TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

T C 7 4 V C X 1 6 2 2 4 4 F T

LOW-VOLTAGE 16-BIT BUS BUFFER WITH 3.6 V TOLERANT INPUTS AND OUTPUTS

The TC74VCX162244FT is a high performance CMOS 16bit BUS BUFFER. Designed for use in 1.8, 2.5 or 3.3 Volt systems, it achieves high speed operation while maintaining the CMOS low power dissipation. It is also designed with over voltage tolerant inputs and outputs up to 3.6 V.

This device is non-inverting 3 – state buffer having four active-low output enables. It can be used as four 4-bit buffers two 8-bit buffers or one 16-bit buffer. When the \overline{OE} input is high, the outputs are in a high impedance state. This device is designed to be used with 3 – state memory address drivers, etc.

The 26- Ω series resistor helps reducing output overshoot and undershoot without external resistor.

All inputs are equipped with protection circuits against static discharge.

Weight: 0.25 g (Typ.)

FEATURES

• 26- Ω Series Resistors on Outputs.

٠	Low Voltage Operation	: V _{CC} = 1.8~3.6 V
٠	High Speed Operation	: $t_{pd} = 3.3 \text{ ns} \text{ (max)}$ at $V_{CC} = 3.0 \sim 3.6 \text{ V}$
		: $t_{pd} = 3.8 \text{ ns} \text{ (max)}$ at $V_{CC} = 2.3 \sim 2.7 \text{ V}$
		: $t_{pd} = 5.7 \text{ ns} \text{ (max)}$ at $V_{CC} = 1.8 \text{ V}$
٠	3.6 V Tolerant inputs an	d outputs.
٠	Output Current	$: I_{OH} / I_{OL} = \pm 12 \text{ mA} \text{ (min) at } V_{CC} = 3.0 \text{ V}$
		$: I_{OH}/I_{OL} = \pm 8 \text{ mA} \text{ (min) at } V_{CC} = 2.3 \text{ V}$
		$: I_{OH}/I_{OL} = \pm 4 \text{ mA} \text{ (min) at } V_{CC} = 1.8 \text{ V}$
٠	Latch-up Performance	: ±300 mA
٠	ESD Performance	: Human Body Model > ±2000 V
		: Machine Model > ±200 V
٠	Package	: TSSOP
		(Thin Shrink Small Outline Package)
٠	Power Down Protection	is provided on all inputs and outputs.
	Supports live insertion /	withdrawal (Nota 1)

- Supports live insertion / withdrawal (Note 1)
 - (Note 1) : To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

PIN CONNECTION

			
1 OE	10	48	2 0 e
1Y1	2	47	1A1
1Y2	3	46	1A2
GND	4	45	GND
1Y3	5	44	1A3
1Y4	6	43	1A4
VCC	7	42	Vcc
2Y1	8	41	2A1
2Y2	9	40	2A2
GND	10	39	GND
2Y3	11	38	2A3
2Y4	12	37	2A4
3Y1	13	36	3A1
3Y2	14	35	3A2
GND	15	34	GND
3Y3	16	33	3A3
3Y4	17	32	3A4
VCC	18	31	Vcc
4Y1	19	30	4A1
4Y2	20	29	4A2
GND	21	28	GND
4Y3	22	27	4A3
4Y4	23	26	4A4
40E	24	25	3OE

(TOP VIEW)

