /RESET 596 30 VLc4 -223.2 -811.0 95		Dummy	-4563.2	-811.0	78	DACHA	3356.8
			-4443.2	-811.0	79		3476.8
		ΑΜΡουτ	-4323.2	-811.0			3596.8
							3716.8
							3836.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							3956.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							4076.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							4196.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							4316.8 4436.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							4436.8 4556.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							4556.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						-	4796.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						-	4916.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							5036.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		VLC5		-811.0	93	STB	5156.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Dummy	-2643.2	-811.0	94	E(SCK)	5276.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							5396.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-					5516.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						-	5636.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							5756.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							5876.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							6112.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							6112.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					-		6112.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							6112.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-1323.2	-811.0	105	COM ₃₀	6112.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-1203.2	-811.0	106		6112.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-811.0			6112.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-					6112.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							6112.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							6112.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							6112.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							6112.0 6112.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							6112.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							6030.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							5940.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							5850.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	52			-811.0	118		5760.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							5670.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							5580.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	55	C1 ⁺					5490.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	56						5400.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							5310.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							5220.0 5130.0
61 C2 ⁺ 1316.8 -811.0 127 COM ₄₈ 4950	- 59 60	C_1^-					5040.0
	61	C_{2}^{+}					4950.0
	62	C_2^+	1436.8	-811.0	128	COM49	4860.0
	63	C_2^+					4770.0
							4680.0
65 C2 ⁻ 1796.8 -811.0 131 PCOM 4590	65	C2 ⁻			131		4590.0
66 C2 ⁻ 1916.8 -811.0 132 SEG100 4500	66	C2 ⁻	1916.8	-811.0	132	SEG100	4500.0

Table 2-1. Pad Layout (2/2)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	m)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
153 SEG79 2610.0 817.8 219 SEG13 -3330.0 817.8 154 SEG78 2520.0 817.8 220 SEG12 -3420.0 817.8 155 SEG77 2430.0 817.8 220 SEG11 -3510.0 817.8 155 SEG76 2340.0 817.8 222 SEG10 -3600.0 817.8 156 SEG76 2340.0 817.8 222 SEG10 -3600.0 817.8 157 SEG75 2250.0 817.8 223 SEG9 -3690.0 817.8 158 SEG74 2160.0 817.8 224 SEG8 -3780.0 817.8 159 SEG73 2070.0 817.8 225 SEG7 -3870.0 817.8 160 SEG72 1980.0 817.8 226 SEG6 -3960.0 817.8 161 SEG71 1890.0 817.8 226 SEG6 -3960.0 817.8 162 SEG70 1800.0 817.8 227 SEG5 -4050.0 817.8	
154 SEG78 2520.0 817.8 220 SEG12 -3420.0 817.8 155 SEG77 2430.0 817.8 221 SEG11 -3510.0 817.8 156 SEG76 2340.0 817.8 222 SEG11 -3510.0 817.8 156 SEG76 2340.0 817.8 222 SEG10 -3600.0 817.8 157 SEG76 2250.0 817.8 223 SEG9 -3690.0 817.8 158 SEG74 2160.0 817.8 224 SEG8 -3780.0 817.8 159 SEG73 2070.0 817.8 225 SEG7 -3870.0 817.8 160 SEG72 1980.0 817.8 226 SEG6 -3960.0 817.8 161 SEG71 1890.0 817.8 226 SEG5 -4050.0 817.8 162 SEG70 1800.0 817.8 228 SEG4 -4140.0 817.8 163	
155 SEG77 2430.0 817.8 221 SEG11 -3510.0 817.8 156 SEG76 2340.0 817.8 222 SEG10 -3600.0 817.8 157 SEG75 2250.0 817.8 223 SEG9 -3690.0 817.8 158 SEG74 2160.0 817.8 223 SEG9 -3690.0 817.8 159 SEG73 2070.0 817.8 224 SEG8 -3780.0 817.8 160 SEG72 1980.0 817.8 225 SEG7 -3870.0 817.8 161 SEG71 1890.0 817.8 226 SEG6 -3960.0 817.8 162 SEG70 1800.0 817.8 227 SEG5 -4050.0 817.8 163 SEG69 1710.0 817.8 228 SEG3 -4230.0 817.8 164 SEG68 1620.0 817.8 230 SEG2 -4320.0 817.8	
156 SEG76 2340.0 817.8 222 SEG10 -3600.0 817.8 157 SEG75 2250.0 817.8 223 SEG9 -3690.0 817.8 158 SEG74 2160.0 817.8 224 SEG8 -3780.0 817.8 159 SEG73 2070.0 817.8 225 SEG7 -3870.0 817.8 160 SEG72 1980.0 817.8 226 SEG6 -3960.0 817.8 161 SEG71 1890.0 817.8 226 SEG6 -3960.0 817.8 162 SEG70 1800.0 817.8 227 SEG5 -4050.0 817.8 163 SEG69 1710.0 817.8 228 SEG3 -4230.0 817.8 164 SEG68 1620.0 817.8 230 SEG2 -4320.0 817.8	
157 SEG75 2250.0 817.8 223 SEG9 -3690.0 817.8 158 SEG74 2160.0 817.8 224 SEG8 -3780.0 817.8 159 SEG73 2070.0 817.8 225 SEG7 -3870.0 817.8 160 SEG72 1980.0 817.8 226 SEG6 -3960.0 817.8 161 SEG71 1890.0 817.8 226 SEG6 -3960.0 817.8 162 SEG70 1800.0 817.8 227 SEG5 -4050.0 817.8 163 SEG69 1710.0 817.8 229 SEG3 -4230.0 817.8 164 SEG68 1620.0 817.8 230 SEG2 -4320.0 817.8	
158 SEG74 2160.0 817.8 224 SEG8 -3780.0 817.8 159 SEG73 2070.0 817.8 225 SEG7 -3870.0 817.8 160 SEG72 1980.0 817.8 226 SEG6 -3960.0 817.8 161 SEG71 1890.0 817.8 227 SEG5 -4050.0 817.8 162 SEG70 1800.0 817.8 228 SEG4 -4140.0 817.8 163 SEG69 1710.0 817.8 229 SEG3 -4230.0 817.8 164 SEG68 1620.0 817.8 230 SEG2 -4320.0 817.8	
159SEG732070.0817.8225SEG7-3870.0817.8160SEG721980.0817.8226SEG6-3960.0817.8161SEG711890.0817.8227SEG5-4050.0817.8162SEG701800.0817.8228SEG4-4140.0817.8163SEG691710.0817.8229SEG3-4230.0817.8164SEG681620.0817.8230SEG2-4320.0817.8	
160 SEG72 1980.0 817.8 226 SEG6 -3960.0 817.8 161 SEG71 1890.0 817.8 227 SEG5 -4050.0 817.8 162 SEG70 1800.0 817.8 228 SEG4 -4140.0 817.8 163 SEG69 1710.0 817.8 229 SEG3 -4230.0 817.8 164 SEG68 1620.0 817.8 230 SEG2 -4320.0 817.8	
161 SEG71 1890.0 817.8 227 SEG5 -4050.0 817.8 162 SEG70 1800.0 817.8 228 SEG4 -4140.0 817.8 163 SEG69 1710.0 817.8 229 SEG3 -4230.0 817.8 164 SEG68 1620.0 817.8 230 SEG2 -4320.0 817.8	
161 SEG71 1890.0 817.8 227 SEG5 -4050.0 817.8 162 SEG70 1800.0 817.8 228 SEG4 -4140.0 817.8 163 SEG69 1710.0 817.8 229 SEG3 -4230.0 817.8 164 SEG68 1620.0 817.8 230 SEG2 -4320.0 817.8	
162 SEG70 1800.0 817.8 228 SEG4 -4140.0 817.8 163 SEG69 1710.0 817.8 229 SEG3 -4230.0 817.8 164 SEG68 1620.0 817.8 230 SEG2 -4320.0 817.8	
163 SEG ₆₉ 1710.0 817.8 229 SEG ₃ -4230.0 817.8 164 SEG ₆₈ 1620.0 817.8 230 SEG ₂ -4320.0 817.8	
164 SEG ₆₈ 1620.0 817.8 230 SEG ₂ -4320.0 817.8	
165 SEG ₆₇ 1530.0 817.8 231 SEG ₁ -4410.0 817.8	
166 SEG ₆₆ 1440.0 817.8 232 COM ₂₆ -4500.0 817.8	
167 SEG65 1350.0 817.8 233 COM25 -4590.0 817.8	
168 SEG ₆₄ 1260.0 817.8 234 COM ₂₄ -4680.0 817.8	
169 SEG ₆₃ 1170.0 817.8 235 COM ₂₃ -4770.0 817.8	
170 SEG ₆₂ 1080.0 817.8 236 COM ₂₂ -4860.0 817.8	
171 SEG ₆₁ 990.0 817.8 237 COM ₂₁ -4950.0 817.8	
172 SEG60 900.0 817.8 238 COM20 -5040.0 817.8	
173 SEG ₅₉ 810.0 817.8 239 COM ₁₉ -5130.0 817.8	
174 SEG ₅₈ 720.0 817.8 240 COM ₁₈ -5220.0 817.8	
175 SEG ₅₇ 630.0 817.8 241 COM ₁₇ –5310.0 817.8	
176 SEG56 540.0 817.8 242 COM16 -5400.0 817.8	
177 SEG ₅₅ 450.0 817.8 243 COM ₁₅ -5490.0 817.8	
178 SEG ₅₄ 360.0 817.8 244 COM ₁₄ -5580.0 817.8	
179 SEG ₅₃ 270.0 817.8 245 COM ₁₃ –5670.0 817.8	
180 SEG ₅₂ 180.0 817.8 246 COM ₁₂ -5760.0 817.8	
181 SEG ₅₁ 90.0 817.8 247 COM ₁₁ -5850.0 817.8	
182 SEG ₅₀ 0.0 817.8 248 Dummy -5940.0 817.8	
183 SEG ₄₉ –90.0 817.8 249 Dummy –6030.0 817.8	
184 SEG ₄₈ –180.0 817.8 250 Dummy –6112.0 577.8	
185 SEG ₄₇ –270.0 817.8 251 Dummy –6112.0 487.8	
186 SEG ₄₆ –360.0 817.8 252 COM ₁₀ –6112.0 397.8	
187 SEG ₄₅ -450.0 817.8 253 COM ₉ -6112.0 307.8	
188 SEG44 -540.0 817.8 254 COM8 -6112.0 217.8	
189 SEG43 -630.0 817.8 255 COM7 -6112.0 127.8	
190 SEG ₄₂ -720.0 817.8 256 COM6 -6112.0 37.8	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
191 SEG41 -810.0 817.8 257 COM5 -6112.0 -52.2 192 SEG40 -900.0 817.8 258 COM4 -6112.0 -142.2	
192 SEG40 -900.0 817.8 258 COM4 -6112.0 -142.2 193 SEG39 -990.0 817.8 259 COM3 -6112.0 -232.2	
195 SEG ₃₇ -1170.0 817.8 261 COM ₁ -6112.0 -412.2	
196 SEG ₃₆ -1260.0 817.8 262 PCOM -6112.0 -502.2	
197 SEG ₃₅ -1350.0 817.8 263 Dummy -6112.0 -592.2	
198 SEG ₃₄ –1440.0 817.8 264 Dummy –6112.0 -682.2	

