

16-/32- Channel, Serially Controlled 4 Ω 1.8 V to 5.5 V, \pm 2.5 V, Analog Multiplexers

Preliminary Technical Data

ADG725/ADG731

FEATURES

3-Wire SPI Serial Interface

1.8 V to 5.5 V Single Supply

±2.5 V Dual Supply Operation

4 Ω On Resistance

0.5 Ω On Resistance Flatness

7mm x 7mm 48 lead Chip Scale Package (CSP)

or 48 lead TQFP package.

Rail to Rail Operation

Power On Reset

Fast Switching Times

Single 32 to 1 Channel Multiplexer

Dual/Differential 16 to 1 Channel Multiplexer

TTL/CMOS Compatible Inputs

For Functionally Equivalent devices with Parallel Interface

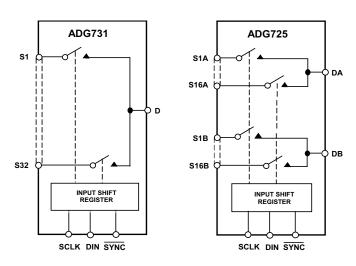
See ADG726/ADG732

APPLICATIONS

Optical Applications
Data Acquisition Systems
Communication Systems
Relay replacement
Audio and Video Switching
Battery Powered Systems
Medical Instrumentation
Automatic Test Equipment

GENERAL DESCRIPTION

The ADG725/ADG731 are monolithic CMOS 32 channel/dual 16 channel analog multiplexers with a serially controlled 3-wire interface. The ADG732 switches one of thirty-two inputs (S1-S32) to a common output, D. The ADG725 can be configured as a dual mux switching one of sixteen inputs to one output or a differential mux switching one of sixteen inputs to a differential output.


These mulitplexers utilize a 3-wire serial interface that is compatible with SPITM, QSPITM, MICROWIRETM and some DSP interface standards. On power-up, the internal shift register contains all zeros and all switch are in the OFF state.

These multiplexers are designed on an enhanced submicron process that provides low power dissipation yet gives high switching speed, very low on resistance and leakage currents. They operate from single supply of 1.8V to 5.5V and ± 2.5 V dual supply, making them ideally suited to a variety of applications. On resistance is in the region of a few Ohms and is closely matched between switches and very flat over the full signal range. These parts can operate equally well as either Multiplexers or De-Multiplexers

REV. PrD May 2002

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

FUNCTIONAL BLOCK DIAGRAMS

and have an input signal range which extends to the supplies. In the OFF condition, signal levels up to the supplies are blocked. All channels exhibit break before make switching action preventing momentary shorting when switching channels.

They are available in either 48 lead CSP or TQFP package.

PRODUCT HIGHLIGHTS

- 1. 3-Wire Serial Interface.
- 2. +1.8 V to +5.5 V Single or ±2.5 V Dual Supply operation. These parts are specified and guaranteed with +5 V ±10%, +3 V ±10% single supply and ±2.5 V ±10% dual supply rails.
- 3. On Resistance of 4 Ω .
- 4. Guaranteed Break-Before-Make Switching Action.
- 5. 7mm x 7mm 48 lead Chip Scale Package (CSP) or 48 lead TQFP package.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700 www.analog.com
Fax: 781/326-8703 Analog Devices, Inc., 2002

$ADG725/ADG731 - SPECIFICATIONS^{1}(v_{DD} = 5V \pm 10\%, \, V_{SS} = 0V, \, \text{GND} = 0 \, \, \text{V}, \, \text{unless otherwise noted})$

