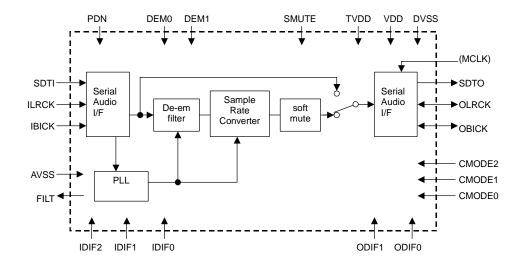


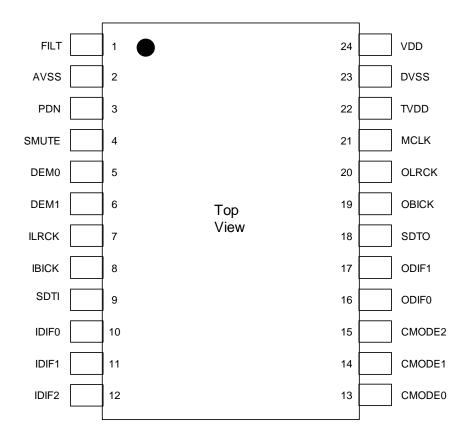
AK4121


Asynchronous Sample Rate Converter

GENERAL DESCRIPTION

AK4121 is a stereo asynchronous sample rate converter. The input sample rate ranges from 8kHz to 96kHz. The output sample rate is 32kHz, 44.1kHz, 48kHz or 96kHz. Using the AK4121 simplifies system design, since the AK4121's internal PLL eliminates the need for a master clock in slave mode. Then the AK4121 is suitable for applications requiring multiple sample rates, such as Car Audio, DVD recorders, and digital audio recording.

FEATURES


- ☐ Stereo asynchronous sample rate converter
- ☐ Input sample rate range (FSI): 8kHz to 96kHz
- ☐ Output sample rate (FSO): 32kHz/44.1kHz/48kHz/96kHz☐ Input to output Sample rate ratio: FSO/FSI = 0.33 to 6
- ☐ THD+N: -113dB
- ☐ I/F format: MSB justified, LSB justified (24/20/16bit) and I²S
- ☐ Clock for Master mode: 256/384/512/768fso
- ☐ De-emphasis filter: 32kHz/44.1kHz/48kHz
- □ SRC Bypass mode
- ☐ Soft Mute function
- ☐ Power Supply: VDD: 3.0 to 3.6V, TVDD: 3.0 to 5.5V (for input tolerant)
- ☐ Ta: -40 to +85°C

■ Ordering Guide

AK4121VF $-40 \sim +85^{\circ}\text{C}$ 24pin VSOP (0.65mm pitch) AKD4121 Evaluation Board for AK4121

■ Pin Layout

■ Major Difference between AK4120 and AK4121

Items	AK4120	AK4121
MCLK Input	Needed (supports 256/512fs)	NOT Needed (Slave mode) /
		Needed (Master Mode:
		supports 256/384/512/768fs)
Input sample rate (max)	48kHz	96kHz
Vdd	2.7V ~ 3.6V	3.0V ~ 3.6V
Input 5V Tolerant	X	O
De-emphasis Filter	X	O
Soft Mute	X	O
Digital Volume	0	X
Digital Mixer	O	X

PIN/FUNCTION

No.	Pin Name	I/O	Function	
1	FILT	0	Loop-Filter Pin for PLL	
2	AVSS	I	Analog Ground Pin	
3	PDN	I	Power-Down pin	
3	PDN	1	When "L", the AK4121 is powered-down and reset.	
4	SMUTE	I	Soft Mute Pin	
5	DEM0	I	De-emphasis Filter Control Pin #0	
6	DEM1	I	De-emphasis Filter Control Pin #1	
7	ILRCK	I	L/R Clock Pin for Input	
8	IBICK	I	Audio Serial Data Clock Pin for Input	
9	SDTI	I	Audio Serial Data Input Pin	
10	IDIF0	I	Input Data Format pin #0	
11	IDIF1	I	Input Data Format pin #1	
12	IDIF2	I	Input Data Format pin #2	
13	CMODE0	I	Clock Mode Select Pin #0	
14	CMODE1	I	Clock Mode Select Pin #1	
15	CMODE2	I	Clock Mode Select Pin #2	
16	ODIF0	I	Output Data Format pin #0	
17	ODIF1	I	Output Data Format pin #1	
18	SDTO	0	Audio Serial Data Output Pin	
19	OBICK	I/O	Audio Serial Data Clock Pin for Output	
20	OLRCK	I/O	L/R Clock Pin for Output	
21	MCLK	I	Master Clock Pin for Output	
22	TVDD	I	Input Buffer Power Supply Pin, 3.3V or 5V	
23	DVSS	I	Digital Ground Pin	
24	VDD	I	Power Supply Pin, 3.3V	