 \star

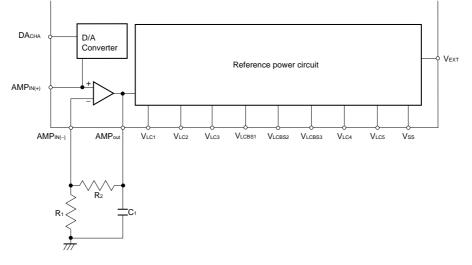
3. PIN DESCRIPTIONS

3.1 Power System Pins

Pin Symbol	Pin Name	Pin No.	I/O	Function Description
Vdd	Logic and booster power	22, 23,	-	Power supply pin for logic and booster circuit.
	supply pin	48 to 50,		
		73 to 75,		
		82, 96		
Vss	Logic and driver ground	51 to 53	-	Ground pin for logic and driver circuit.
	pin			
VLCD	Driver power supply pin	45 to 47	-	Driver power supply pin. Output pin of internal booster circuit.
				Please connect with a 1 μ F booster capacitor to ground.
				When not using the internal booster circuit, the driver power
				can be turned on directly.
VLC1 to VLC5	Driver reference power	25 to 27,	-	Reference power supply pin for LCD drive.
	supply	29 to 31,		When the internal bias is selected, be sure to leave it open.
		33 to 35,		When display contrast is bad, connect a capacitor between
		37 to 39,		these pins and ground.
		41 to 43		
VLCBS1 to	Bias level select pin	4, 5, 7,	-	When the internal bias is selected, Connecting these pins
VLCBS3		8, 10, 11		outside the IC, the bias level can be changed.
C_1^+, C_1^-	Capacitor connection pins	55 to 72	-	Capacitor connection pins for booster circuit. When using
C_2^+, C_2^-				internal booster circuit, connect a $1\mu F$ capacitor between
C_3^+, C_3^-				these pins.

3.2 Logic System Pins (1/2)

Pin Symbol	Pin Name	Pin No.	I/O	Function Description
WS	Word length select pin (Word Select)	92	I	 This pin selects the word length. At High level, it become an 8-bit parallel interface. At Low level, when D₇(NS) is High level, it become a serial interface. When the word length is 4 bits, data is transferred in the upper-to-low sequence by mean of data busses D₀ to D₃. The word length cannot be changed after power-on.
DAсна	D/A converter select pin	78	I	This pin selects whether to use the internal D/A converter for LCD driving voltage adjustment or not. At High level, D/A converter is used. At Low level, unused.
STB	Strobe	93	I	This pin is select signal of device, strobe signal for data transfer. Data transfer is initialized at falling/rising edge of STB. Data can be input/output at Low level either in parallel interface or serial interface mode. When STB is High level, Enable/shift clock is bypassed.
E(SCK)	Enable(shift clock)	94	Ι	When using parallel interface mode, this pin becomes the data enable input. In reading-in, data is fetched into the interface buffer at rising edge. In reading-out, data is fetched from interface buffer at falling edge. When using serial interface mode, this pin becomes the data shit clock. In reading-in, data is fetched into the interface buffer at rising edge. In reading-out, data is fetched from interface buffer at falling edge.
D₀(DATA)	Data-bus(data)	84	I/O	When using parallel interface mode, this pin becomes the D ₀ bit of data-bus. When using serial interface mode, this pin becomes the input/output pin of the command and display data (3 states).
D1 to D3	Data-bus	85 to 87	I/O	When using parallel interface mode, these pin becomes the D1 to D3 bits of data-bus. When using serial interface mode, keep them H or L.
D4 to D6	Data-bus	88 to 90	I/O	When using parallel interface mode, these pin become the D_4 to D_6 bits of data-bus. When using serial interface mode, keep them H or L.
D7(NS)	Data-bus(nibble select)	91	I/O	When word select (WS) is High level, this pin becomes the D7 bit of data-bus. When word select (WS) is Low level, This pin becomes nibble select pin. At High level, selected 4-bit parallel interface. At Low level, selected serial interface.
TESTOUT	TEST signal output	97	0	When to do test, this pin is output for test signal. When using in normal operation, this pin leave open.
/RESET	Reset	95	I	At Low level, the μ PD16680 is initialized.


3.2 Logic System Pins (2/2)

Pin Symbol	Pin Name	Pin No.	I/O	Function Description
АМРсна	Amp mode select pin	79	I	Select operational amplifier mode. At High level, "Level capacitor mode". At Low level, "LCD driving mode".
Vext	LCD reference supply switching	77	I	Select the method for supplying LCD power circuit. At High level, LCD driving voltage is supplied external circuit. At Low level, it is supplied internal circuit.
OSCIN	Oscillation pin	80	I	These pins are connected with the 1 $M\Omega$ resistor. When using external oscillation, input into the OSC_{IN} , and leaving the
OSCOUT		81	0	OSCout open.
OSCBRI	Blinking Clock	83	I	This pin is oscillation input for Blinking. To input 2 Hz external clock, when to use Blinking by external clock mode. When not to use this pin, keep it H or L.