	BV	ersion		Test Conditions/Comments	
Parameter	+25°C	-40°C to +85°C	Units		
ANALOG SWITCH					
Analog Signal Range		0 V to V_{DD}	V		
On-Resistance (R _{ON})	4		Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA};$	
	5.5	6	Ω max	Test Circuit 1	
On-Resistance Match Between		0.3	Ω typ	$V_S = 0 \text{ V to } V_{DD}$, $I_{DS} = 10 \text{ mA}$	
Channels (ΔR_{ON})	0.5	0.8	Ω max	V = 0 V t- V I = 10 A	
On-Resistance Flatness (R _{FLAT(ON)})	0.5	1	Ω typ Ω max	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA}$	
LEAKAGE CURRENTS				$V_{\rm DD}$ = 5.5 V	
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_D = 4.5 \text{ V/1 V}, V_S = 1 \text{ V/4.5 V};$	
	±0.25	±0.5	nA max	Test Circuit 2	
Drain OFF Leakage I _D (OFF)	±0.05		nA typ	$V_D = 4.5 \text{ V/1 V}, V_S = 1 \text{ V/4.5 V};$	
ADG725	±0.5	±2.5	nA max	Test Circuit 3	
ADG731	±1	±5	nA max	V - V - 1 V 4 5 V	
Channel ON Leakage I _D , I _S (ON)	±0.05	±2.5	nA typ	$V_D = V_S = 1 \text{ V, or } 4.5V;$ Test Circuit 4	
ADG725 ADG726	±0.5 ±1	±2.5 ±5	nA max nA max	Test Circuit 4	
DIGITAL INPUTS					
Input High Voltage, V _{INH}		2.4	V min		
Input Low Voltage, V _{INL}		0.8	V max		
Input Current					
I_{INL} or I_{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}	
	_	±0.1	μA max		
C _{IN} , Digital Input Capacitance	5		pF typ		
DYNAMIC CHARACTERISTICS ²					
t _{TRANSITION}	40		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, Test Circuit 5;	
		60	ns max	$V_{S1} = 3 \text{ V/0 V}, V_{S32} = 0 \text{ V/3V}$	
Break-Before-Make Time Delay, t _D	30		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$	
Charge Injection	1 4 5	1	ns min	$V_S = 3 \text{ V}$, Test Circuit 6	
Charge Injection	±5		pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$ Test Circuit 7	
Off Isolation	-60		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$;	
On isolation			ub typ	Test Circuit 8	
Channel to Channel Crosstalk	-60		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$;	
				Test Circuit 9	
-3 dB Bandwidth					
ADG725	34		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 10	
ADG731	18		MHz typ	6	
C_{S} (OFF)	13		pF typ	f = 1 MHz	
C_{D} (OFF) ADG725	190		nE tro	f = 1 MHz	
ADG725 ADG731	180 360		pF typ pF typ	f = 1 MHz f = 1 MHz	
C_D , C_S (ON)	700		pr typ	1 - 1 141117	
ADG725	200		pF typ	f = 1 MHz	
ADG731	400		pF typ	f = 1 MHz	
POWER REQUIREMENTS				$V_{DD} = +5.5 \text{ V}$	
I_{DD}	10		μA typ	Digital Inputs = 0 V or +5.5 V	
		20	μA max		

-2-

NOTES

REV. PrD

¹Temperature range is as follows: B Version: -40°C to +85°C.

²Guaranteed by design, not subject to production test.

