MONOLITHIC QUAD H BRIDGE DRIVER

DESCRIPTION

The μ PD16837 is a monolithic quad H bridge driver employing power MOS FETs in the output stage. The MOS FETs in the output stage lower the saturation voltage and power consumption as compared with conventional drivers using bipolar transistors.

In addition, a low-voltage malfunction prevention circuit is also provided that prevents the IC from malfunctioning when the supply voltage drops. A 30-pin plastic shrink SOP package is adopted to help create compact and slim application sets.

In the output stage H bridge circuits, two low-ON resistance H bridge circuits for driving actuators, and another two channels for driving sled motors and loading motors are provided, making the product ideal for applications in CD-ROM and DVD.

FEATURES

- Four H bridge circuits employing power MOS FETs
- High-speed PWM drive: Operating frequency: 120 kHz MAX.
- Low-voltage malfunction prevention circuit: Operating voltage: 2.5 V (TYP.)
- 30-pin shrink SOP (300 mil)

ORDERING INFORMATION

Part Number	Package
μ PD16837GS	30-pin plastic SSOP (300 mil)

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	Rating	Unit
Control block supply voltage	VDD		-0.5 to +7.0	V
Output block supply voltage	Vm		-0.5 to +15	V
Input voltage	Vin		-0.5 to $\mathrm{VDD}+0.5$	V
H bridge drive current ${ }^{\text {Note }} 1$	IDR (pulse)	PW $\leq 5 \mathrm{~ms}$, Duty $\leq 30 \%$	± 1.0	A/phase
Power dissipation ${ }^{\text {Note } 2}$	P_{T}		1.25	W
Operating temperature range	T_{A}		0 to 75	${ }^{\circ} \mathrm{C}$
Peak junction temperature	Tch (max)		150	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\text {stg }}$		-55 to +150	${ }^{\circ} \mathrm{C}$

Notes 1. When only one channel operates.
2. When mounted on a glass epoxy board ($100 \mathrm{~mm} \times 100 \mathrm{~mm} \times 1 \mathrm{~mm}$)

The information in this document is subject to change without notice.

RECOMMENDED OPERATING RANGE

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Control block supply voltage	V $_{\text {DD }}{ }^{\text {Note 1 }}$	4.0	5.0	6.0	V
Output block supply voltage	V_{M}	10.8	12.0	13.2	V
H bridge drive current	$\mathrm{IDR}_{\text {(pulse) }}$ Note 2 2	-600		600	mA
Operating frequency	fo^{2}			120	kHz
Operating temperature range	T_{A}	0		75	${ }^{\circ} \mathrm{C}$
Peak junction temperature	$\mathrm{T}_{\text {CH (MAX) }}$			125	${ }^{\circ} \mathrm{C}$

Notes 1. The low-voltage malfunction prevention circuit operates when $V_{D D}$ is 1.5 V or higher but less than 4 V (2.5 V TYP.).
2. PW $\leq 5 \mathrm{~ms}$, Duty $\leq 10 \%$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and the other parameters are within their recommended operating ranges as described above unless otherwise specified.
The parameters other than changes in delay time are when the current is ON.
The low-voltage malfunction prevention circuit operates when Vdo is 1.5 V to 4 V .

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
V_{M} pin current (leakage current)	1 m	$\mathrm{V}_{\mathrm{M}}=13.2 \mathrm{~V}$			50	$\mu \mathrm{A}$
V ${ }_{\text {d }}$ pin current	IDD	$V_{D D}=6 \mathrm{~V}$			200	$\mu \mathrm{A}$
High-level input current	ІІн	$\mathrm{VIN}_{\text {I }}=\mathrm{V}_{\mathrm{dD}}$			0.25	mA
Low-level input current	1.	$\mathrm{V}_{\text {IN }}=0$	-2.0			$\mu \mathrm{A}$
High-level input voltage ${ }^{\text {Note } 1}$	VIH	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{M}}=12 \mathrm{~V}$	3.0		$V_{\text {DD }}+0.3$	V
Low-level input voltage ${ }^{\text {Note }} 1$	VIL	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{M}}=12 \mathrm{~V}$	-0.3		0.8	V
H bridge ON resistance (chs 2 and 3)	Rona	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{M}}=12 \mathrm{~V}$		3.0	4.0	Ω
H bridge ON resistance (chs 1 and 4)	Ronb	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{M}}=12 \mathrm{~V}$		1.5	2.0	Ω
H bridge switching current without load (chs 2 and 3) Note 2	Isa (AVE)	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{M}}=12 \mathrm{~V} \end{aligned}$			3.0	mA
H bridge switching current without load (chs 1 and 4) ${ }^{\text {Note } 2}$	Isb (AVE)				4.5	mA

