DESCRIPTION

The μ PB1009K is a silicon monolithic IC developed for GPS receivers. This IC integrates a full VCO, second IF filter, 4-bit ADC, and digital control interface to reduce cost and mounting space. In addition, its power consumption is low.

Moreover, use of a TCXO with frequency of $16.368 \mathrm{MHz} / 16.384 \mathrm{MHz}, 14.4 \mathrm{MHz}, 19.2 \mathrm{MHz}$, or 26 MHz switchable with an on-chip divider is possible.

NEC's stringent quality assurance and test procedures ensure the highest reliability and performance.

FEATURES

- Double conversion
$:$ freFin $=16.368 \mathrm{MHz}, \mathrm{f}_{1 \text { stIIFin }}=61.380 \mathrm{MHz}$, $\mathrm{f}_{\text {2ndlFin }}=4.092 \mathrm{MHz}$
$:$ frefin $=14.4,16.384,19.2,26 \mathrm{MHz}, f_{1 \text { stIFin }}=62.980 \mathrm{MHz}, f_{\text {2ndlIFin }}=2.556 \mathrm{MHz}$
- Multiple system clocks
: On-chip switchable frequency divider ($1 / \mathrm{N}=100,3 / 256,9 / 1024,65 / 4096$)
- A/D converter
: On-chip 4-bit A/D converter
- High-density RF block
: On-chip VCO tank circuit and 2ndIF filter
- Supply voltage
: $\mathrm{Vcc}=2.7$ to 3.3 V
- Low current consumption
: Icc = 26.0 mA TYP. @ Vcc = 3.0 V, N = 100
- High-density surface mountable
: 44-pin plastic QFN

APPLICATIONS

- Consumer use GPS receiver of reference frequency 16.368 MHz , 2nd IF frequency 4.092 MHz
- Consumer use GPS receiver of reference frequency $14.4,16.384,19.2,26 \mathrm{MHz}$, 2ndIF frequency 2.556 MHz

[^0]ORDERING INFORMATION

Part Number	Package	Supplying Form
μ PB1009K-E1	44-pin plastic QFN	• 12 mm wide embossed taping

Remark To order evaluation samples, contact your nearby sales office.
Part number for sample order: $\mu \mathrm{PB} 1009 \mathrm{~K}$

PRODUCT LINE-UP ($\mathrm{T}_{\mathrm{A}}=\mathbf{+ 2 5}{ }^{\circ} \mathrm{C}, \mathrm{Vcc}=\mathbf{3 . 0} \mathrm{V}$)

Type	Part Number	Functions (Frequency unit: MHz)	Vcc (V)	$\begin{aligned} & \text { Icc } \\ & (\mathrm{mA}) \end{aligned}$	$\begin{gathered} \mathrm{CG} \\ (\mathrm{~dB}) \end{gathered}$	Package	Status
Clock Frequency Specific 1 chip IC	$\mu \mathrm{PB} 1009 \mathrm{~K}$	Pre-amplifier + RF/IF downconverter + PLL synthesizer $\begin{aligned} & \text { REF }=16.368 \\ & 1 \mathrm{stIF}=61.380 / 2 \mathrm{ndIF}=4.092 \\ & \mathrm{REF}=14.4,16.384,19.2,26 \\ & 1 \mathrm{stIF}=62.980 / 2 \mathrm{ndIF}=2.556 \end{aligned}$ On-chip 4-bit ADC LNA + Pre-amplifier + RF/IF down-converter + PLL synthesizer $\text { REF }=27.456$ $1 \mathrm{stIF}=175.164 / 2 \mathrm{ndIF}=0.132$ On-chip 2-bit ADC	2.7 to 3.3	26.0	$\begin{gathered} 100 \text { to } \\ 120 \end{gathered}$	44-pin plastic QFN	New Device
	$\mu \mathrm{PB} 1007 \mathrm{~K}$	Pre-amplifier + RF/IF downconverter + PLL synthesizer $\begin{array}{\|l} \hline \mathrm{REF}=16.368 \\ 1 \mathrm{stIF}=61.380 / 2 \mathrm{ndIF}=4.092 \\ \hline \mathrm{REF}=16.368 \\ 1 \mathrm{stIF}=61.380 / 2 \mathrm{ndIF}=4.092 \end{array}$	2.7 to 3.3	25.0	$\begin{gathered} 100 \text { to } \\ 120 \end{gathered}$	36-pin plastic QFN	Available

Remark Typical performance. Please refer to ELECTRICAL CHARACTERISTICS in detail.