 $Specifications\, subject\, to\, change\, without\, notice.$

ADG725/ADG731

	B Ve			
Parameter	+25°C	-40°C to +85°C	Units	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		$0~\mathrm{V}$ to V_{DD}	V	
On-Resistance (R _{ON})	7		Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA};$
	11	12	Ω max	Test Circuit 1
On-Resistance Match Between		0.4	Ω typ	$V_S = 0 \text{ V to } V_{DD}$, $I_{DS} = 10 \text{ mA}$
Channels (ΔR_{ON})		1	Ω max	
On-Resistance Flatness (R _{FLAT(ON)})		3	Ω max	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA}$
LEAKAGE CURRENTS				$V_{\rm DD} = 3.3 \text{ V}$
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_S = 3 \text{ V/1 V}, V_D = 1 \text{ V/3 V};$
	±0.25	±0.5	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	±0.05		nA typ	$V_S = 1 \text{ V/3 V}, V_D = 3 \text{ V/1 V};$
ADG725	±0.5	±2.5	nA max	Test Circuit 3
ADG731	±1	±5	nA max	
Channel ON Leakage I _D , I _S (ON)	±0.05	10.5	nA typ	$V_S = V_D = +1 \text{ V or } +3 \text{ V};$
ADG725	±0.5	±2.5	nA max	Test Circuit 4
ADG731	±1	±5	nA max	
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.0	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current	0.005			X - X - X
I_{INL} or I_{INH}	0.005	±0.1	μA typ	$V_{IN} = V_{INL}$ or V_{INH}
C _{IN} , Digital Input Capacitance	5	±0.1	μA max pF typ	
DYNAMIC CHARACTERISTICS ²				
t _{TRANSITION}	45		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF Test Circuit 5$
ININGITION		75	ns max	$V_{S1} = 2 \text{ V/0 V}, V_{S32} = 0 \text{ V/2 V}$
Break-Before-Make Time Delay, t _D	30		ns typ	$R_{L} = 300 \ \Omega, \ C_{L} = 35 \ pF;$
		1	ns min	$V_S = 2 V$, Test Circuit 6
Charge Injection	± 5		pC typ	$V_S = 0 \ V, \ R_S = 0 \ \Omega, \ C_L = 1 \ nF;$
				Test Circuit 7
Off Isolation	-60		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
Channel to Channel Caractelle	60		4D	Test Circuit 8
Channel to Channel Crosstalk	-60		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Test Circuit 9
-3 dB Bandwidth				Test Circuit 9
ADG725	34		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 10
ADG731	18		MHz typ	The second secon
C _s (OFF)	13		pF typ	f = 1 MHz
$C_{\rm D}$ (OFF)				
ADG725	180		pF typ	f = 1 MHz
ADG731	360		pF typ	f = 1 MHz
C_D , C_S (ON)				
ADG725	200		pF typ	f = 1 MHz
ADG731	400		pF typ	f = 1 MHz
POWER REQUIREMENTS				$V_{DD} = +3.3 \text{ V}$
$ m I_{DD}$	10		μA typ	Digital Inputs = 0 V or +3.3 V
		20	μA max	

REV. PrD -3-

NOTES
¹Temperature ranges are as follows: B Version: -40°C to +85°C.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