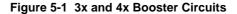
3.3 Driver System Pins

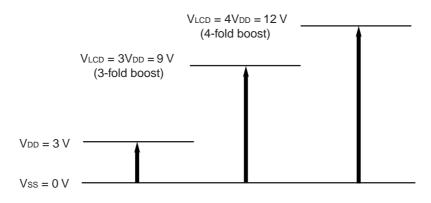
Pin Symbol	Pin Name	Pin No.	I/O	Function Description
SEG₁ to	Segment	132 to 231	0	Segment output pins.
SEG100				
COM₁ to	Common	102 to 112,	0	Common output pins
COM ₅₁		117 to 130,		
		232 to 247,		
		252 to 261		
PCOM	Pictographic common	131, 262	0	Common output pins for pictograph.
				(Same waveform output from these pins.)
AMPIN(+)	Operational amplifier input	19, 20	I	These pins are the input pins of operational amplifier for LCD
				driving voltage adjustment.
				When using the internal D/A converter, leave AMP _{IN(+)} open.
				When not using the internal D/A converter, it is necessary to
AMPIN(-)	-	16,17		input the reference voltage.
()		,		AMPIN(-) is connected to the resister for LCD driving voltage
				adjustment.
				See 4. LCD DRIVING VOLTAGE CONTROL CIRCUIT.
AMPout	Operational amplifier	13,14	0	This is the input pin of operational amplifier for LCD driving
	output			voltage adjustment. Normally it is connected to the resister for
				LCD driving voltage adjustment. See 4. LCD DRIVING
				VOLTAGE CONTROL CIRCUIT. It recommends to connect to
				this pin a 0.1 to 1 μ F capacitor to make the output of the
				internal operational amplifier be stable.
Dummy	Dummy pad	1, 2, 3, 9, 12,	-	Dummy pins are not connected to the internal circuit. Leave
		15, 18, 21,		open if they are not used.
		24, 28, 32,		
		33, 40, 44,		
		54, 76,		
		98 to 101,		
		113 to 116,		
		248 to 251,		
		263, 264		

4. LCD DRIVING VOLTAGE CONTROL CIRCUIT

Data Sheet S12694EJ2V0DS00

5. POWER CIRCUIT


The μ PD16680 incorporate the booster circuit is switchable between 3 and 4 folds. The boosting magnitude of internal booster circuit is selected by the capacitor connection.


The reference power circuit is switchable between internal driving circuit and external driving circuit. The method for supplying the reference circuit selected by V_{EXT} pin (H : External, L : Internal).

5.1 Booster circuit

Using Internal driving circuit, to connect condenser for boosting between C_1^+ and C_1^- , C_2^+ and C_2^- , C_3^+ and C_3^- , to connect condenser between V_{LCD} and V_{DD} to be stable boosting voltage. And to set V_{EXT} pin to low level, internal booster circuit boost voltage between V_{DD} and V_{SS} to 3 or 4 folds.

The booster circuit is using clock made by internal oscillation circuit. It is necessary that oscillation to be operated. C_1^+ , C_1^- , C_2^+ , C_2^- , C_3^+ , C_3^- , V_{DD} are pins for booster circuit. To use the wire that have low register value to connect these pins.

- **Remarks 1.** When to use 3-fold booster circuit, not to connect condenser between C_3^+ and C_2^- , C_1^+ and C_1^- , leave open C_2^+ and C_3^- .
 - 2. When to use external power supply circuit, booster circuit is not operating.

5.2 LCD driving circuit

5.2.1 To use internal driving circuit, not to use D/A converter ($V_{EXT} = L$, $DA_{CHA} = L$)

When to internal driving circuit is chosen, boosted voltage be used for power of internal operational amplifier adjusting LCD driving voltage. To connect external resister R₁, R₂, and input reference voltage to $AMP_{IN(+)}$ pin. It is possible to adjust LCD driving voltage of V_{LC1}. If using thermistor to adjust LCD driving voltage according to the temperature characteristic of LCD panel, we recommend connecting it with R₂ in parallel.

The value of V_{LC1} can be computed by the following formula.

Equation 5-1

$$V_{LC1} = AMP_{IN}(+) = \left(1 + \frac{R2'}{R_1}\right) V_{REF}$$

Remark R2' =
$$\frac{R2 \times Rth}{R2 + Rth}$$

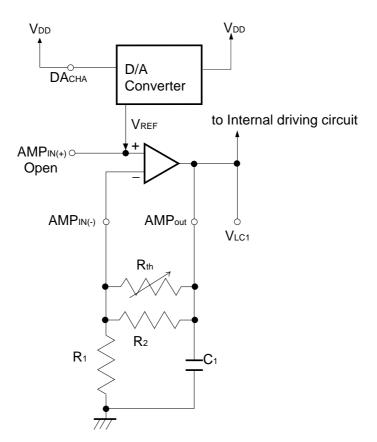

DA_{CHA} D/A Converter VREF to Internal driving circuit AMPIN(+) AMPout VLC1 Rth R2 C1

Figure 5-2 When not using Internal power supply select or D/A converter

5.2.2 To use internal driving circuit and D/A converter (V_{EXT} = L , DA_{CHA} = H)

To use D/A converter, it is possible to adjust reference voltage V_{REF} inputted to $AMP_{IN(+)}$ pin for LCD driving by command.

To set 6-bit data to D/A converter register, reference voltage V_{REF} is choose one level from 64 level in 1/2 V_{DD} to V_{DD} . The formula of V_{LC1} is as same written in **Equation 5-1**.

Figure 5-3 Using internal power supply select and D/A converter

5.2.3 To use external driving circuit ($V_{EXT} = H$)

When external voltage supply circuit for LCD driving is chosen, operational amplifier incorporated IC is off. Therefore, it is impossible to use operational amplifier for LCD driving and D/A converter function. LCD driving voltage is adjust by the voltage inputted to V_{LCD} and V_{LC1} pins directly.

Remarks 1. Set $V_{LCD} \ge V_{LC1}$.

- 2. DACHA, AMPIN(+), AMPIN(-) are CMOS input. Set H level or L level.
- 3. Set AMPOUT pin "open".

 \star

5.3 REFERENCE VOLTAGE CIRCUIT

5.3.1 To use internal reference voltage circuit ($V_{EXT} = L$)

When internal driving circuit is chosen, 6 levels for LCD reference voltage (V_{LC1} , V_{LC2} , V_{LC3} , V_{LC4} , V_{LC5} , V_{SS}) is generate by internal breeder resister.

5.3.2 To use external driving circuit (V_{EXT} = H)

When external driving circuit is chosen, operational amplifier incorporated IC is Off. It is necessary to input voltage to V_{LC1} , V_{LC2} , V_{LC3} , V_{LC4} and V_{LC5} directly.

Generally, These levels are made by external breeder resister. The display dignity of LCD declines when these resistance values are big, it is necessary to choose the resistance value which corresponds with the LCD panel. There is an effect that improves display dignity when connecting a capacitor with each level pins and the ground. It is necessary to choose the condenser value which corresponds with the LCD panel.

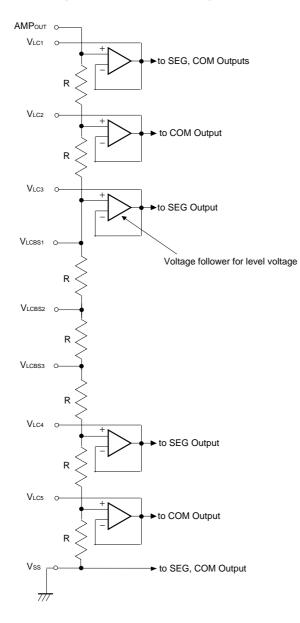


Figure 5-3. Reference voltage circuit

Data Sheet S12694EJ2V0DS00

5.4 Setting BIAS value

When internal driving circuit chosen, by connecting the interval of the pin V_{LCBS1} , V_{LCBS2} , V_{LCBS3} outside the IC, the bias value can be set from the 1/6 bias, the 1/7 bias, the 1/8 bias.