ch2, ch3 2A, 3A, 2B, 3B Output

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Rise time	tTLHa	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{M}}=12 \mathrm{~V} \\ & 20 \Omega \\ & \text { at } 100 \mathrm{kHz} \end{aligned}$			200	ns
Rising delay time	tplha				350	ns
Change in rising delay time	Δ tPLHa				110	ns
Fall time	tthla				200	ns
Falling delay time	tPHLa				350	ns
Change in falling delay time	Δ tPHLa				130	$n s$

ch2, ch3 2A-2B, 3A-3B

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Rising delay time differential	tpLHa (A-B)	$V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{M}}=12 \mathrm{~V}$ 20Ω at 100 kHz			50	ns
Falling delay time differential	tPhLa (A-B)				50	ns

Notes 1. The input pins are the IN and SEL pins.
2. Average value of the current consumed internally by an H bridge circuit when the circuit is switched without

ELECTRICAL CHARACTERISTICS (TA $=25^{\circ} \mathrm{C}$)

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and the other parameters are within their recommended operating ranges as described above unless otherwise specified.
The parameters other than changes in delay time are when the current is ON.
ch1, ch4 1A, 4A, 1B, 4B Output

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Rise time	tтLHb	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{M}}=12 \mathrm{~V} \\ & 10 \Omega \\ & \text { at } 100 \mathrm{kHz} \end{aligned}$			200	ns
Rising delay time	tPLHb				350	ns
Change in rising delay time	Δ tpLHb				110	ns
Fall time	tTHLb				200	ns
Falling delay time	tPhLb				350	ns
Change in falling delay time	Δ tphLb				130	ns

ch1, ch4 1A-1B, 4A-4B

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Rising delay time differential	tplHa (A-B)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{M}}=12 \mathrm{~V} \\ & 10 \Omega \quad \text { at } 100 \mathrm{kHz} \end{aligned}$			50	ns
Falling delay time differential	tphLa (A-B)				50	ns

PIN CONFIGURATION

	IN_{1}	1	30	SEL4	
	IN_{2}	2	29	IN_{8}	
	SEL ${ }_{1}$	3	28	IN_{7}	
	DGND	4	27	$\mathrm{V}_{\mathrm{M} 4}$	
Output block ch 1	1A	5	26	4B	Output block ch 4
	PGND1	6	25	PGND4	
	1B	7	24	4A	
	$\mathrm{V}_{\mathrm{M} 1}$	8	23	Vм3	
	2A	9	22	3B	
	PGND2	10	21	PGND3	
Output block ch 2	2B	11	20	3A	Output block ch 3
	$\mathrm{V}_{\text {M2 }}$	12	19	VdD	
	IN_{3}	13	18	SEL3	
	IN_{4}	14	17	IN_{6}	
	SEL2	15	16	IN_{5}	

TYPICAL CHARACTERISTICS

PACKAGE DIMENSION

30-PIN SHRINK SOP (300 mil) (unit: mm)

BLOCK DIAGRAM

Remark Connect all V_{m} and GND pins.
A: Internally pulled down to GND via $50 \mathrm{k} \Omega$.