ABSOLUTE MAXIMUM RATINGS							
(AVSS=DVSS=0V; Note 1)							
Parameter	Symbol	min	max	Units			
Dower Supplies							

Parameter	Symbol	min	max	Units
Power Supplies:				
Core	VDD	-0.3	4.6	V
Input Buffer	TVDD	-0.3	6.0	V
AVSS-DVSS (Note 1)	Δ GND		0.3	V
Input Current, Any Pin Except Supplies	IIN	-	±10	mA
Input Voltage	VIN	-0.3	TVDD+0.3	V
Ambient Temperature (Power applied)	Ta	-40	85	°C
Storage Temperature	Tstg	-65	150	°C

Note 1. All voltages with respect to ground.

WARNING: Operation at or beyond these limits may result in permanent damage to the device.

Normal operation is not guaranteed at these extremes.

RECOMMENDED OPERATING CONDITIONS								
(AVSS=DVSS=0V; Note 2)								
Parameter	Symbol	min	typ	max	Units			
Power Supplies: Core	VDD	3.0	3.3	3.6	V			
Input Buffer	TVDD	VDD	5	5.5	V			

Note 2. All voltages with respect to ground.

SRC PERFORMANCE

(Ta=-40~85°C; VDD=3.0~3.6V; TVDD=3.0~5.5V; data=20bit; measurement bandwidth=20Hz~FSO/2; unless otherwise specified.)

Parameter	-	Symbol	min	typ	max	Units
Resolution					20	Bits
Input Sample R	late	FSI	8		96	kHz
Output Sample	Rate	FSO	32		96	kHz
Dynamic Range	e (Input= 1kHz, -60dBFS, Note 3)					
	FSO/FSI=44.1kHz/48kHz		-	114	-	dB
	FSO/FSI=48kHz/44.1kHz		-	114	-	dB
	FSO/FSI=32kHz/48kHz		-	114	-	dB
	FSO/FSI=96kHz/32kHz		-	115	-	dB
	Worst Case (FSO/FSI=32kHz/44.1kHz)		112	-	-	dB
Dynamic Range	e (Input= 1kHz, -60dBFS, A-weighted, Note 3)					
	FSO/FSI=44.1kHz/48kHz		-	117	-	dB
THD+N	(Input= 1kHz, 0dBFS, Note 3)					
	FSO/FSI=44.1kHz/48kHz		-	-113	-	dB
	FSO/FSI=48kHz/44.1kHz		-	-112	-	dB
	FSO/FSI=32kHz/48kHz		-	-113	-	dB
	FSO/FSI=96kHz/32kHz		-	-111	-	dB
	Worst Case (FSO/FSI=48kHz/8kHz)		-	-	-103	dB
Ratio between l	Ratio between Input and Output Sample Rate					
	(FSO/FSI, Note 4, Note 5)	FSO/FSI	0.33		6	-

Note 3. Measured by Rohde & Schwarz UPD04, Rejection Filter= wide, 8192point FFT.

Note 4. The "0.33" is the ratio of FSO/FSI when FSI is 96kHz and FSO is 32kHz

Note 5. The "6" is the ratio when FSI is 8kHz and FSO is 48kHz.

DIGITAL FILTER

(Ta=-40~85°C; VDD=3.0~3.6V; TVDD=3.0~5.5V)