SYSTEM APPLICATION EXAMPLE

GPS receiver RF block diagram

PD1 and PD2 in the figure are Power Save Mode control pins.
MS1 and MS2 in the figure are TXCO (GPS, W-CDMA, PDC, GSM) control pins.

Caution This diagram schematically shows only the μ PB1009K's internal functions on the system. This diagram does not present the actual application circuits.

PIN CONNECTION AND INTERNAL BLOCK DIAGRAM

PIN EXPLANATION

Pin No.	Pin Name	Function and Application	Internal Equivalent Circuit
1	PreAMPout	Output pin of preamplifier.	(1)
2	Rext	Connect a resistor for the reference constant-current power supply to this pin. Ground this pin at $22 \mathrm{k} \Omega$.	
3	RegGND	Ground pin for regulator.	
42	PreAmpVcc	Power supply voltage pin for preamplifier. Connect a bypass capacitor to this pin to reduce the high-frequency impedance.	
43	PreAmpGND	Ground pin of preamplifier.	
44	PreAmpin	Input pin of preamplifier.	
4	1stMIXin	1stMIX input pin.	(40)
5	1stMIXGND	Ground pin for first MIX.	
40	1stMIXVcc	Power supply voltage pin for RF mixer. Connect a bypass capacitor to this pin to reduce the high-frequency impedance.	
41	1stIFout	Output pin of RF mixer. Insert an IFSAW filter between this pin and pin 37. The VCO oscillation signal can be monitored on this pin.	

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Test Conditions	Ratings	Unit
Supply Voltage	V_{cc}	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	3.6	V
Total Circuit Current	IccTotal	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	100	mA
Power Dissipation	PD_{D}	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Note	266
Operating Ambient Temperature	T_{A}		-40 to +85	mW
Storage Temperature	$\mathrm{T}_{\text {stg }}$		-55 to +125	${ }^{\circ} \mathrm{C}$

Note Mounted on double-sided copper-clad $50 \times 50 \times 1.6 \mathrm{~mm}$ epoxy glass PWB

RECOMMENDED OPERATING RANGE

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply Voltage	Vcc	2.7	3.0	3.3	V
Operating Ambient Temperature	T_{A}	-30	+25	+85	${ }^{\circ} \mathrm{C}$
RF Input Frequency	fRFin	-	1575.42	-	MHz
1st LO Oscillating Frequency	$\mathrm{f}_{1 \text { stLOin }}$	-	$1636.8 / 1638.4$	-	MHz
1st IF Input Frequency	$\mathrm{f}_{1 \text { stIFin }}$	-	61.38/62.98	-	MHz
2nd LO Input Frequency	$\mathrm{f}_{\text {2ndLOin }}$	-	65.472/65.536	-	MHz
2nd IF Input Frequency	$\mathrm{f}_{\text {2ndllin }}$	-	4.092/2.556	-	MHz
Reference Input/Output Frequency	freFin frefout	-	TCXO	-	MHz
Clock mode control voltage (Low Level)	VIL1	0	-	0.3	V
Clock mode control voltage (High Level)	$\mathrm{V}_{\mathrm{H} 1}$	Vcc-0.3	-	Vcc	V
Power-down control voltage (Low Level)	VIL2	0	-	0.3	V
Power-down control voltage (High Level)	$\mathrm{V}_{\text {IH2 }}$	Vcc-0.3	-	Vcc	V

POWER-DOWN CONTROL MODE

The μ PB1009K consists of an RF block, an IF block, and a PLL block. By controlling reduction of power to each block (by applying a voltage to the PD1 and PD2 pins), the following four modes can be used.