	B Version			
D	12500	-40°C	TT *.	T . O . 11.1 . IO
Parameter	+25°C	to +85°C	Units	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		V_{SS} to V_{DD}	V	W W 10 A
On-Resistance (R _{ON})	4	6	Ω typ	$V_S = V_{SS}$ to V_{DD} , $I_{DS} = 10$ mA;
On-Resistance Match Between	5.5	6 0.3	Ω max	Test Circuit 1
Channels (ΔR_{ON})		0.8	Ω typ Ω max	$V_S = V_{SS}$ to V_{DD} , $I_{DS} = 10$ mA
On-Resistance Flatness $(R_{FLAT(ON)})$	0.5	0.6	Ω typ	$V_S = V_{SS}$ to V_{DD} , $I_{DS} = 10$ mA
On Resistance Trainess (RFLAT(ON))	0.5	1	Ω max	18 188 to 188 18 18 18 18 18 18 18 18 18 18 18 18
LEAKAGE CURRENTS				$V_{DD} = +2.75 \text{ V}, V_{SS} = -2.75 \text{ V}$
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_S = +2.25 \text{ V/-}1.25 \text{ V}, V_D = -1.25 \text{ V/+}2.25 \text{ V};$
	±0.25	±0.5	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	±0.05		nA typ	$V_S = +2.25 \text{ V}/-1.25 \text{ V}, V_D = -1.25 \text{ V}/+2.25 \text{ V};$
	±0.5	±2.5	nA max	Test Circuit 3
	±1	±5	nA max	
Channel ON Leakage I _D , I _S (ON)	±0.01	10.5	nA typ	$V_S = V_D = +2.25 \text{ V}/-1.25 \text{ V}$, Test Circuit 4
	±0.5 ±1	±2.5 ±5	nA max nA max	
DICITAL INDUTE	<u>- 1</u>	<u> </u>	IIA IIIax	
DIGITAL INPUTS Input High Voltage, V _{INH}		1.7	V min	
Input Low Voltage, V _{INL}		0.7	V max	
Input Current		0.7	Villax	
I _{INL} or I _{INH}	0.005		μΑ typ	$V_{IN} = V_{INL}$ or V_{INH}
-INLINII		±0.1	μA max	· IIV · IIVL · IIVII
C _{IN} , Digital Input Capacitance	5		pF typ	
DYNAMIC CHARACTERISTICS ²				
t _{TRANSITION}	40		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF Test Circuit 5$
		60	ns max	$V_{S1} = 1.5 \text{ V/0 } V_{S32} = 0 \text{ V/1.5 V}$
Break-Before-Make Time Delay, t _D	15		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
Charge Injection	10	1	ns min	$V_S = 1.5 \text{ V}$, Test Circuit 6
Charge Injection Off Isolation	±8 -60		pC typ dB typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF}; \text{ Test 7}$ $R_L = 50 \Omega, C_L = 5 \text{ pF}, f = 1 \text{ MHz};$
On Isolation	-00		db typ	Test Circuit 8
Channel to Channel Crosstalk	-60		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
				Test Circuit 9
-3 dB Bandwidth				
ADG725	34		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 10
ADG731	18		MHz typ	
C _s (OFF)	13		pF typ	
C_{D} (OFF) ADG725	180		nE tro	f = 1 MHz
ADG725 ADG731	360		pF typ pF typ	f = 1 MHz f = 1 MHz
C_D , C_S (ON)			12 131	1 1111111
ADG725	200		pF typ	f = 1 MHz
ADG731	400		pF typ	f = 1 MHz
POWER REQUIREMENTS				$V_{\rm DD}$ = +2.75 V
I_{DD}	10		μA typ	Digital Inputs = 0 V or $+2.75 \text{ V}$
_		20	μA max	
I_{SS}	10	2.0	μA typ	$V_{SS} = -2.75 \text{ V}$
		20	μA max	Digital Inputs = $0 \text{ V or } +2.75 \text{ V}$

-4-

NOTES

REV. PrD

 $^{^{1}}Temperature$ range is as follows: B Version: $-40^{\circ}C$ to +85°C.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

TIMING CHARACTERISTICS^{1,2}

Parameter	Limit at T _{MIN} , T _{MAX}	Units	Conditions/Comments
t_1	33	ns min	SCLK Cycle time
t_2	13	ns min	SCLK High Time
t ₃	13	ns min	SCLK Low Time
t_4	13	ns min	SYNC to SCLK falling edge setup time
t ₅	40	ns min	Minimum SYNC low time
t ₆	5	ns min	Data Setup Time
t_7	4.5	ns min	Data Hold Time
t ₈	33	ns min	Minimum SYNC high time

NOTES

Specifications subject to change without notice.

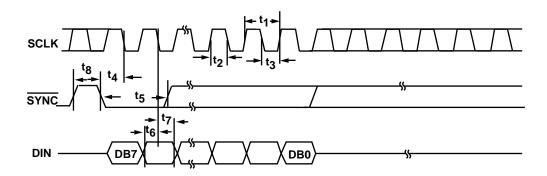


Figure 1. 3-Wire Serial Interface Timing Diagram.

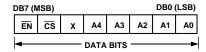


Figure 2. ADG725 Input Shift Register Contents

Figure 3. ADG731 Input Shift Register Contents

REV. PrD –5–

¹See Figure 1.