Parameter		Symbol	min	typ	max	Units
Digital Filter						
Passband -0.001dB	$0.985 \le FSO/FSI \le 6.000$	PB	0		0.4583FSI	kHz
	$0.905 \le FSO/FSI < 0.985$	PB	0		0.4167FSI	kHz
	$0.714 \le FSO/FSI < 0.905$	PB	0		0.3195FSI	kHz
	$0.656 \le FSO/FSI < 0.714$	PB	0		0.2852FSI	kHz
	$0.536 \le FSO/FSI < 0.656$	PB	0		0.2245FSI	kHz
	$0.492 \le FSO/FSI < 0.536$	PB	0		0.2003FSI	kHz
	$0.452 \le FSO/FSI < 0.492$	PB	0		0.1781FSI	kHz
	$0.333 \le FSO/FSI < 0.452$	PB	0		0.1092FSI	kHz
Stopband	$0.985 \le FSO/FSI \le 6.000$	SB	0.5417FSI			kHz
	$0.905 \le FSO/FSI < 0.985$	SB	0.5021FSI			kHz
	$0.714 \le FSO/FSI < 0.905$	SB	0.3965FSI			kHz
	$0.656 \le FSO/FSI < 0.714$	SB	0.3643FSI			kHz
	$0.536 \le FSO/FSI < 0.656$	SB	0.2974FSI			kHz
	$0.492 \le FSO/FSI < 0.536$	SB	0.2732FSI			kHz
	$0.452 \le FSO/FSI < 0.492$	SB	0.2510FSI			kHz
	$0.333 \le FSO/FSI < 0.452$	SB	0.1822FSI			kHz
Passband Ripple	PR			±0.01	dB	
Stopband Attenuation	SA	96			dB	
Group Delay	(Note 6)	GD	-	57.5	-	1/fs

Note 6. This value is the time from the rising edge of LRCK after data is input to rising edge of LRCK after data is output, when LRCK for Output data corresponds with LRCK for Input.(at 20bit MSB justified, 16bit and 20bit LSB justified)

DC CHARACTERISTICS

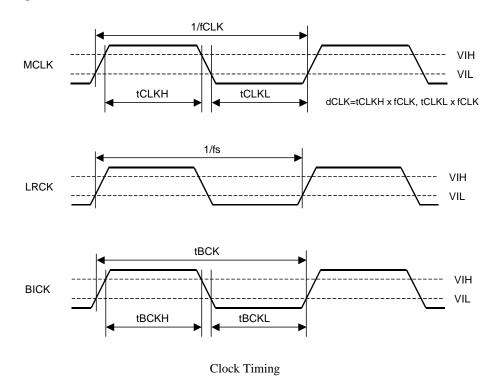
(Ta=-40~85°C; VDD=3.0~3.6V; TVDD=3.0~5.5V)

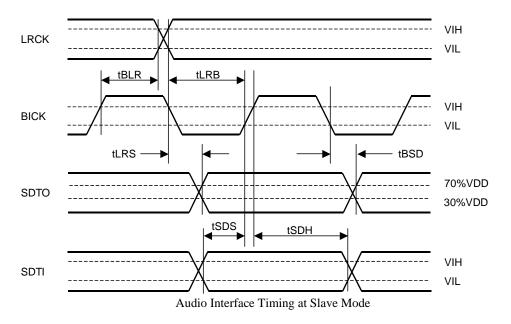
Parameter	Symbol	min	typ	max	Units
Power Supply Current					
Normal operation:					
FSI=FSO=48kHz at Slave Mode: VDD=3.3V			10	-	mA
FSI=FSO=96kHz at Master Mode: VDD=3.3V			20	-	mA
: VDD=3.6V				40	mA
Power down: $PDN = "L"$ (Note 7)			10	100	μΑ
High-Level Input Voltage	VIH	0.7xVDD	-	-	V
Low-Level Input Voltage	VIL	-	-	0.3xVDD	V
High-Level Output Voltage (Iout=–400μA)	VOH	VDD-0.4	-	-	V
Low-Level Output Voltage (Iout=400µA)	VOL	-	-	0.4	V
Input Leakage Current	Iin	-	-	± 10	μΑ

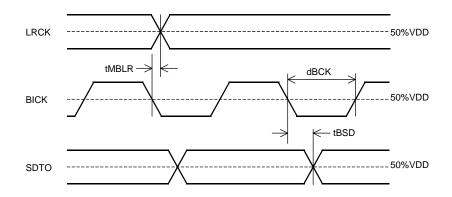
Note 7. All digital inputs including clock pins are held VSS.