Mode No.	Mode Name	Test Conditions		RF Block	$\begin{gathered} \text { IF Block } \\ \text { (IF + ADC) } \end{gathered}$	PLL Block
		PD1	PD2			
1	Active mode	L	H	ON	ON	ON
2	Calibration mode	H	H	OFF	ON	ON
3	Warm-up mode	H	L	OFF	OFF	ON
4	Sleep mode	L	L	OFF	OFF	OFF

Caution To use only the active mode and sleep mode, fix PD1 to L and select the desired mode with PD2.

REFERENCE CLOCK CONTROL MODE

The divided frequency can be selected as follows so that it can be shared with the TCXO of each system.

TCXO Frequency	Test Conditions		$1 / \mathrm{N}$	Phase Comparison Frequency
	PD1	PD2		
16.368 MHz (GPS)	L	L	$1 / 100$	16.368 MHz
$16.384 \mathrm{MHz}($ GPS $)$				16.384 MHz
$19.2 \mathrm{MHz}(W-C D M A)$	L	H	$3 / 256$	19.2 MHz
14.4 MHz (PDC)	H	L	$9 / 1024$	14.4 MHz
26 MHz (GSM)	H	H	$65 / 4096$	26 MHz

Caution When the reference clock frequency is 16.368 MHz , the 1 stIF frequency and 2ndIF frequency are 61.38 MHz and 4.092 MHz , respectively. They are respectively 62.98 MHz and 2.556 MHz in all other cases.

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{Vcc}=3.0 \mathrm{~V}$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Rest current of overall IC in each mode	Rest status without input signal, including sampling clock.MS1 = L, MS2 = L					
Sleep mode ${ }^{\text {Note }}$	1 s	$\mathrm{PD} 1=\mathrm{L}, \mathrm{PD} 2=\mathrm{L}$	1.3	2.2	3.5	mA
Warm-up mode	Iw	$\mathrm{PD} 1=\mathrm{H}, \mathrm{PD} 2=\mathrm{L}$	10.5	13.0	15.5	mA
Calibration mode	1 c	$\mathrm{PD} 1=\mathrm{H}, \mathrm{PD} 2=\mathrm{H}$	18.0	22.0	25.3	mA
Active mode	1 a	PD1 = L, PD2 = H	22.1	26.0	30.0	mA
Rest current of PLL block in each clock mode	Current of PLL block. Overall current in calibration mode and active mode increases from that in basic mode $(M S 1=L, M S 2=L) . P D 1=H, P D 2=L$.					
Current when $1 / 100$ divider is used	$l_{\text {w1 }}$	MS1 = L, MS2 = L	5.3	6.5	7.6	mA
Current when 256/3 divider is used	Iw2	MS1 $=\mathrm{L}, \mathrm{MS} 2=\mathrm{H}$	9.7	11.3	12.6	mA
Current when 1024/9 divider is used	Iw3	MS1 $=\mathrm{H}, \mathrm{MS} 2=\mathrm{L}$	10.2	12.1	13.5	mA
Current when 4096/65 divider is used	1 w 4	MS1 $=\mathrm{H}, \mathrm{MS} 2=\mathrm{H}$	10.4	12.3	13.9	mA
Maximum mode control pin current						
6 pin	MS1	H application	-	-	20	$\mu \mathrm{A}$
		L application	-20	-	-	$\mu \mathrm{A}$
12 pin	MS2	H application	-	-	20	$\mu \mathrm{A}$
		L application	-20	-	-	$\mu \mathrm{A}$
36 pin	PD1	H application	-	-	1	$\mu \mathrm{A}$
		L application	-1	-	-	$\mu \mathrm{A}$
37 pin	PD2	H application	-	-	1	$\mu \mathrm{A}$
		L application	-1	-	-	$\mu \mathrm{A}$
<Pre-amplifier>	$\mathrm{frFin}=1575.42 \mathrm{MHz}$					
Circuit Current 1	Icc1	No Signals, 1-pin current	1.9	2.3	2.7	mA
Power Gain	Glna	$\mathrm{PRFin}=-40 \mathrm{dBm}$	12.5	15.0	17.5	dB
Noise Figure	NFLna	$\mathrm{ffFin}=1575 \mathrm{MHz}$	-	3.0	3.5	dB
Saturated Output Power	Po(sat)Lna	$\mathrm{PrFin}=-10 \mathrm{dBm}$	-4.0	-2.7	-	dBm
Input 1dB Compression Level	Plna-1	$\mathrm{f}_{\text {RFin }}=1575.42 \mathrm{MHz}$	-25	-21.8	-	dBm
Input 3rd Order Intercept Point	IIP3Lna	$\mathrm{fRFin}=1575.42 \mathrm{MHz}, 1576.42 \mathrm{MHz}$	-12	-9.5	-	dBm
Input Inpedance	ZinLNA	Calculated from S-parameter where input DC cut capacitance $=1 \mathrm{nF}$, output load L	-	$\begin{gathered} 11.2- \\ \text { j21.5 } \end{gathered}$	-	Ω
Output Inpedance	ZoutLNA	$=100 \mathrm{n}$, and DC cut capacitance $=1 \mathrm{nF}$	-	$\begin{aligned} & 16.4- \\ & \text { j136.6 } \end{aligned}$	-	Ω