FUNCTION TABLE

Function Table (common to all chs)				
Input			Output	
IN_{1}	IN_{2}	SEL	OUTA	OUTB
H	L	H	H	L
L	L	H	L	L
L	H	H	L	H
H	H	H	H	H
\times	\times	L	Z	Z

[^0]
ABOUT SWITCHING

When output A is switched as shown in the figure on the right, a dead time (time during which both P ch and N ch are OFF) elapses to prevent through current. Therefore, the waveform of output A (rise time, fall time, and delay time) changes depending on whether output B is fixed to the high or low level.

The output voltage waveforms of A in response to an input waveform where output B is fixed to the low level (1) or high level (2) are shown below.

(1) Output B: Fixed to low level

Output A: Switching operation (Operations of P ch and N ch are shown.)

Output A goes into a high-impedance state and is in an undefined status during the dead time period. Because output B is pulled down by the load, a low level is output to A.

(2) Output B: Fixed to high level

Output A: Switching operation (Operations of P ch and N ch are shown.)

Output A goes into a high-impedance state and is in an undefined status during the dead time period. Because output B is pulled up by the load, a high level is output to A.

The switching characteristics shown on the preceding pages are specified as follows ("output at one side" means output B for H bridge output A, or output A for output B).

[Rise time]

Rise time when the output at one side is fixed to the low level (specified on current ON).

[Fall time]

Fall time when the output at one side is fixed to the high level (specified on current ON).

[Rising delay time]

Rising delay time when the output at one side is fixed to the low level (specified on current ON).

[Falling delay time]

Falling delay time when the output at one side is fixed to the high level (specified on current ON).

[Change in rising delay time]

Change (difference) in the rising delay time between when the output at one side is fixed to the low level and when the output at the other side is fixed to the high level.

[Change in falling delay time]

Change (difference) in falling delay time between when the output at one side is fixed to the low level and when the output at the other side is fixed to the high level.

[Rising delay time differential]

Difference in rising delay time between output A and output B.
[Falling delay time differential]
Difference in falling delay time between output A and output B.

Caution Because this IC switches a high current at high speeds, surge may occur due to the V_{m} and GND wiring and inductance and degrade the performance of the IC.
 On the PWB, keep the pattern width of the V_{m} and GND lines as wide and short as possible, and insert the bypass capacitors between $\mathrm{V}_{\text {м }}$ and GND at a location as close to the IC as possible.
 Connect a low-inductance magnetic capacitor (4700 pF or more) and an electrolytic capacitor of $10 \mu \mathrm{~F}$ or so, depending on the load current, in parallel.

RECOMMENDED SOLDERING CONDITIONS

Solder this product under the following recommended conditions.
For details of the recommended soldering conditions, refer to information document Semiconductor Device Mounting Technology Manual (C10535E).

For soldering methods and conditions other than those recommended, consult NEC.

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$; Time: 30 secs. max. $\left(210^{\circ} \mathrm{C}\right.$ min.); ; Number of times: 3 times max.; Number of days: none ${ }^{\text {Note: } ; \text { Flux: }}$ Rosin-based flux with little chlorine content (chlorine: $0.2 \mathrm{Wt} \%$ max.) is recommended.	IR35-00-3
VPS	Package peak temperature: $215{ }^{\circ} \mathrm{C}$; Time: 40 secs. max. ($200{ }^{\circ} \mathrm{C}$ min.); ; Number of times: 3 times max.; Number of days: none ${ }^{\text {Note; Flux: }}$ Rosin-based flux with little chlorine content (chlorine: $0.2 \mathrm{Wt} \%$ max.) is recommended.	VP-15-00-3
Wave soldering	Package peak temperature: $260^{\circ} \mathrm{C}$; Time: 10 secs. max.; Number of times: once; Flux: Rosin-based flux with little chlorine content (chlorine: $0.2 \mathrm{Wt} \%$ max.) is recommended.	WS60-00-1

Note Number of days in storage after the dry pack has been opened. The storage conditions are at $25^{\circ} \mathrm{C}, 65 \%$ RH MAX.

Caution Do not use two or more soldering methods in combination.

[MEMO]

NEC
[MEMO]
[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

[^0]: x: Don't care
 Z: High inpedance