 $^{^2}$ All input signals are specified with tr =tf = 5ns (10% to 90% of V_{DD}) and timed from a voltage level of (V_{IL} + V_{IH})/2.

ADG725/ADG731

ABSOLUTE MAXIMUM RATINGS1

 $(T_A = +25^{\circ}C \text{ unless otherwise noted})$

Digital Inputs 2 30 mA, Whichever Occurs First -0.3V to $V_{\rm DD}$ +0.3 V or

30 mA, Whichever Occurs First Peak Current, S or D 60mA

(Pulsed at 1 ms, 10% Duty Cycle max)

Continuous Current, S or D 30mA

Operating Temperature Range

Industrial (B Version) -40°C to +85°C

Storage Temperature Range -65° C to $+150^{\circ}$ C Junction Temperature $+150^{\circ}$ C 48 lead CSP θ_{JA} Thermal Impedance TBD°C/W 48 lead TQFP θ_{JA} Thermal Impedance TBD°C/W Lead Temperature, Soldering (10seconds) 300°C IR Reflow, Peak Temperature $+220^{\circ}$ C

NOTES

¹Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

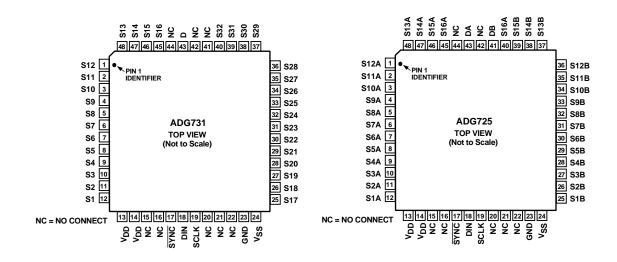
²Overvoltages at SCLK, <u>SYNC</u>, DIN, <u>RS</u>, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG725/ADG731 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG725BCP	-40 °C to +85 °C	Chip Scale Package (CSP) Thin Quad Flatpack Chip Scale Package (CSP) Thin Quad Flatpack	CP-48
ADG725BSU	-40 °C to +85 °C		SU-48
ADG731BCP	-40 °C to +85 °C		CP-48
ADG731BSU	-40 °C to +85 °C		SU-48


-6- REV. PrD

ADG725/ADG731

PIN FUNCTION DESCRIPTION

ADG725	ADG731	Mnemonic	Function
		SCLK	Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock input. These devices can accomodate serial input rates of up to 30MHz.
		$\overline{R}\overline{S}$	Active low control input that clears the input register and turns all switches to the OFF condition.
		DIN	Serial Data Input. Data is clocked into the 8-bit input register on the falling edge of the serial clock input.
		SXX	Source. May be an input or output.
		DX	Drain. May be an input or output.
		V_{DD}	Power Supply Input. These parts can be operated from a supply of $+1.8V$ to $+5.5V$ and dual supply of $+/-2.5V$.
		GND	Ground reference.
		<u>S</u> YNC	Active Low Control Input. This is the frame synchronization signal for the input data. When \$\overline{SYNC}\$ goes low, it powers on the SCLK and DIN buffers and the input shift register is enabled. An 8-bit counter is also enabled. Data is transferred on the falling edges of the following clocks. After 8 falling clock edges, switch conditions are automatically updated. \$\overline{SYNC}\$ may be used to frame the signal, or just pulled low for a short period of time to enable the counter and input buffers.