Note Most of the current flows into the ADC ladder resistor (Vodana \rightarrow GNDana) in the sleep mode, and the sleep mode current between other $\operatorname{Vcc}(\mathrm{VDD})$ and GND is $10 \mu \mathrm{~A}$ maximum.

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=+\mathbf{+ 2 5 ^ { \circ }} \mathrm{C}, \mathrm{Vcc}=3.0 \mathrm{~V}$)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
<RF mixer>	$\mathrm{f}_{\text {RF }}=1575.42 \mathrm{MHz}, \mathrm{f}_{1 \text { stLOin }}=1636.80 \mathrm{MHz}, \mathrm{f}_{1 \text { stIF }}=61.38 \mathrm{MHz}$						
Circuit Current 2	Icc2	No Signals, 40 pin current		2.0	2.5	3.0	mA
RF Conversion Gain	CGRF	Prfmilin $=-40 \mathrm{dBm}$		14.0	16.1	19.0	dB
Noise Figure	SSBNF rfmix	SSBNF $=10^{*} \log \left(2^{*}\right.$ DSBNF (Linear value) -1) MHz		-	12.8	16.0	dB
Maximum IF Output	Po (SAT) RFMIX	$\mathrm{Prfmixin}^{\text {a }}=-10 \mathrm{dBm}$		-4.0	-0.8	-	dBm
Input 1dB Compression Level	Prfmix-1	$\mathrm{frFmIXin}=1575.42 \mathrm{MHz}$		-29.0	-25.5	-	dBm
Input 3rd Order Intercept Point	IIP ${ }_{\text {3RFMIX }}$	$\begin{aligned} & \mathrm{f}_{\text {RFmIXin }}=1575.42 \mathrm{MHz}, 1576.42 \mathrm{MHz} \\ & \mathrm{f}_{1 \text { stLO }}=1636.8 \mathrm{MHz} \end{aligned}$		-19.0	-17.2	-	dBm
LO Leakage to IF Pin	LOIF	Leakage of 1636.8 MHz frequency when VCO oscillates correctly.		-	-34.5	-30	dBm
LO Leakage to RF Pin	LOrf			-	-54.7	-30	dBm
Input Inpedance	ZinMIX	Calculated from S-parameter where input DC cut capacitance $=1 \mathrm{nF}$ and output DC cut capacitance $=1 \mathrm{nF}$		-	$\begin{gathered} 50.1- \\ \text { j22.3 } \end{gathered}$	-	Ω
Output Inpedance	ZoutMIX			-	$\begin{gathered} 57.3+ \\ \text { j2.6 } \end{gathered}$	-	Ω
<IF mixer, LPF, IFamp>	$\mathrm{f}_{1 \text { stFin }}=61.38 \mathrm{MHz}, \mathrm{f}_{\text {2ndLOin }}=65.472 \mathrm{MHz}, \mathrm{ZL}=2 \mathrm{k} \Omega$						