980910EBA2

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

TOSHIBA

TRUTH TABLE

INP	UTS	OUTPUTS	
1 <u>0</u> E 1A1-1A4		1Y1-1Y4	
L	L	L	
L	Н	Н	
Н	Х	Z	

INP	UTS	OUTPUTS	
2 <u>0</u> E 1A1-2A4		2Y1-2Y4	
L	L	L	
L	Н	Н	
Н	Х	Z	

INP	UTS	OUTPUTS	
3OE	3A1-3A4	3Y1-3Y4	
LL		L	
L	Н	Н	
н	Х	Z	

INP	UTS	OUTPUTS
4 0 E	4A1-4A4	4Y1-4Y4
L	L	L
L	Н	Н
Н	Х	Z

	D 11	~ · · ·
X		: Care

Z : High impedance

IEC LOGIC SYMBOL

10E 1 20E 48 30E 25 40E 24	EN1 EN2 EN3 EN4			
1A1 <u>47</u> 1A2 <u>46</u>		1	l ∇	
1A3 <u>44</u> 1A4 <u>43</u> 2A1 <u>41</u>		1	2▽	5 1Y3 6 1Y4 8 2Y1
2A2 <u>40</u> 2A3 <u>38</u> 2A4 <u>37</u>		1	3▽	<u>9</u> 2Y2 <u>11</u> 2Y3 <u>12</u> 2Y4
3A1 <u>36</u> 3A2 <u>35</u> 3A3 <u>33</u>				<u>13</u> 3Y1 <u>14</u> 3Y2 <u>16</u> 3Y3
3A4 <u>32</u> 4A1 <u>30</u>		1	4▽	<u> </u>
4A2 <u>29</u> 4A3 <u>27</u> 4A4 <u>26</u>				20 4Y2 22 4Y3 23 4Y4

SYSTEM DIAGRAM

980910EBA2'

The products described in this document are subject to the foreign exchange and foreign trade laws.
The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
The information contained herein is subject to change without notice.

MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	
Power Supply Voltage	Vcc	-0.5~4.6	V	
DC Input Voltage	VIN	-0.5~4.6	V	
DC Output Voltage	Vour	-0.5~4.6 (Note 1)	v	
DC Output Voltage	Vout	-0.5~V _{CC} + 0.5 (Note 2)	v	
Input Diode Current	liκ	- 50	mA	
Output Diode Current	юк	±50 (Note 3)	mA	
DC Output Current	Ιουτ	± 50	mA	
Power Dissipation	PD	400	mW	
DC V _{CC} /Ground Current Per Supply Pin	ICC / IGND	± 100	mA	
Storage Temperature	T _{stg}	- 65~150	°C	

(Note 1) : Off-State

(Note 2) : High or Low State. $I_{\mbox{OUT}}$ absolute maximum rating must be observed.

(Note 3) : $V_{OUT} < GND$, $V_{OUT} > V_{CC}$

RECOMMENDED OPERATING RANGE

PARAMETER	SYMBOL	RATING	UNIT	
Supply Voltage	1.8~3.6		v	
Supply Voltage	Vcc	1.2~3.6 (Note 4)	v	
Input Voltage	VIN	-0.3~3.6	V	
Output Voltage		0~3.6 (Note 5)	v	
Output Voltage	νουτ	0~ V _{CC} (Note 6)	v	
		± 12 (Note 7)		
Output Current	IOH/IOL	±8 (Note 8)	mA	
		±4 (Note 9)		
Operating Temperature	T _{opr}	- 40~85	°C	
Input Rise And Fall Time	dt/dv	0~10 (Note 10)	ns / V	

TOSHIBA

ELECTRICAL CHARACTERISTICS

DC characteristics (Ta = $-40 \sim 85^{\circ}$ C, 2.7 V < V_{CC} \leq 3.6 V)

PARA	METER	SYMBOL	TEST	TEST CONDITION		MIN	MAX	UNIT
Input	"H" Level	VIH			2.7~3.6	2.0		V
Voltage	"L" Level	VIL			2.7~3.6	_	0.8	V
				I _{OH} = −100 μA	2.7~3.6	V _{CC} - 0.2	_	
	"H" Level	∨он	VIN =	$I_{OH} = -6 \text{mA}$	2.7	2.2	-	V
			VIH or VIL	$I_{OH} = -8 \text{mA}$	3.0	2.4	_	
Output				$I_{OH} = -12 \text{ mA}$	3.0	2.2	_	
Voltage	"L" Level		V _{IN} = V _{IH} or V _{IL}	l _{OL} = 100 μA	2.7~3.6		0.2	v
		V _{OL}		I _{OL} = 6 mA	2.7	_	0.4	
					3.0		0.55	
				I _{OL} = 12 mA	3.0		0.8	
Input Leaka	age Current	l _{IN}	V _{IN} = 0~3.	6 V	2.7~3.6		± 5.0	μA
3-State Out Off-State C	urrent	loz	V _{IN} = V _{IH} or V _{IL} V _{OUT} = 0~3.6 V		2.7~3.6	_	± 10.0	μΑ
Power Off Leakage Current		loff	V _{IN} , V _{OUT} = 0~3.6 V		0	—	10.0	μΑ
Quiescent Supply			$V_{IN} = V_{CC}$ or GND		2.7~3.6	—	20.0	
Current		lcc	$V_{CC} \leq (V_{IN})$, V _{OUT}) ≦ 3.6 V	2.7~3.6	_	±20.0	μΑ
Increase In I _{CC} Per Input		⊿ICC	V _{IH} = V _{CC}		2.7~3.6		750	μΑ

TOSHIBA

ELECTRICAL CHARACTERISTICS

DC characteristics (Ta = $-40 \sim 85^{\circ}$ C, 2.3 V $\leq V_{CC} \leq 2.7$ V)

PARA	METER	SYMBOL	TEST CONDITION		V _{CC} (V)	MIN	MAX	UNIT
Input	"H" Level	v_{H}			2.3~2.7	1.6	_	V
Voltage	"L" Level	VIL			2.3~2.7	—	0.7	V
				I _{OH} = -100 μA	2.3~2.7	V _{CC} - 0.2	_	
	"H" Level	Voн	VIN =	$I_{OH} = -4 \text{mA}$	2.3	2.0		V
Output			V _{IH} or V _{IL}	I _{OH} = -6 mA	2.3	1.8	_	
Voltage				$I_{OH} = -8 \text{mA}$	2.3	1.7	_	
	"L" Level	V _{OL}	V _{IN} = V _{IH} or V _{IL}	l _{OL} = 100 μA	2.3~2.7	_	0.2	
				I _{OL} = 6 mA	2.3	_	0.4	V
				I _{OL} = 8 mA	2.3		0.6	
Input Leak	age Current	l _{IN}	$V_{IN} = 0 \sim 3.6 V$		2.3~2.7	_	± 5.0	μA
3-State Output Off-State Current		loz	V _{IN} = V _{IH} or V _{IL} V _{OUT} = 0~3.6 V		2.3~2.7	_	± 10.0	μΑ
Power Off Leakage Current		loff	$V_{\rm IN}, V_{\rm OUT} = 0 \sim 3.6 V$		0		10.0	μΑ
Quiescent Supply			$V_{IN} = V_{CC}$	or GND	2.3~2.7	_	20.0	
Current		lcc	$V_{CC} \leq (V_{IN})$, V _{OUT}) ≦ 3.6 V	2.3~2.7	_	±20.0	μΑ

<u>TOSHIBA</u>

ELECTRICAL CHARACTERISTICS

PARAMETER		SYMBOL	TEST CONDITION		V _{CC} (V)	MIN	MAX	UNIT
Input	"H" Level	VIH			1.8~2.3	0.7 x V _{CC}		V
Voltage	"L" Level	VIL			1.8~2.3	_	0.2 × V _{CC}	V
Output Voltage	"H" Level	V _{OH}	V _{IN} = V _{IH} or V _{IL}	l _{OH} = – 100 μA	1.8	V _{CC} - 0.2	_	v
		•		$I_{OH} = -4 \text{mA}$	1.8	1.4	—	
voltage	"L" Level	V _{OL}	V _{IN} =	l _{OL} = 100 μA	1.8	_	0.2	v
			VIH or VIL	l _{OL} = 4 mA	1.8	_	0.3	v
Input Leaka	Input Leakage Current		$V_{IN} = 0 \sim 3.6 V$		1.8	_	± 5.0	μA
3-State Output Off-State Current		loz	V _{IN} = V _{IH} or V _{IL} V _{OUT} = 0~3.6 V		1.8	_	± 10.0	μΑ
Power Off Leakage Current		loff	V _{IN} , V _{OUT} = 0~3.6 V		0	_	10.0	μΑ
Quiescent Supply		V	$V_{IN} = V_{CC}$ or GND		1.8	_	20.0	
Current		lcc	$V_{CC} \leq (V_{IN})$, V _{OUT}) ≦ 3.6 V	1.8	_	±20.0	μΑ

AC characteristics (Ta = $-40 \sim 85^{\circ}$ C, Input t_r = t_f = 2.0 ns, C_L = 30 pF, R_L = 500 Ω)

PARAMETER	SYMBOL	TEST CONDITION	V _{CC} (V)	MIN	MAX	UNIT
	+		1.8	1.5	5.7	
Propagation Delay Time	t _{pLH}	(Fig.1, 2)	2.5 ± 0.2	1.0	3.8	ns
	t _{pHL}		3.3 ± 0.3	0.8	3.3	
2 State Quitnut Enchla	+		1.8	1.5	6.7	
3-State Output Enable Time	t _{pZL} t _{pZH}	(Fig.1, 3)	2.5 ± 0.2	1.0	5.1	ns
			3.3 ± 0.3	0.8	3.8	
2 State Quitnut Disable	t _{pLZ} t _{pHZ}		1.8	1.5	5.0	
3-State Output Disable Time		(Fig.1, 3)	2.5 ± 0.2	1.0	4.0	ns
			3.3 ± 0.3	0.8	3.6	
	^t osLH		1.8	_	0.5	
Output To Output Skew		(Note 11)	2.5 ± 0.2		0.5	ns
	^t osHL		3.3 ± 0.3	_	0.5	

For $C_L = 50 \text{ pF}$, add approximately 300 ps to the AC maximum specification.

(Note 11) : Parameter guaranteed by design.

 $(t_{osLH} = |t_{pLHm} - t_{pLHn}|, t_{osHL} = |t_{pHLm} - t_{pHLn}|)$

<u>TOSHIBA</u>

PARAMETER	SYMBOL	TEST CONDITION		V _{CC} (V)	TYP.	UNIT
Quiet Qutput Maximum		$V_{IH} = 1.8 V, V_{IL} = 0 V$ (Net	ote 12)	1.8	0.15	
Quiet Output Maximum Dynamic V _{OL}	VOLP	$V_{IH} = 2.5 V, V_{IL} = 0 V$ (Net	ote 12)	2.5	0.25	V
		$V_{IH} = 3.3 V, V_{IL} = 0 V$ (Net	ote 12)	3.3	0.35	
Quiet Output Minimum		$V_{IH} = 1.8 V, V_{IL} = 0 V$ (Net	ote 12)	1.8	- 0.15	
Dynamic V _{OI}	VOLV	$V_{IH} = 2.5 V, V_{IL} = 0 V$ (Net in the second	ote 12)	2.5	-0.25	V
		$V_{IH} = 3.3 V, V_{IL} = 0 V$ (Net in the second	ote 12)	3.3	- 0.35	
Quiat Qutnut Minimum	VOHV	$V_{IH} = 1.8 V, V_{IL} = 0 V$ (Net	ote 12)	1.8	1.55	
Quiet Output Minimum Dynamic V _{OH}		$V_{IH} = 2.5 V, V_{IL} = 0 V$ (Net in the second	ote 12)	2.5	2.05	V
		$V_{IH} = 3.3 V, V_{IL} = 0 V$ (Net in the second	ote 12)	3.3	2.65	

Dynamic switching characteristics (Ta = 25° C, Input t_r = t_f = 2.0 ns, C_L = 30 pF)

(Note 12) : Parameter guaranteed by design.

Capacitive characteristics ($Ta = 25^{\circ}C$)

PARAMETER	SYMBOL	TEST CONDITION		V _{CC} (V)	TYP.	UNIT
Input Capacitance	с _{IN}			1.8, 2.5, 3.3	6	pF
Output Capacitance	с _О			1.8, 2.5, 3.3	7	pF
Power Dissipation Capacitance	C _{PD}	f _{IN} = 10 MHz	(Note 13)	1.8, 2.5, 3.3	20	рF

(Note 13) : C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation :

 $I_{CC (opr.)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC} / 16 \text{ (per bit)}$

<u>TOSHIBA</u>

TEST CIRCUIT

Fig.1

PARAMETER	SWITCH		
t _{pLH} , t _{pHL}	Open		
t _{pLZ} , t _{pZL}	6.0 V $@V_{CC} = 3.3 \pm 0.3 V$		
	$V_{CC} \times 2 @V_{CC} = 2.5 \pm 0.2 V$		
	@V _{CC} = 1.8 V		
t _{pHZ} , t _{pZH}	GND		

AC WAVEFORM

Fig.2 t_{pLH}, t_{pHL}

SYMBOL	Vcc					
STIVIDOL	3.3 ± 0.3 V	2.5 ± 0.2 V	1.8 V			
VIH	2.7 V	Vcc	V _{CC}			
٧ _M	1.5 V	V _{CC} / 2	V _{CC} / 2			
٧x	V _{OL} + 0.3 V	V _{OL} + 0.15 V	V _{OL} + 0.15 V			
VY	V _{OH} – 0.3 V	V _{OH} – 0.15 V	V _{OH} – 0.15 V			

OUTLINE DRAWING TSSOP48-P-0061-0.50

Weight: 0.25 g (Typ.)