SWITCHING CHARACTERISTICS

(Ta=-40~85°C; VDD=3.0~3.6V; TVDD=3.0~5.5V; C_L=20pF)


Parameter		Symbol	min	typ	max	Units
Master Clock Input (MCLK))					
Frequency		fCLK	8.192	-	36.864	MHz
Duty Cycle		dCLK	40	-	60	%
L/R clock for Input data (IL)	RCK)					
Frequency		fs	8		96	kHz
Duty Cycle		Duty	48	50	52	%
L/R clock for Output data (C	OLRCK)					
Frequency	(Note 9)	fs	32		96	kHz
Duty Cycle	Slave Mode	Duty	48	50	52	%
	Master Mode	Duty		50		%
Audio Interface Timing						
Input						
IBICK Period		tBCK	1/64fs			ns
IBICK Pulse Width		tBCKL	65			ns
IBICK Pulse Width		tBCKH	65			ns
ILRCK Edge to IB	ICK "↑" (Note 9)	tBLR	30			ns
BICK "↑" to ILRC		tLRB	30			ns
SDTI Hold Time fr	om IBICK "↑"	tSDH	30			ns
SDTI Setup Time to	o IBICK "↑"	tSDS	30			ns
Output (Slave Mo	de)					
OBICK Period		tBCK	1/64fs			ns
OBICK Pulse Widt		tBCKL	65			ns
OBICK Pulse Widt		tBCKH	65			ns
OLRCK Edge to O	BICK "↑" (Note 9)	tBLR	30			ns
OBICK "↑" to OLI	RCK Edge (Note 9)	tLRB	30			ns
OLRCK to SDTO (tLRS			30	ns
OBICK "↓" to SD7	O	tBSD			30	ns
Output (Master M	lode)					
BICK Frequency		fBCK		64fs		Hz
BICK Duty		dBCK		50		%
BICK "↓" to LRCE		tMBLR	-20		20	ns
BICK "↓" to SDTC		tBSD	-20		30	ns
Power-down & Reset Timing	<u> </u>					
PDN Pulse Width	(Note 10)	tPD	150			ns


Note 8. Min is 8kHz when BYPASS="H".


Note 9. BICK rising edge must not occur at the same time as LRCK edge.

Note 10. The AK4121 must be reset by bringing PDN "L" to "H" upon power-up.


■ Timing Diagram

Audio Interface Timing at Master Mode

Power-down & Reset Timing

Note: BICK means IBICK and OBICK. LRCK means ILRCK and OLRCK.

OPERATION OVERVIEW

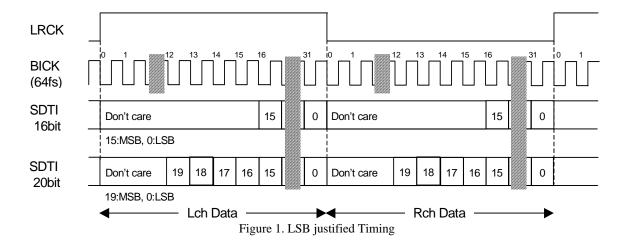
■ System Clock

The input port works in slave mode only. The output port works in slave or master mode. An internal system clock is created by the internal PLL using ILRCK. The MCLK is not needed when the output port is in slave mode, and in slave mode set the MCLK pin to DVSS. The CMODE2-0 pins select the master/slave and bypass mode. The CMODE2-0 pins should be controlled when pin PDN="L".

Mode	CMODE2	CMODE1	CMODE0	MCLK	Master/Slave (Output Port)
0	L	L	L	256fso (fso~96kHz)	Master
1	L	L	Н	384fso (fso~96kHz)	Master
2	L	Н	L	512fso (fso~48kHz)	Master
3	L	Н	Н	768fso (fso~48kHz)	Master
4	Н	L	L	Not used. Set to DVSS	Slave
5	Н	L	Н	-	(Reserved)
6	Н	Н	L	-	(Reserved)
7	Н	Н	Н	Not used. Set to DVSS	Master (BYPASS mode)

Table 1. Master/Slave control

■ Audio Interface Format


The IDIF2-0 pins select the data mode for the input port. The ODIF1-0 pins select the data mode for the output port. In all modes the audio data is MSB-first, 2's compliment format. The SDTO is clocked out on the falling edge of OBICK. Select these modes when PDN="L". When in BYPASS mode, both IBICK and OBICK are fixed to 64fs.