Circuit Current 3	Icc3	No Signals, 39 pin current		6.3	7.3	8.5	mA
IF Conversion Gain	CG (GV) IF	$\mathrm{V}_{\text {AGC }}=0.5 \mathrm{~V}$		66.0	70.3	75.0	dB
		$V_{\text {AGC }}=1.5 \mathrm{~V}$		45.0	51.2	58.0	dB
		$\mathrm{V}_{\text {AGC }}=2.5 \mathrm{~V}$		19.5	26.4	33.5	dB
In Band Gain Fluctuation	$\triangle \mathrm{CG1}$	3.092 to 5.092 MHz		-	0.7	1.0	dB
Out Of Band Attenuation	$\triangle \mathrm{CG2}$	Gain difference at 4.092 MHz and 9.092$\mathrm{MHz}, \mathrm{~V}_{\mathrm{AGC}}=0.5 \mathrm{~V}$		20.0	25.0	-	dB
Conversion Gain Range	CGRange	$\mathrm{V}_{\text {AGC }}=0$ to 2.5 V		32.5	43.9	-	dB
IF . SSB Noise Figure	NFIF	$\mathrm{V}_{\text {AGC }}=0.5 \mathrm{~V}$ (at maximum gain)		-	13.7	17.5	dB
Maximum 2ndIF Output	$\mathrm{V}_{\mathrm{o} \text { (SAT) IF }}$	$P_{\text {in }}=-50 \mathrm{dBm}, \mathrm{V}_{\text {AGc }}=0.5 \mathrm{~V}$		1.0	1.3	-	VPP
Input 1dB Compression Level	PIF-1	$\mathrm{f}_{1 \text { stIFin }}=61.38 \mathrm{MHz}$	$\mathrm{V}_{\text {AGC }}=0.5 \mathrm{~V}$	-70.5	-64.4	-	dBm
			$V_{\text {AGC }}=1.5 \mathrm{~V}$	-53.5	-44.9	-	dBm
			$\mathrm{V}_{\text {AGC }}=2.5 \mathrm{~V}$	-37.0	-30.6	-	dBm
Input 3rd Order Intercept Point	IIP31F	$\begin{aligned} & \mathrm{f}_{1 \text { stlFin1 }}=61.28 \mathrm{MHz} \\ & \mathrm{f}_{1 \text { stlFin2 }}=61.38 \mathrm{MHz} \\ & \mathrm{f}_{\text {2ndLO }}=65.472 \mathrm{MHz} \end{aligned}$	$V_{\text {AGC }}=0.5 \mathrm{~V}$	-56.0	-51.3	-	dBm
			$\mathrm{V}_{\text {AGC }}=1.5 \mathrm{~V}$	-38.0	-30.7	-	dBm
			$\mathrm{V}_{\text {AGC }}=2.5 \mathrm{~V}$	-27.0	-21.4	-	dBm
Input Inpedance	ZinlF	Calculated from S-parameter where input DC cut capacitance $=1 \mathrm{nF}$ and output DC cut capacitance $=100 \mathrm{nF}$		-	$\begin{gathered} 69.3- \\ \mathrm{j} 4.8 \end{gathered}$	-	Ω
Output Inpedance	Zoutlif			-	$\begin{gathered} 163+ \\ \text { j3.8 } \end{gathered}$	-	Ω

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{Vcc}=3.0 \mathrm{~V}$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
<PLL Synthesizer>						
Circuit Current 4	Icc4	PLL, VCO current, MS1 = L, MS2 = L	8.0	9.5	10.6	mA
Charge Pump Output Current	Icpsink	V_{13} pin $=\mathrm{V}_{\mathrm{cc}} / 2$	-0.55	-0.45	-0.35	mA
	Icpsource		0.35	0.45	0.55	mA
Loop Filer Output (High Level)	Vor		Vcc-0.3	-	-	V
Loop Filer Output (Low Level)	Vol		-	-	0.2	V
Reference Input Level	Vrefin		-	0.2	1.6	VPP
VCO Modulation Sensitivity	KV	Center frequency	-	100	-	MHz
VCO Control Voltage	VT	When PLL is Locked	0.5	1.3	2.0	V
C/N	C / N	$\Delta 10 \mathrm{kHz}$	70.0	81.0	-	$\mathrm{dBc} / \mathrm{Hz}$
<A/D Converter>						
Circuit Current 5	Icc5		3.1	4.1	5.4	mA
Resolution	ResAD		-	4	-	bits
Sampling Clock	fs		-	-	20	MHz
Input Band Width	ADBW		5.1	-	-	MHz
Integral Non-linear Error	INL	DC characteristics	-	0.2	1.0	LSB
Signal-to-noise Ratio	SNR	$\mathrm{IF}=5.17 \mathrm{MHz}$, fs $=20.48 \mathrm{MHz}$	22.0	25.3	-	dB
Signal-to-noise + Distortion Ratio	SINAD	$\mathrm{IF}=5.17 \mathrm{MHz}$, fs $=20.48 \mathrm{MHz}$	20.0	25.1	-	dB
Number	ENOB	ENOB $=($ SINAD -1.763$) / 6.02$	3.0	3.9	-	bits
Total Harmonic Distortion Ratio	THD	$\mathrm{IF}=5.17 \mathrm{MHz}, \mathrm{fs}=20.48 \mathrm{MHz}$ Second-degree to fifth-degree distortion components	-	-40	-30	dBc

Remarks 1. Timing characteristics of ADC during normal operation
A buffer amplifier is internally inserted before the ADC core of the $\mu \mathrm{PB} 1009 \mathrm{~K}$. The bias of this buffer amplifier is controlled by the signal input from the DC trim pin, and is used to eliminate the DC offset of the ADC. Because the ladder resistor of the ADC is directly connected between Vodana and GNDana, changes in Vodana affect the resolution of the ADC.

As illustrated in the operation timing chart below, the data of SampleN is pipeline delayed by 1.5 clocks during normal operation, and is output at the rising edge of the sample clock with output delay time Tod. When the operation is changed from normal operation to power-down operation, the status of the output data immediately before the power-down operation is retained (drive status).
(a) Normal Operation

O: Analog signal sampling timing
The following table shows each timing parameter for reference purposes.

Symbol	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
$\mathrm{T}_{\text {od }}$	Output Delay	$\mathrm{C}_{\mathrm{L}=} 10 \mathrm{pF}, \mathrm{f}_{\mathrm{cck}}=19.2 \mathrm{MHz}$	-	-	12	ns
$\mathrm{~T}_{\text {pld }}$	Pipeline Delay		-	1.5	-	clock
$\mathrm{T}_{\text {ds }}$	Sampling Delay (Aperture Delay)		-	2	-	ns
$\mathrm{T}_{\text {oh }}$	Output Hold Time		2	-	-	ns

Remarks 2. Power-down timing characteristics of ADC
The output code of the ADC of the $\mu \mathrm{PB} 1009 \mathrm{~K}$ is undefined for 7.5 clocks after the power-down signal is cleared when the ADC returns from the power-down status to normal operation.
(b) Power-down Operation

O: Analog signal sampling timing

Note The output data is undefined from the start of the power-down operation to the 7.5th clock from the falling edge of the clock at which the power-down operation is cleared.

TYPICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{Vcc}=3.0 \mathrm{~V}$, unless otherwise specified)

- IC TOTAL CHARACTERISTICS -

TOTAL CIRCUIT CURRENT
vs. SUPPLY VOLTAGE

Remark The graphs indicate nominal characteristics.

- PRE-AMPLIFIER BLOCK CHARACTERISTICS -

PREAMP NOISE FIGURE vs. FREQUENCY

PREAMP GAIN vs. FREQUENCY

PREAMP IM CHARACTERISTICS

Remark The graphs indicate nominal characteristics.

- RF MIX BLOCK CHARACTERISTICS -

OUTPUT POWER vs. INPUT POWER

RF CONVERSION GAIN vs. FREQUENCY CHARACTERISTICS

RF MIX IM CHARACTERISTICS

RF NOISE FIGURE vs.
FREQUENCY CHARACTERISTICS

Remark The graphs indicate nominal characteristics.