Bias value	Pin connection
1/8 bias	VLCBS1, VLCBS2, VLCBS3 All open
1/7 bias	To connect VLCBS1 and VLCBS2, or VLCBS2 and VLCBS3
1/6 bias	To connect VLCBS1 and VLCBS3, VLCBS2 is open.

5.5 Voltage followers for level power supply

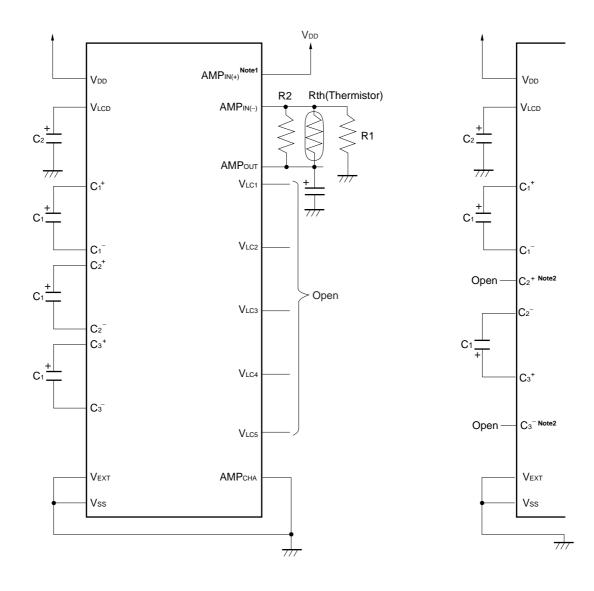
By the input of AMPCHA pin, it controls voltage follower for the LCD drive level power supply.

• LCD driving mode (AMPCHA = L)

When this mode is chosen, The voltage follower maximizes electric current supply ability for LCD drive. It doesn't need to connect the external capacitor for the level stability.

• Level capacitor mode (AMPCHA = H)

When this mode is chosen, The voltage follower maximizes electric current supply ability for the external condenser charging. In this mode, it needs to connect the external capacitor (0.1 to 1.0 μ F) for the level stability.

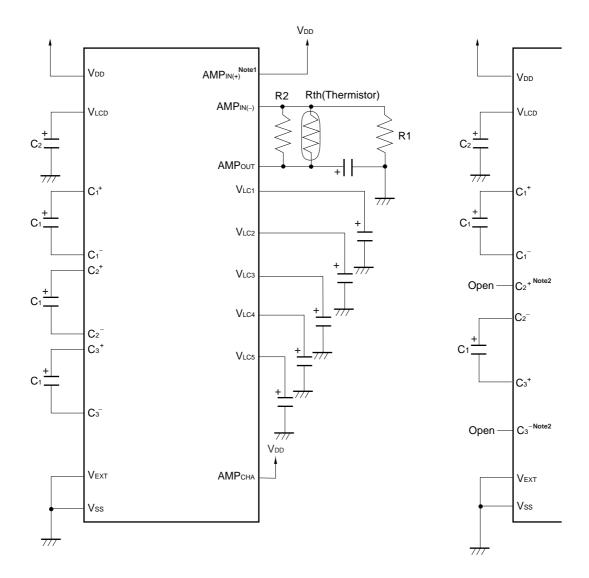

Caution When using this mode without connecting capacitor, the display dignity will be bad.

5.6 Application circuit example

5.6.1 To use internal driving circuit, LCD driving mode

A) Boost 4folds (not to use D/A converter)

B) Boost 3 folds

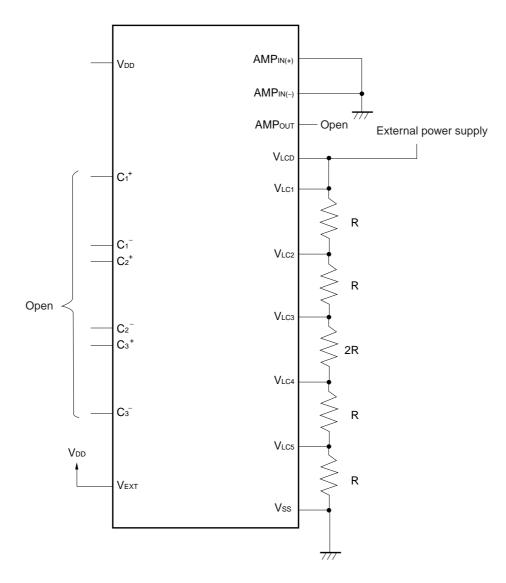

Notes 1. When to use D/A converter, AMPIN(+) is open. **2.** C_2^+ , C_3^- are open.

Remark $C1 = C2 = 1.0 \ \mu m$

5.6.2 To use internal driving circuit, LCD driving mode

A) Boost 4folds(not to use D/A converter)

B) Boost 3 folds

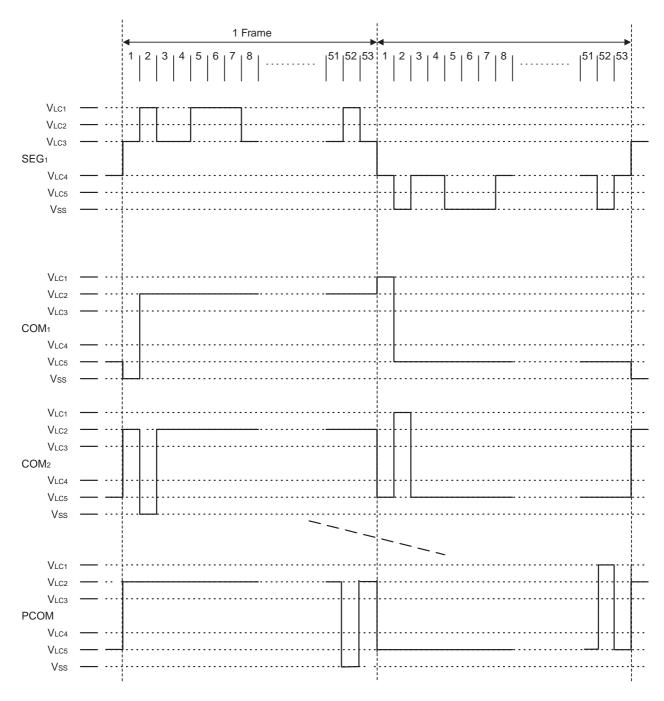


Notes 1. When to use D/A converter, $AMP_{IN(+)}$ is open. **2.** C_2^+ , C_3^- are open.

Remark $C1 = C2 = 1.0 \ \mu m$

5.6.3 To use external driving circuit

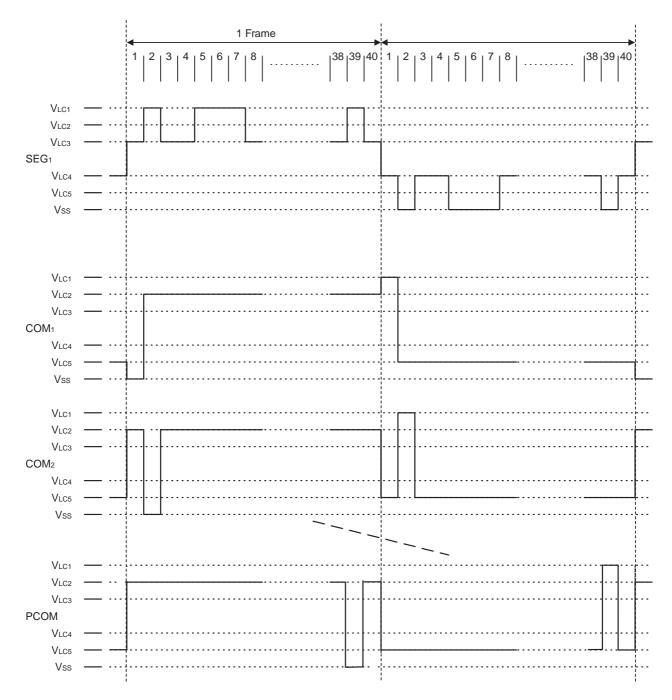
To use 1/6 bias



6. LCD DRIVING

The μ PD16680 is able to choose duty 1/53 duty or 140 duty.