PIN CONFIGURATIONS CSP & TQFP

REV. PrD -7-

ADG725/ADG731

Table 1. ADG725 Truth Table

A3	A 2	A1	A0	$\overline{E} \overline{N}$	$\overline{C}\overline{S}\overline{A}$	$\overline{C}\overline{S}\overline{B}$	Switch Condition
X	X	X	X	X	1	1	Retains previous switch condition
X	X	X	X	1	1	1	All Switches OFF
0	0	0	0	0	0	0	S1A - DA, S1B - DB
0	0	0	1	0	0	0	S2A - DA, S2B - DB
0	0	1	0	0	0	0	S3A - DA, S3B - DB
0	0	1	1	0	0	0	S4A - DA, S4B - DB
0	1	0	0	0	0	0	S5A - DA, S5B - DB
0	1	0	1	0	0	0	S6A - DA, S6B - DB
0	1	1	0	0	0	0	S7A - DA, S7B - DB
0	1	1	1	0	0	0	S8A - DA, S8B - DB
1	0	0	0	0	0	0	S9A - DA, S9B - DB
1	0	0	1	0	0	0	S10A - DA, S10B - DB
1	0	1	0	0	0	0	S11A - DA, S11B - DB
1	0	1	1	0	0	0	S12A - DA, S12B - DB
1	1	0	0	0	0	0	S13A - DA, S13B - DB
1	1	0	1	0	0	0	S14A - DA, S14B - DB
1	1	1	0	0	0	0	S15A - DA, S15B - DB
1	1	1	1	0	0	0	S16A - DA, S16B - DB

Table 2. ADG731 Truth Table

A4	A3	A2	A1	A0	$\overline{E} \overline{N}$	$\overline{C}\overline{S}$	Switch Condition
X	X	X	X	X	X	1	Retains previous switch condition
X	X	\mathbf{X}	X	X	1	1	All Switches OFF
0	0	0	0	0	0	0	1
0	0	0	0	1	0	0	2
0	0	0	1	0	0	0	3
0	0	0	1	1	0	0	4
0	0	1	0	0	0	0	5
0	0	1	0	1	0	0	6
0	0	1	1	0	0	0	7
0	0	1	1	1	0	0	8
0	1	0	0	0	0	0	9
0	1	0	0	1	0	0	10
0	1	0	1	0	0	0	11
0	1	0	1	1	0	0	12
0	1	1	0	0	0	0	13
0	1	1	0	1	0	0	14
0	1	1	1	0	0	0	15
0	1	1	1	1	0	0	16
1	0	0	0	0	0	0	17
1	0	0	0	1	0	0	18
1	0	0	1	0	0	0	19
1	0	0	1	1	0	0	20
1	0	1	0	0	0	0	21
1	0	1	0	1	0	0	22
1	0	1	1	0	0	0	23
1	0	1	1	1	0	0	24
1	1	0	0	0	0	0	25
1	1	0	0	1	0	0	26
1	1	0	1	0	0	0	27
1	1	0	1	1	0	0	28
1	1	1	0	0	0	0	29
1	1	1	0	1	0	0	30
1	1	1	1	0	0	0	31
1	1	1	1	1	0	0	32
v -	Don't	Cana					

X = Don't Care

-8- REV. PrD

ADG725/ADG731

TERMINOLOGY

V_{DD} Most positive power supply potential.

V_{SS} Most Negative power supply in a dual supply application. In single supply applications, connect to GND.

 I_{DD} Positive supply current. I_{SS} Negative supply current. GND Ground (0 V) reference.

S Source terminal. May be an input or output.

D Drain terminal. May be an input or output.

IN Logic control input.

 $V_D\left(V_S\right)$ Analog voltage on terminals D, S R_{ON} Ohmic resistance between D and S.

 ΔR_{ON} On resistance match between any two channels, i.e. R_{ON} max - R_{ON} min

R_{FLAT(ON)} Flatness is defined as the difference between the maximum and minimum value of on-resistance as mea

sured over the specified analog signal range.

 I_S (OFF) Source leakage current with the switch "OFF." I_D (OFF) Drain leakage current with the switch "OFF." I_D , I_S (ON) Channel leakage current with the switch "ON."

 $V_{\rm INL}$ Maximum input voltage for logic "0". $V_{\rm INH}$ Minimum input voltage for logic "1". $I_{\rm INL}(I_{\rm INH})$ Input current of the digital input.

 C_S (OFF) "OFF" switch source capacitance. Measured with reference to ground. C_D (OFF) "OFF" switch drain capacitance. Measured with reference to ground.

C_D,C_S(ON) "ON" switch capacitance. Measured with reference to ground.

C_{IN} Digital input capacitance.

t_{TRANSITION} Delay time measured between the 50% and 90% points of the SYNC and the switch "ON" condi

tion when switching from one address state to another.

t_{OPEN} "OFF" time measured between the 80% points of both switches when switching from one address state to

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

another.

Injection

Charge Injection

Off Isolation A measure of unwanted signal coupling through an "OFF" switch.

Crosstalk A measure of unwanted signal is coupled through from one channel to another as a result of parasitic

capacitance.

On Response The Frequency response of the "ON" switch.

Insertion The loss due to the ON resistance of the switch.

Loss

REV. PrD –9–

TYPICAL PERFORMANCE CHARACTERISTICS

TBD TBD TBD TPC 7. Leakage Currents vs. $V_D(V_S)$ TPC 4. On Resistance vs. $V_D(V_S)$ for TPC 1. On Resistance vs. $V_D(V_S)$ for for Different Temperatures, Single Single Supply Supply **TBD TBD TBD** TPC 8. Leakage Currents vs. $V_D(V_S)$ TPC 5. On Resistance vs. $V_D(V_S)$ for TPC 2. On Resistance vs. $V_D(V_S)$ for Different Temperatures, Dual Supply **Dual Supply TBD TBD TBD** TPC 9. Leakage Currents vs. TPC 6. Leakage Currents vs. $V_D(V_S)$ **Temperature** TPC 3. On Resistance vs. $V_D(V_S)$ for Different Temperatures, Single Supply

-10- REV. PrD

TBD TBD TBD TPC 10. Leakage Currents vs. TPC 13. T_{ON}/T_{OFF} Times vs. TPC 16. On Response vs. Frequency Temperature Temperature **TBD TBD** TPC 11. Supply Currents vs. Input TPC 14. Off Isolation vs. Frequency Switching Frequency **TBD TBD**

TPC 12. Charge Injection vs. Source Voltage

TPC 15. Crosstalk vs. Frequency

REV. PrD -11-

ADG725/ADG731

GENERAL DESCRIPTION

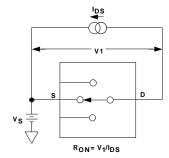
The ADG725 and ADG731 are serially controlled, 32 channel and dual/differential 16 channel multiplexers respectively.

POWER ON RESET

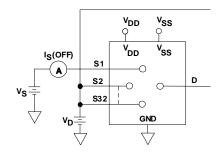
On power up of the device, all switches will be in the OFF condition and the internal shift register is filled with zeros and will remain so until a valid write takes place.

SERIAL INTERFACE

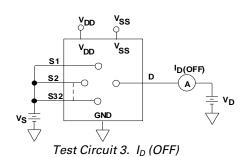
The ADG725 and ADG731 have a three wire serial interface (SYNC, SCLK, and DIN), which is compatible with SPI, QSPI, MICROWIRE interface standards and most DSP's. Figure 1 shows the timing diagram of a typical write sequence.


Data is written to the 8-bit shift register via DIN under the control of the $\overline{\text{SYNC}}$ and SCLK signals.

When \$\overline{\text{SYNC}}\$ goes low, the input shift register is enabled. An 8-bit counter is also enabled. Data from DIN is clocked into the shift register on the falling edge of SCLK. Figures 2 & 3 show the contents of the input shift registers for these devices. When the part has received eight clock cycles after \$\overline{\text{SYNC}}\$ has been pulled low, the switches are automatically updated with the new configuration and the input shift register is disabled. With \$\overline{\text{SYNC}}\$ held high, any further data or noise on the DIN line will have no effect on the shift register.