- IF BLOCK CHARACTERISTICS -

OUTPUT POWER vs. INPUT POWER

IF-SSB NOISE FIGURE vs. 2ndIF FREQUENCY

IF CONVERSION VOLTAGE GAIN vs.
AGC VOLTAGE

Remark The graphs indicate nominal characteristics.

- VCO MODULATION SENSITIVITY CHARACTERISTICS -

VCO CONTROL VOLTAGE vs.
VCO FREQUENCY

- C/N CHARACTERISTICS -

Remark The graphs indicate nominal characteristics.
— SINAD CHARACTERISTICS OF A/D CONVERTOR (IFin = 5.17 MHz, SCLKin = 20.48 MHz) -

ANALOG INPUT FREQUENCY (MHz)

ANALOG INPUT FREQUENCY (MHz)

Remark The graphs indicate nominal characteristics.

MEASUREMENT CIRCUIT

DESCRIPTION OF PINS OF TEST CIRCUIT

Pin No.	Pin Function	Pin Name	Pin No.	Pin Function	Pin Name
(1)	Preamplifier Input	PreAmpin	(14)	DC Offset Input	DCOFFin
(2)	Preamplifier Output	PreAmpout	(15)	Digital Signal Output Pin	D0
(3)	RF Mixer Input	1stMIXin	(16)		D1
(4)	MS1	MS1	(17)		D2
(5)	Prescaler Input	Presin	(18)		D3
(6)	VCO Power Control Pin	VCOc	(19)	Sampling Signal Input	SCKin
(7)	VT Measurement Pin (Charge Pump Output)	CPout	(20)	AGC Input	AGCin
(8)	MS2	MS2	(21)	AGC Control Voltage Output	AGCout
(9)	Reference Clock Input	REFin	(22)	PD1 Output (Default onboard : GND)	PD1
(10)	Clock Output	CLKout	(23)	PD1 Output (Default on board : Vcc)	PD2
(11)	2ndIF Output	2ndIFout	(24)	1stIF Input	1stIFin
(12)	2ndIF Input	2ndifin	(25)	1stIF Output	1stIFout
(13)	DC Offset Output	DCOFFout			

APPLICATION CIRCUIT

PD1	PD2	Power-down mode
0	0	Sleep mode (full off)
1	0	Warm-up mode (PLL on)
1	1	Calibration mode (PLL on)
0	1	Active mode (full on)

MS1	MS2	TCXO	N
0	0	$16.368 / 16.384 \mathrm{MHz}$	100
0	1	19.2 MHz	$256 / 3$
1	0	14.4 MHz	$1024 / 9$
1	1	26.0 MHz	$4096 / 65$

PACKAGE DIMENSIONS

44-PIN PLASTIC QFN (UNIT: mm)

Caution The island pins located on the corners are needed to fabricate products in our plant, but do not serve any other function. Consequently the island pins should not be soldered and should remain non-connection pins.

NOTES ON CORRECT USE

(1) Observe precautions for handling because of electro-static sensitive devices.
(2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent abnormal oscillation).
(3) Keep the wiring length of the ground pins as short as possible.
(4) Connect a bypass capacitor to the Vcc pin.
(5) High-frequency signal I/O pins must be coupled with the external circuit using a coupling capacitor.

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Caution Do not use different soldering methods together (except for partial heating).

[^1]CEL California Eastern Laboratories, Your source for NEC RF, Microwave, Optoelectronic, and Fiber Optic Semiconductor Devices. 4590 Patrick Henry Drive • Santa Clara, CA 95054-1817 • (408) 988-3500 • FAX (408) 988-0279 • www.cel.com dATA SUBJECT TO CHANGE WITHOUT NOTICE

[^0]: Caution Observe precautions when handling because these devices are sensitive to electrostatic discharge.

[^1]: Life Support Applications
 These NEC products are not intended for use in life support devices, appliances, or systems where the malfunction of these products can reasonably be expected to result in personal injury. The customers of CEL using or selling these products for use in such applications do so at their own risk and agree to fully indemnify CEL for all damages resulting from such improper use or sale.