Mode	IDIF2	IDIF1	IDIF0	SDTI Format	IBICK (Slave)
0	L	L	L	16bit LSB Justified	≥32fs
1	L	L	Н	20bit LSB Justified	≥40fs
2	L	Н	L	20bit MSB Justified	≥40fs
3	L	Н	Н	20/16bit I ² S Compatible	≥40fs or 32fs
4	Н	L	L	24bit LSB Justified	≥48fs

Table 2. Input Audio Data Formats

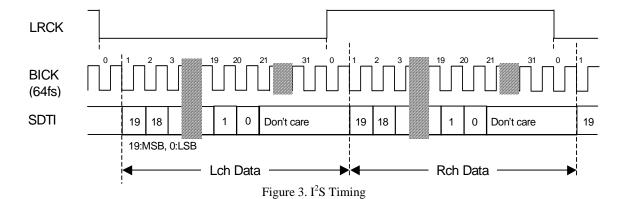

Mode	ODIF1	ODIF0	SDTO Format	OBICK (Slave)	OBICK (Master)
0	L	L	16bit LSB Justified	64fs	64fs
1	L	Н	20bit LSB Justified	64fs	64fs
2	Н	L	20/16bit MSB Justified	≥40fs or 32fs	64fs
3	Н	Н	20/16bit I ² S Compatible	≥40fs or 32fs	64fs

Table 3. Output Audio Data Formats

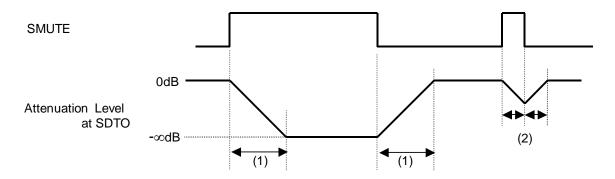

LRCK BICK (64fs) SDTI 19 18 0 Don't care 19 18 Don't care 19 18 20:MSB, 0:LSB Lch Data Rch Data

Figure 2. MSB justified Timing

■ Soft Mute Operation

When the SMUTE pin goes to "H", the output signal is attenuated from 0dB to $-\infty$ dB during 1024 OLRCK cycles. When the SMUTE pin returns to "0", the mute is cancelled and the attenuation gradually changes to 0dB during 1024 OLRCK cycles. If the soft mute is cancelled before attenuating to $-\infty$, the attenuation is discontinued and returns to 0dB. This return takes the same number of clock cycles as the point at which the soft mute cancel was initiated, i.e. if 500 clock cycles passed and then a soft mute cancel was issued, it will take 500 clock cycles to return to 0dB. The soft mute is used primarily when changing the signal source.

Notes:

- (1) Transition time. 1024 OLRCK cycles (1024/fso).
- (2) If the soft mute is cancelled before attenuating to −∞ after starting the operation, the attenuation is discontinued and returned to 0dB by the same number of clock cycles.

Figure 4. Soft Mute

■ De-emphasis Filter

A digital de-emphasis filter is available for 32, 44.1 or 48kHz sampling rates (tc= $50/15\mu s$) and is enabled or disabled with DEM0 and DEM1.

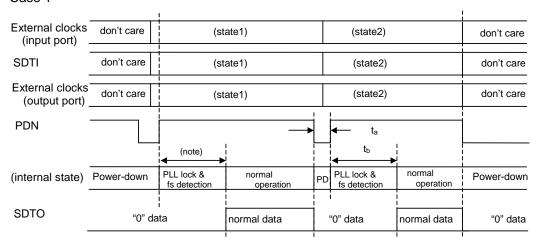
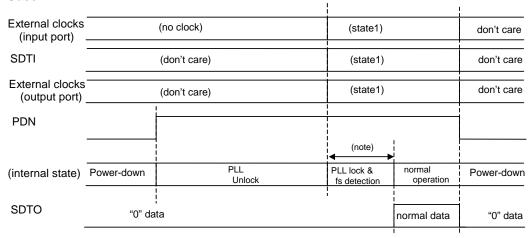

DEM1	DEM0	Mode	
0	0	44.1kHz	
0	1	OFF	Default
1	0	48kHz	
1	1	32kHz	

Table 4. De-emphasis Filter Control


■ System Reset

Bringing the PDN="L" places the AK4121 in power-down mode and initializes the digital filter. The AK4121 should be reset once by bringing PDN="L" upon power-up. Regarding the SDTO valid time, please refer following table. Until then, the SDTO outputs "L".

Case 1

Case 2

Note: <100ms for recommended value 2, <200ms for recommended value 1. (ref. Figure 7)

Figure 5. System Reset

Reset time	Data valid time	
t_{a}	$t_{\rm b}$	
≤10ms	<100ms	
10ms<	<200ms	

Table 5. Reset time t_a and Data valid time t_b .