6.1 1/53 duty driving


When 1/53 duty is chosen, the μ PD16680 outputs a choice signal once at 1 frame from the dot part common outputs (COM1 to COM51), the pictograph part common outputs (PCOM).

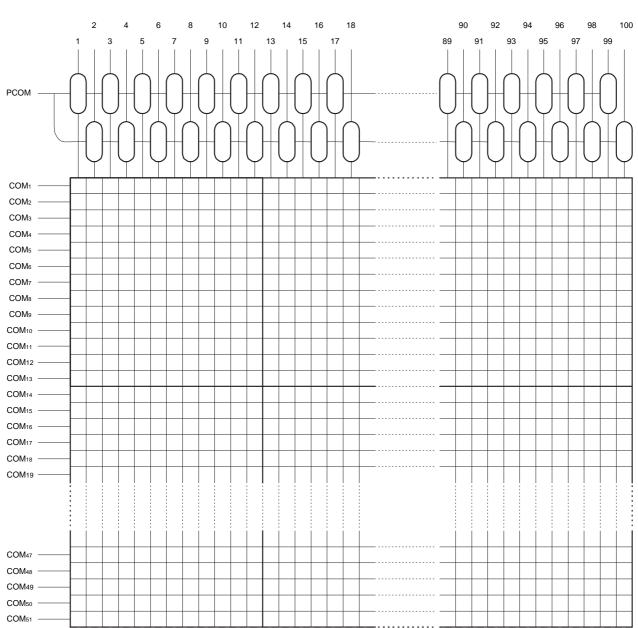
Data Sheet S12694EJ2V0DS00

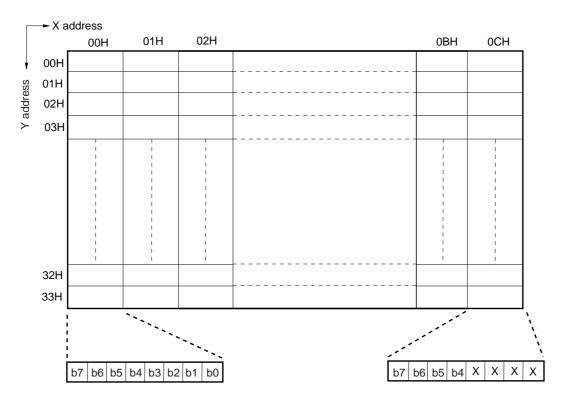
6.2 1/40 duty driving

When 1/40 duty is chosen, the μ PD16680 outputs a choice signal once at 1 frame from the dot part common outputs (COM₁ to COM₁₉, COM₂₇ to COM₄₅), the pictograph part common outputs (PCOM).

7. LCD DISPLAY

The μ PD16680 can display 100 by 51 dots (called full-dot display) LCD display and 100 pictographs.




Figure 7-1 LCD matrix

8. GROUP ADDRESSES

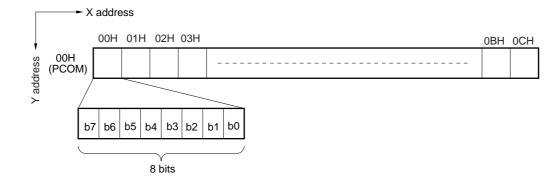
8.1 Dot display

The group addresses of dot display are assigned as follows.

To be chosen the address is increment, when X address goes to 0CH, next address is 00H. At this time, Y address goes to next address. When Y address goes to 33H, next address is 00H, too.

Remark Data of X address = 0CH : b7 to b4 are data, b3 to b0 are don't care.

* When 1/53 duty and using 1/40 duty are used, the RAM addresses and the common pins used are as follows.


Duty	Use RAM Y addresses	Don't use RAM Y addresses	Use common pins	Don't use common pins
1/53 duty	00H to 33H	-	COM1 to COM51	-
1/40 duty	00H to 12H 1AH to 2CH ^{Note}	13H to 19H 2DH to 33H	COM1 to COM19 COM27 to COM45	COM20 to COM26 COM46 to COM51

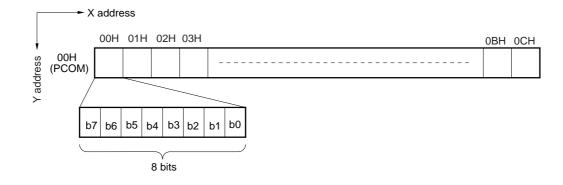
Note If address incrementation is set when 1/40 duty is used, the X address value following 0CH is 00H. At the same time the Y address is incremented by 1. The Y address value following 12H is 1AH, and the value following 2CH is 00H.

8.2 Pictograph

The group addresses of pictograph are assigned as follows.

To be chosen the address is increment, X address goes to 0CH, next address is 00H.

Table 8-1	PCOM (Y address =	00H)
-----------	--------	-------------	------

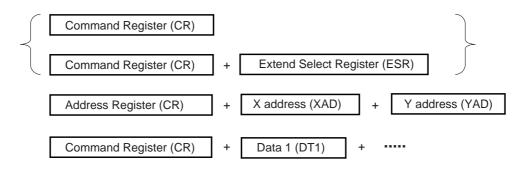

X a debra a	Segment output No.									
X address	b7	b6	b5	b4	b3	b2	b1	b0		
00H	1	2	3	4	5	6	7	8		
01H	9	10	11	12	13	14	15	16		
02H	17	18	19	20	21	22	23	24		
03H	25	26	27	28	29	30	31	32		
04H	33	34	35	36	37	38	39	40		
05H	41	42	43	44	45	46	47	48		
06H	49	50	51	52	53	54	55	56		
07H	57	58	59	60	61	62	63	64		
08H	65	66	67	68	69	70	71	72		
09H	73	74	75	76	77	78	79	80		
0AH	81	82	83	84	85	86	87	88		
0BH	89	90	91	92	93	94	95	96		
0CH	97	98	99	100	Х	Х	Х	Х		

Remark Data of X address = 0CH :b7 to b4 are data, b3 to b0 are don't care.

8.3 Blink data

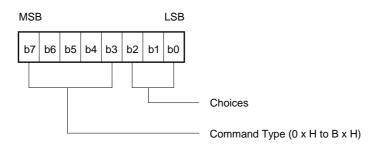
The group addresses of brink data are assigned as follows.

To be chosen the address is increment, when X address goes to 0CH, next address is 00H.


Table 8-2 PCOM (Y address = 00H)

Y a debra a	Segment output No.									
X address	b7	b6	b5	b4	b3	b2	b1	b0		
00H	1	2	3	4	5	6	7	8		
01H	9	10	11	12	13	14	15	16		
02H	17	18	19	20	21	22	23	24		
03H	25	26	27	28	29	30	31	32		
04H	33	34	35	36	37	38	39	40		
05H	41	42	43	44	45	46	47	48		
06H	49	50	51	52	53	54	55	56		
07H	57	58	59	60	61	62	63	64		
08H	65	66	67	68	69	70	71	72		
09H	73	74	75	76	77	78	79	80		
0AH	81	82	83	84	85	86	87	88		
0BH	89	90	91	92	93	94	95	96		
0CH	97	98	99	100	Х	Х	х	Х		

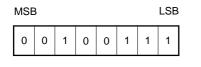
Remark Data of X address = 0CH :b7 to b4 are data, b3 to b0 are don't care.


9. COMMAND

9.1 Basic form

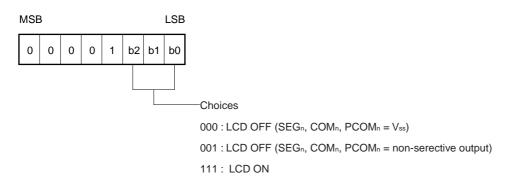
9.2 Command register

The command register's basic configuration is as follows.



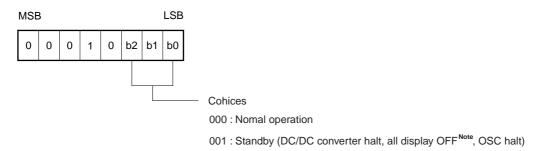
				Reg	ister			
Command	D7	D6	D5	D4	D3	D2	D1	D0
Reset	0	0	1	0	0	1	1	1
Display ON/OFF	0	0	0	0	1	b2	b1	b0
Standby	0	0	0	1	0	b2	b1	b0
D/A converter setting	0	0	1	0	1	0	0	0
Duty setting	0	0	0	1	1	b3	b2	b0
Blink setting	0	1	0	0	0	b2	b1	b0
Data R/W mode	1	0	1	1	0	b2	b1	b0
Test mode	1	0	1	1	1	b2	b1	b0

Table 7-1 Command Table


9.2.1 Reset

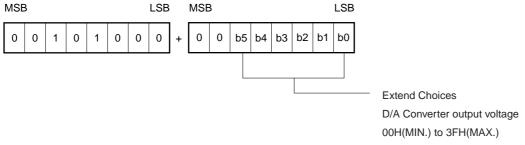
The all IC's commands are initialized.

9.2.2 Display ON/OFF


ON/OFF of the display is controlled.

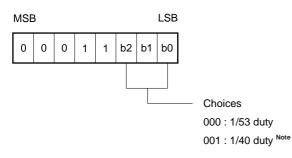
9.2.3 Standby

The DC/DC converter is stopped, thus reducing the supply current. This display is placed in the OFF state (SEGn, $COMn = V_{SS}$).


Even at Standby, it is possible to write command and data.

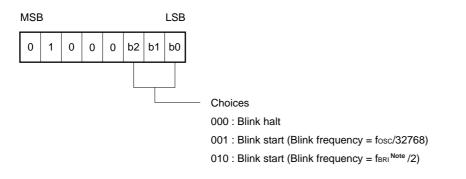
Note SEGn, COMn, PCOM = Vss

9.2.4 D/A converter setting


The internal D/A converter is set. D/A converter output voltage is controlled from 1/2VDD to VDD.

Caution After resetting, it is set to 20H.

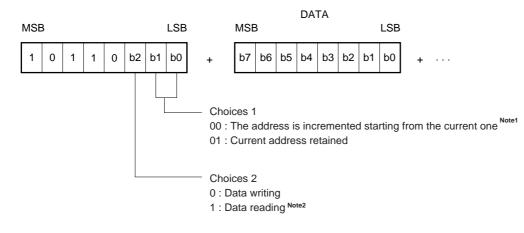
9.2.5 Duty setting


The duty is set.

Note If the duty cycle is 1/40, leave open from COM₃₉ to COM₅₁.

9.2.6 Blink setting

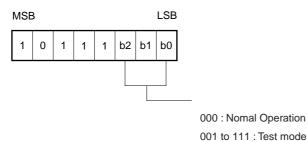
The blinks of the pictograph of the address whose blink data is "1" are controlled.



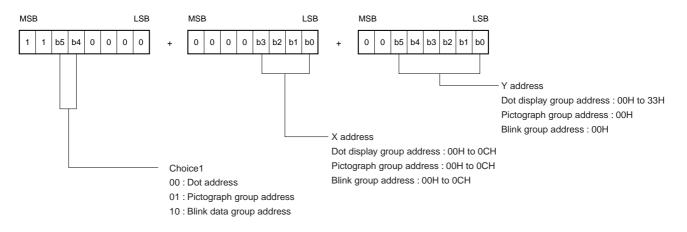
Note This refers to the frequency of the external clock which is input from the OSCBR1 pin.

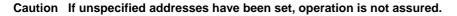
9.2.7 Data R/W mode

NEC


Data Read/Write (R/W), increment, address counter resetting, etc. are set in this mode.

- Notes 1. When X address and Y address goes to last address, next address is 00H.
 - 2. The data read mode is canceled at STB's rising edge (Switched to data write mode).
- **Remark** When using serial data transfer, it is necessary to write 8-bit data. No assurance is IC's operation when STB is rising during data transfer.

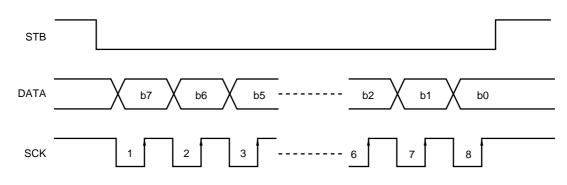

9.2.8 Test mode


The test mode is set. The test mode is for checking IC's operation, and no assurance is made for its regular use or continued operation.

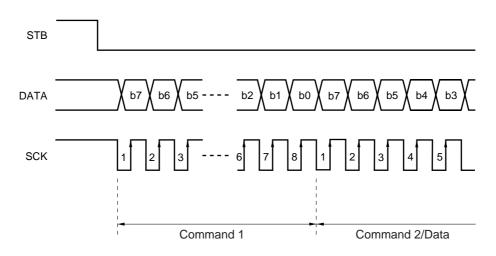
★ 9.3 Address register

Selects the address type and specifies the address.

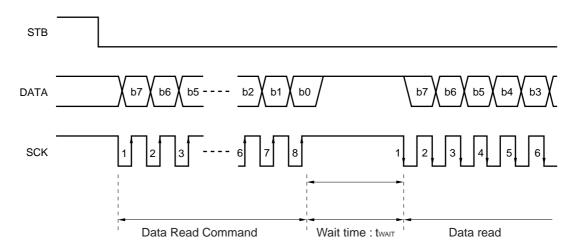
10. RESETTING


When reset (command reset, hardware (terminal) reset), the contents of each register are as follows.

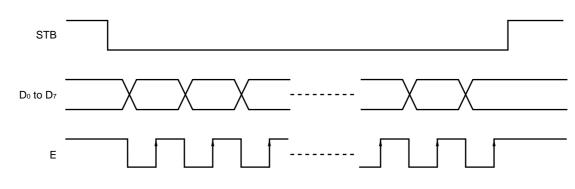
Register name			Reg	ister	cont	ents			Status	
Register hame	b7	b6	b5	b4	b3	b2	b1	b0	Status	
Display ON / OFF	0	0	0	0	1	0	0	0	LCD OFF (SEGn, COMn, PCOM = Vss)	
Standby	0	0	0	1	0	0	0	0	Normal operation	
Duty setting	0	0	0	1	1	0	0	0	1/53 duty	
D/A converter setting	1	0	0	0	0	0	0	0	To set 20H	
Blink setting	0	1	0	0	0	0	0	0	Blink halt	
Data R/W mode	1	0	1	1	0	0	0	0	Data write, the address is incremented(+1) starting from current address.	
Test mode	1	0	1	1	1	0	0	0	Normal operation	

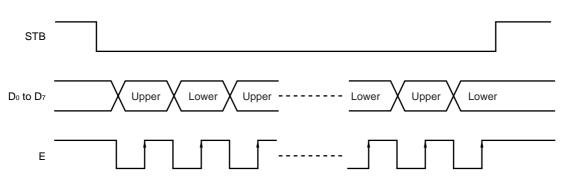

11. COMMUNICATION FORMAT

11.1 serial


11.1.1 Reception 1 (Command/Data write : 1 byte)

11.1.2 Reception 2 (Command/Data write : 2 bytes or more)


11.1.3 Transmission (Command/Data read)


Data Sheet S12694EJ2V0DS00

11.2 Parallel

11.2.1 8-bit parallel interface

11.2.2 4-bit parallel interface

12 CPU ACCESS EXAMPLE

12.1 Initialize and write data

ltem	STB			Con	nmar	nd / [Data			Explanation
nem	510	b7	b6	b5	b4	b3	b2	b1	b0	Explanation
Start	Н	х	х	х	х	х	х	х	х	
Reset	L	0	0	1	0	0	1	1	1	
	Н	х	х	х	х	х	х	х	х	
Duty setting	L	0	0	0	1	1	0	0	0	1/53 duty
	Н	х	х	x	х	x	x	×	х	
Address Register 1	L	1	1	0	0	0	0	0	0	Dot address
Address Register 2	L	0	0	0	0	0	0	0	0	X address = 00H
Address Register 3	L	0	0	0	0	0	0	0	0	Y address = 00H
	Н	х	х	х	х	х	х	х	х	
Data R/W mode	L	1	0	1	1	0	0	0	0	Data write, The address is incremented starting from the current one.
Dot display Data 1	L	D	D	D	D	D	D	D	D	Dot data
										(63 bytes)
Dot display Data 663	L	D	D	D	D	D	D	D	D	
	Н	х	х	х	х	х	х	х	х	
Address Register 1	L	1	1	0	1	0	0	0	0	Pictograph group address
Address Register 2	L	0	0	0	0	0	0	0	0	X address = 00H
Address Register 3	L	0	0	0	0	0	0	0	0	Y address = 00H
	Н	х	х	х	х	х	х	x	х	
Data R/W mode	L	1	0	1	1	0	0	0	0	Data write, The address is incremented starting from the current one.
Pictograph Data 1	L	D	D	D	D	D	D	D	D	Pictograph data
										(13 bytes)
Pictograph Data 13	L	D	D	D	D	D	D	D	D	
	Н	х	х	х	х	х	х	х	х	
Display ON / OFF	L	0	0	0	0	1	1	1	1	LCD ON
End	Н	х	х	х	х	х	х	х	х	

Remark x = Don't Care, D = data

Item	STB			Con	nmar	nd / I	Data			Explanation
nem	315	b7	b6	b5	b4	b3	b2	b1	b0	Explanation
Start	Н	х	х	х	х	х	х	х	х	
Address Register 1	L	1	1	0	0	0	0	0	0	Dot address
Address Register 2	L	0	0	0	0	0	0	0	0	X address = 00H
Address Register 3	L	0	0	0	0	0	0	0	0	Y address = 00H
	Н	х	х	х	х	х	х	х	х	
Data R/W mode	L	1	0	1	1	0	0	0	0	Data write, The address is incremented starting from the current one.
Dot display Data 1	L	D	D	D	D	D	D	D	D	Dot data
										(663 bytes)
Dot display Data 663	L	D	D	D	D	D	D	D	D	
	Н	х	х	х	х	х	x	х	х	
Address Register 1	L	1	1	0	1	0	0	0	0	Pictograph group address
Address Register 2	L	0	0	0	0	0	0	0	0	X address = 00H
Address Register 3	L	0	0	0	0	0	0	0	0	Y address = 00H
	Н	х	х	х	х	х	х	х	х	
Data R/W mode	L	1	0	1	1	0	0	0	0	Data write, The address is incremented starting from the current one.
Pictograph Data 1	L	D	D	D	D	D	D	D	D	Pictograph data
										(13 bytes)
Pictograph Data 13	L	D	D	D	D	D	D	D	D	
End	н	х	х	х	х	х	х	х	х	

12.2 Change display data and pictograph data (All data are changed)

Remark x = Don't Care, D = data

ltem	STB			Con	nmai	nd / I	Data			Explanation
nem	5	b7	b6	b5	b4	b3	b2	b1	b0	Explanation
Start	Н	х	х	х	х	х	х	х	х	
Address Register 1	L	1	1	0	0	0	0	0	0	Dot address
Address Register 2	L	0	0	0	0	0	0	0	0	X address = 00H
Address Register 3	L	0	0	0	0	0	0	0	0	Y address = 00H
	Н	х	х	х	х	х	х	х	х	
Data R/W mode	L	1	0	1	1	0	1	0	0	Data read, The address is incremented starting from the current one.
Dot display Data 1	L	D	D	D	D	D	D	D	D	Dot data
										(663 bytes)
Dot display Data 663	L	D	D	D	D	D	D	D	D	
	Н	х	х	х	х	х	х	х	х	
Address Register 1	L	1	1	0	1	0	0	0	0	Pictograph group address
Address Register 2	L	0	0	0	0	0	0	0	0	X address = 00H
Address Register 3	L	0	0	0	0	0	0	0	0	Y address = 00H
	Н	х	х	х	х	х	х	х	х	
Data R/W mode	L	1	0	1	1	0	1	0	0	Data read, The address is incremented starting from the current one.
Pictograph Data 1	L	D	D	D	D	D	D	D	D	Pictograph data
										(13 bytes)
Pictograph Data 13	L	D	D	D	D	D	D	D	D	
End	Н	х	х	х	х	х	х	х	х	

12.3 Read display data and pictograph data (All data are read)

Remark x = Don't Care, D = data

★

* *

12.4 Blink data setting

Item	STB			Con	nmai	nd / I	Data			Explanation
nem	315	b7	b6	b5	b4	b3	b2	b1	b0	Explanation
Start	Н	х	х	х	х	х	х	х	Х	
Address Register 1	L	1	1	1	0	0	0	0	0	Blink group address
Address Register 2	L	0	0	0	0	0	0	0	0	X address = 00H
Address Register 3	L	0	0	0	0	0	0	0	0	Y address = 00H
	Н	х	х	х	х	х	х	х	х	
Data R/W mode	L	1	0	1	1	0	0	0	0	Data write, The address is incremented starting from the current one.
Blink Data 1	L	D	D	D	D	D	D	D	D	Blink data
										(13 bytes)
Blink Data 13	L	D	D	D	D	D	D	D	D	
	Н	х	х	х	х	х	х	х	х	
Blink setting	L	0	1	0	0	0	0	1	0	Blink start, blink frequency = fBRI/2
End	Н	х	х	х	х	х	х	х	х	

Remark x= Don't Care, D = data

Data Sheet S12694EJ2V0DS00

13. ELECTRICAL SPECIFICATIONS

Absolute maximum ratings (T_A =+25°C, V_{SS} =0 V)

Parameter	Symbol	Ratings	Unit
Supply voltage (4-fold voltage mode)	Vdd	-0.3 to +3.75	V
Supply voltage (3-fold voltage mode)	Vdd	-0.3 to +5.0	V
Driver supply voltage	VLCD	-0.3 to +15.0, $V_{DD} \leq V_{LCD}$	V
Driver reference supply input voltage	VLC1 to VLC5	−0.3 to VLCD+0.3	V
Logic system input voltage	VIN1	-0.3 to VDD+0.3	V
Logic system output voltage	Vout1	-0.3 to V _{DD} +0.3	V
Logic system input/output voltage	VI/01	-0.3 to V _{DD} +0.3	V
Driver system input voltage	VIN2	−0.3 to VLCD+0.3	V
Driver system output voltage	Vout2	−0.3 to VLCD+0.3	V
Operating temperature	TA	-40 to +85	°C
Storage temperature	Tstg	-55 to +150	°C

Caution If the absolute maximum rating of even one of the above parameters is exceeded even momentarily, the quality of the product may be degraded. Absolute maximum ratings, therefore, specify the values exceeding which the product may be physically damaged. Be sure to use the product within the range of the absolute maximum ratings.

Recommended operating range

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply voltage (4-fold voltage mode)	Vdd	2.4		3.0	V
Supply voltage (3-fold voltage mode)	Vdd	2.4		4.0	V
Driver supply voltage ^{Note}	VLCD	5.0	10	12	V
Logic system input voltage	Vin	0		Vdd	V
Driver system input voltage	VLC1 to VLC5	0		VLCD	V

Note When to use external LCD driving, this parameter is recommended.

 $\label{eq:Remarks1} \textbf{Remarks1}. \quad \textbf{When to use external LCD driving, keep $V_{SS} < V_{LC5} < V_{LC4} < V_{LC3} < V_{LC2} < V_{LC1} \leq V_{LCD}$}$

- 2. When power on or power off moment, keep $V_{DD} \leq V_{LCD}$
- **3.** When to use internal LCD driving circuit and not to use D/A converter, keep voltage inputted to AMP_{IN(+)} pin to 1.0V to V_{DD}.

 \star

*

 \star

Electrical characteristics (Unless otherwise specified, $T_A = -40$ to +85°C, 4-fold voltage mode : $V_{DD} = 2.7$ to 3.0V or

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
High-level input voltage	Vін		0.8 Vdd			V
Low-level input voltage	VIL				0.2 Vdd	V
High-level input current	Іін1	Except Do/DATA, D1 to D7			1	μA
Low-level input current	lı∟ı	Except Do/DATA, D1 to D7			-1	μA
High-level output voltage	Vон	Iout = -1.5 mA, Except OSCout	VDD-0.5			V
Low-level output voltage	Vol	Iout = 4 mA, Except OSCout			0.5	V
High-level leakage current	Ігон	Do/DATA, D1 to D7			10	μA
Low -level leakage current	Ilol	VINOUT = VDD Do/DATA, D1 to D7 VIN/OUT = Vss			-10	μA
Common output ON resistance	Rсом	VLCn → COMn, VLCD ≥ 3VDD IIoI = 50 μ A			2	kΩ
Segment output ON resistance	Rseg	V _{LCn} →SEGn, V _{LCD} ≥ 3V _{DD} IIoI = 50 µA			4	kΩ
Driver voltage (Booster voltage)	VLCD	3-fold voltage mode	2.7 Vdd		3.0 Vdd	V
		4-fold voltage mode	3.6 Vdd		4.0 Vdd	V
Current consumption (VDD) Level condenser mode	Idd11	$f_{OSC} = 32 \text{ kHz}$, Display-off data output $V_{DD} = 3.0 \text{ V}$,3-fold voltage mode Not to access to RAM.			95	μΑ
		$f_{OSC} = 32$ kHz, Display-off data output $V_{DD} = 3.0$ V,4-fold voltage mode Not to access to RAM.			125	μΑ
Current consumption (VDD) LCD driving mode	DD12	fosc = 32 kHz, Display-off data output V _{DD} = 3.0 V,3-fold voltage mode Not to access to RAM.			160	μΑ
		$f_{OSC} = 32$ kHz, Display-off data output $V_{DD} = 3.0$ V,4-fold voltage mode Not to access to RAM.			250	μA
Driver current consumption (Vod, Standby)	IDD21	V _{DD} = 3.0 V			10	μA

Switching characteristics (Unless otherwise specified, $T_A = -40$ to $+85^{\circ}C$, $V_{DD} = 2.7$ to 3.3 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Oscillation frequency	Fosc	Self-oscillation	25	32	38	kHz
Transfer delay time 1	t PHL	$SCK \!$			100	ns
Transfer delay time 2	tрін	$SCK \downarrow \to DATA \uparrow$			300	ns

★ Remarks 1. The TYP. value is a reference value when $T_A = +25^{\circ}C$.

2. The time for one frame is found from the following formula.

1 frame = 1/fosc x 8 x number of duties

(Example)

fosc = 32 kHz, 1/53, then the result is :

1 frame = 33 μ s x 8 x 53 = 13.25 ms \cong 75.5 Hz

Required conditions for timing (Unless otherwise specified, $T_A = -40$ to $+85^{\circ}C$, $V_{DD} = 2.7$ to 3.3 V)

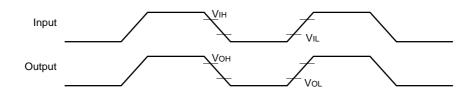
1. Common

						-
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Clock frequency	fosc	OSC _{IN} external clock	20	32	50	kHz
High-level clock pulse width	twnc1	OSC _{IN} external clock	10		25	μs
Low -level clock pulse width	tw∟c1	OSC _{IN} external clock	10		25	μs
High-level clock pulse width	twhc2	OSCBRI external clock	400			ns
Low -level clock pulse width	twLC2	OSCBRI external clock	400			ns
Rise/Fall time	tr, tr	OSCBRI external clock			100	ns
Reset pulse width	twre	/RESET pin	50			μs

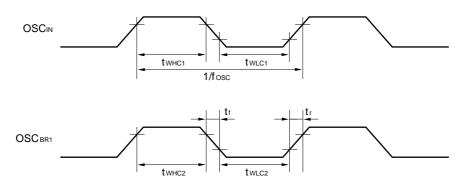
Remark The TYP. value is a reference value when $T_A = +25^{\circ}C$.

2. Serial interface

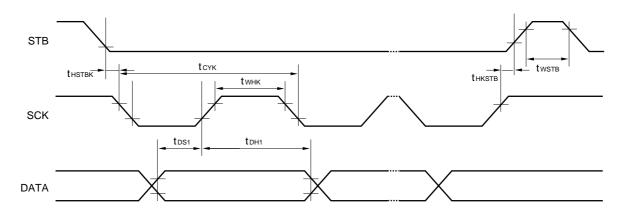
Parameter	Synbol	Conditions	MIN.	TYP.	MAX.	Unit
Shift clock cycle	tсүк	SCK	900			ns
High-level shift clock pulse width	twнĸ	SCK	295			ns
Low-level shift clock pulse width	twlk	SCK	295			ns
Shift clock hold time	tнsтвк	$STB{\downarrow}\toSCK{\downarrow}$	400			ns
Data setup time	t _{DS1}	$DATA \to SCK^\uparrow$	40			ns
Data hold time	tdH1	$SCK^\uparrow \to DATA$	40			ns
STB hold time	tнкsтв	$SCK^\uparrow \to STB^\uparrow$	400			ns
STB pulse width	twsтв		210			ns
Wait time ^{Note}	t WAIT	8th CLK \uparrow \rightarrow 1st CLK \downarrow	100			ns

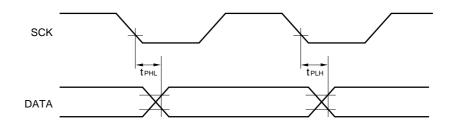

Note See 11.1.3 Transmission (Command/Data read).

3. Parallel interface

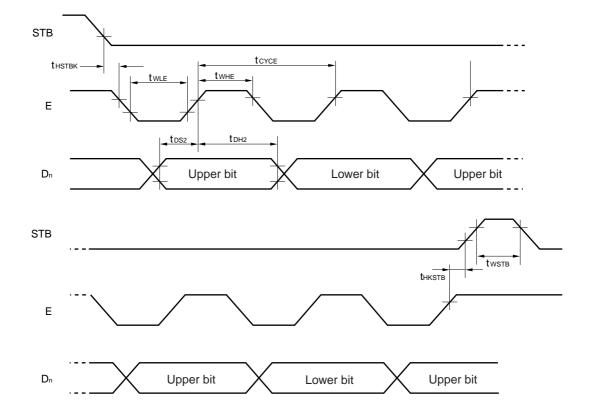

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Enable cycle time	t CYCE	$E\!\uparrow\toE\!\uparrow$	900			ns
High-level enable pulse width	twнe	E	295			ns
Low-level enable pulse width	twle	E	295			ns
STB pulse width	twsтв		210			ns
STB hold time	tнкsтв		400			ns
Enable hold time	tнsтвк		400			ns
Data setup time	tDS2	$D_0 \text{ to } D_7 \rightarrow E^{\uparrow}$	40			ns
Data hold time	tdH2	$D_0 \text{ to } D_7 \to E {\downarrow}$	40			ns

Switching characteristics waveforms

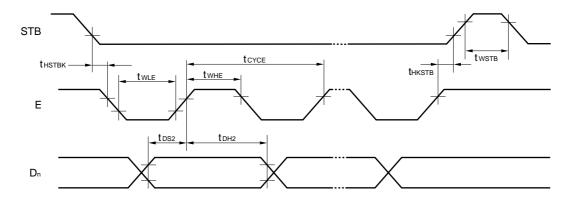

AC measurement point


AC characteristics waveform

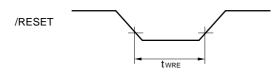
Serial interface (Input)



Serial interface (Output)



Data Sheet S12694EJ2V0DS00


4-bit parallel interface

8-bit parallel interface

Reset

[MEMO]

[MEMO]

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

• The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

• No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from use of a device described herein or any other liability arising from use
 of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
 intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
 "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a
 customer designated "quality assurance program" for a specific application. The recommended applications of
 a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device
 before using it in a particular application.
 - Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

M7 98.8