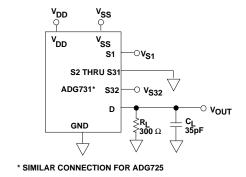

The ADG725 $\overline{\text{CSA}}$ and $\overline{\text{CSB}}$ data bits allow the user the flexibility to change the configuration of either or both banks of the multiplexer.

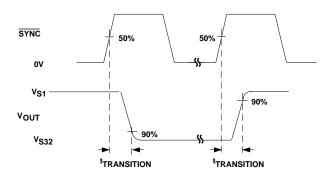
-12- REV. PrD

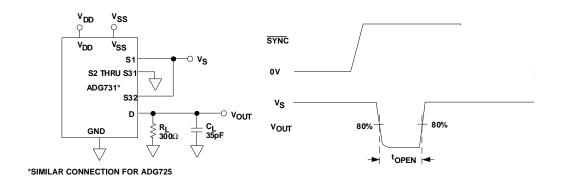

Test Circuits



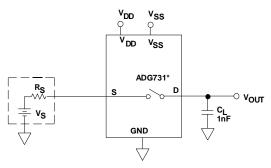
Test Circuit 1. On Resistance.




Test Circuit 2. I_S (OFF).

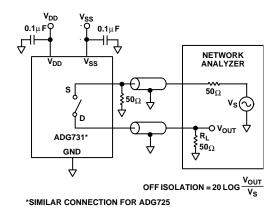


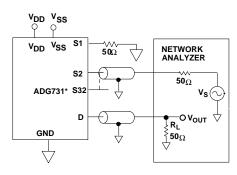
Test Circuit 4. I_D (ON)


Test Circuit 5. Switching Time of Multiplexer, t_{TRANSITION}.

Test Circuit 6. Break Before Make Delay, t_{OPEN}.

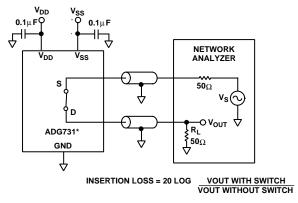
REV. PrD -13-


ADG725/ADG731


SYNC $Q_{\text{INJ}} = C_{\text{L}} \times \Delta V_{\text{OUT}}$

*SIMILAR CONNECTION FOR ADG725

Test Circuit 7. Charge Injection.



Test Circuit 8. OFF Isolation

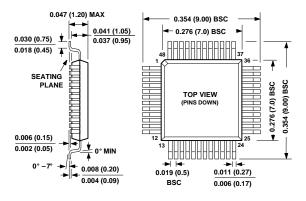
*SIMILAR CONNECTION FOR ADG725 CHANNEL TO CHANNEL CROSSTALK= $20LOG_{10}(V_{OUT}/V_S)$

Test Circuit 9. Channel-to-Channel Crosstalk.

*SIMILAR CONNECTION FOR ADG725

Test Circuit 10. Bandwidth

-14- REV. PrD


OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

48-Lead CSP (CP-48)0.024 (0.60) 0.017 (0.42) 0.009 (0.24) 0.010 (0.25) 0.276(7.0) BSC SQ 0.017 (0.42) 0.009 (0.24) PIN 1 INDICATOR 0.207 (5.25) 0.201 (5.10) 0.195 (4.95) 0.266 (6.75) BSC SQ TOP VIEW воттом VIEW 0.020 (0.50) 🗼 0.016 (0.40) 0.012 (0.30) 0.217 (5.5)⁻ REF 0.028 (0.70) MAX 0.026 (0.65) NOM 12° MAX 0.035 (0.90) MAX 0.033 (0.85) NOM 0.002 (0.05) 0.0004 (0.01) 0.012 (0.30) 0.020 (0.50) 0.008 (0.20) 0.0 (0.0) 0.00 (0.23) 0.007 (0.18)

48-Lead TQFP (SU-48)

CONTROLLING DIMENSIONS ARE IN MILLIMETERS

REV. PrD –15–