■ Internal Reset Function for Clock Change

The internal reset is executed when the input or the output clock are changed. The SDTO is placed "0" during reset. Within 100ms, the SDTO outputs normal data. When the frequency transition occurs gradually without phase change or the clock of output port is changed keeping fso/fsi > 4, the internal reset is not executed and the SDTO takes time over 100ms to output normal data. To output normal data within 100ms, please reset by PDN="L"(refer following section).

■ Sequence of changing clocks

The recommended sequence for changing clocks is shown in Figure 6.

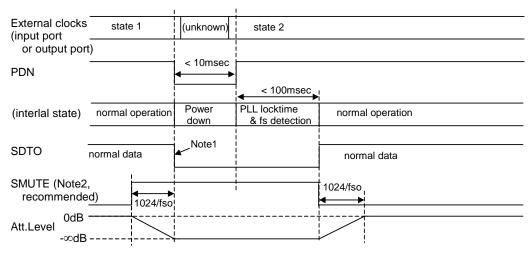
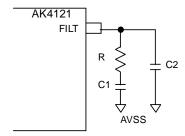


Figure 6. Sequence of changing clocks

Note:

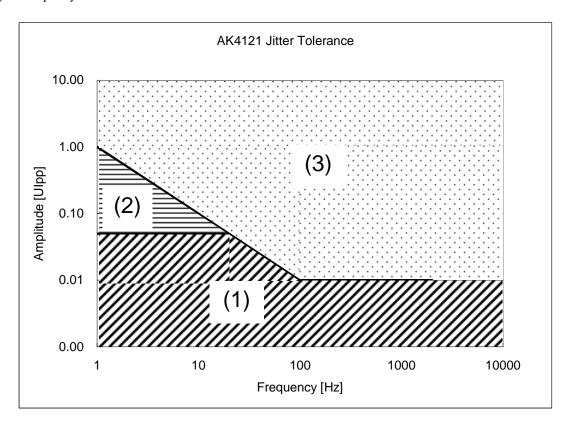

- 1. The data on SDTO may cause a clicking noise. To prevent this, set SDTI to "0" from GD before PDN goes "L", which will cause the data on SDTO to remain "0".
- 2. SMUTE can also be used to remove the unknown data.

■ Grounding and Power Supply Decoupling

The AK4121 requires careful attention to power supply and grounding arrangements. VDD are usually supplied from the system's analog supply. AVSS and DVSS of the AK4121 must be connected to the analog ground plane. System analog ground and digital ground should be connected together near to where the supplies are brought onto the printed circuit board. Decoupling capacitors especially a $0.1\mu F$ ceramic capacitor for high frequency noise should be placed as near to VDD as possible.

■ PLL Loop-Filter

The C1 $(4.7\mu\text{F})$ and R (560ohms) should be connected in series and attached between FILT pin and AVSS in parallel with C2 (1.0nF). Care should be taken to ensure that noise on the FILT pin is minimized.


Parameter	Recommended value 1	Recommended value 2	
R	560ohm +/-8%	1.2kohm +/-8%	
C1	$4.7\mu F + /-40\%$	$2.2\mu F + /-40\%$	
C2	1.0nF +/-40%	2.2nF +/-40%	
fsi range	8k ~ 96kHz	16k ~ 96kHz	

Note: Those recommended values include temperature dependence.

Figure 7. PLL Loop-Filter

■ Jitter Tolerance

Figure 8 shows the jitter tolerance to ILRCK for AK4121. The jitter frequency and the jitter amplitude shown in Figure 8 define the jitter quantity. When the jitter amplitude is 0.01Uipp or less, the AK4121 operate normally regardless of the jitter frequency.

- (1) Normal operation
- (2) There is a possibility that the distortion degrades. (It may degrade up to about -50dB.)
- (3) There is a possibility that the output data is lost.

Note:

- The jitter amplitude is for ILRCK and 1UI (Unit Interval) is one cycle of ILRCK. When FSI = 48kHz, 1UI is $1/48kHz = 20.8\mu s$.

Figure 8. Jitter Tolerance

SYSTEM DESIGN

Figure 9 and Figure 10 illustrate typical system connection diagrams. An evaluation board is available which demonstrates this application circuit, the optimum layout, and power supply arrangement and performance measurement results.

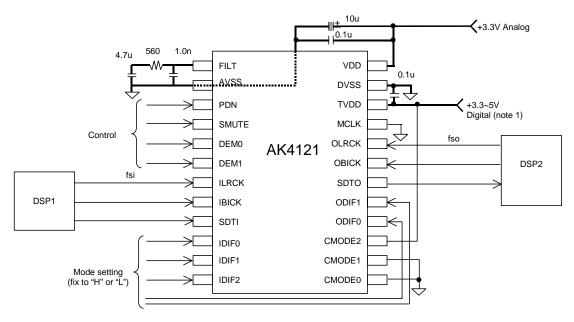


Figure 9. Example of a typical design (Slave Mode)

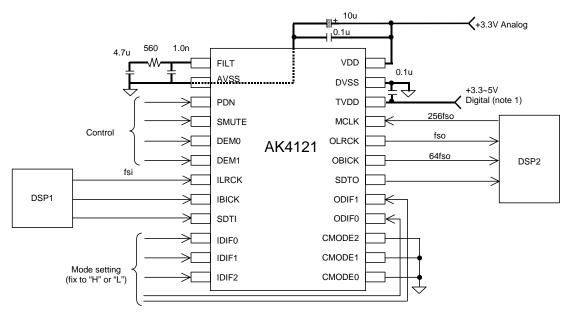
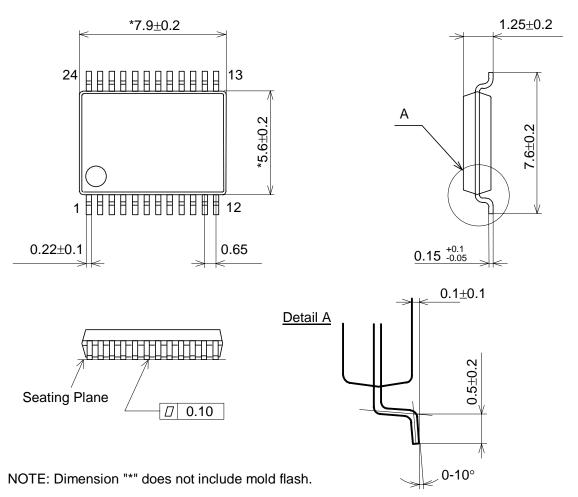
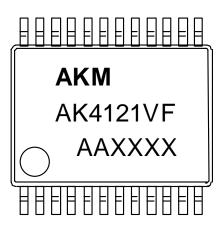



Figure 10. Example of a typical design (Master Mode; MCLK=256fso)

Note 1. TVDD should be the same as the maximum input voltage.

PACKAGE

24pin VSOP (Unit: mm)



■ Package & Lead frame material

Package molding compound: Epoxy Lead frame material: Cu

Lead frame surface treatment: Solder plate (Pb free)

MARKING

Contents of AAXXXX AA: Lot# XXXX: Date Code

Revision History

Date (YY/MM/DD)	Revision	Reason	Page	Contents
02/11/28	00	First Edition		
02/12/26	01	Error Correct	4	Polarity of THD+N is corrected.
		Error Correct	8	Figure for Power-down & Reset Timing
				is corrected.
		Spec Change	12 ~ 15	Values of external elements are changed. Condition
				for data valid time is changed.
04/01/27	02	Add Spec	6	SWITCHING CHARACTERISTICS
				Audio Interface Timing
				IBICK Period : min 160ns → 1/64fs
				OBICK Period : min 160ns → 1/64fs
04/08/16	03	Add Spec	5	Add FILTER CHARACTERISTICS
		Add Spec	15	Add Jitter Tolerance

IMPORTANT NOTICE

- These products and their specifications are subject to change without notice. Before considering any use or application, consult the Asahi Kasei Microsystems Co., Ltd. (AKM) sales office or authorized distributor concerning their current status.
- AKM assumes no liability for infringement of any patent, intellectual property, or other right in the application or use of any information contained herein.
- Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials.
- AKM products are neither intended nor authorized for use as critical components in any safety, life support, or other hazard related device or system, and AKM assumes no responsibility relating to any such use, except with the express written consent of the Representative Director of AKM. As used here.
 - (a) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property.
 - (b) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability.
- It is the responsibility of the buyer or distributor of an AKM product who distributes, disposes of, or otherwise places the product with a third party to notify that party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification.