

Dual, Wide Bandwidth Analog Switches

Features

- Single-Supply Operation (+2V to +6V)
- Rail-to-Rail Analog Signal Dynamic Range
- Low On-Resistance (6-Ohms typ. with 5V supply) Minimizes Distortion and Error Voltages
- On-Resistance Flatness, 3W typ.
- Low Charge Injection Reduces Glitch Errors. Q = 4pC typ.
- High Speed. $t_{ON} = 10$ ns typ.
- Wide-3dB Bandwidth: 230 MHz
- High-Current Channel Capability:>100mA
- TTL/CMOS Logic Compatible
- Low Power Consumption (0.5mW typ.)
- Small MSOP-8 package minimizes board area

Applications

- Audio, Video Switching and Routing
- Battery-Powered Communication Systems
- Computer Peripherals
- Telecommunications
- Portable Instrumentation
- · Mechanical Relay Replacement
- Cell Phones
- PDAs

Description

The PI5A126/PI5A127 are dual SPST (single-pole single-throw) analog switches designed for single supply operation. These high-precision devices are ideal for low-distortion audio, video, signal switching and routing.

The PI5A126 is a normally open (NO) switch. The switch is open when IN is LOW. The PI5A127 is a normally closed (NC) switch.

Each switch conducts current equally well in either direction when on. When off, they block voltages up to V+.

These switches are fully specified with +5V and +3.3V supplies. With +5V, they guarantee <10 -ohm ON-resistance. On-resistance matching between channels is within 2 ohms. On-resistance flatness is less than 5 ohms over the specified range. These switches also guarantee fast switching speeds (ton < 20ns).

These products are available in 8-pin SOIC and MSOP plastic packages for operation over the industrial temperature range $(-40^{\circ}\text{C to} + 85^{\circ}\text{C}).$

Functional Diagrams, Pin Configurations and Truth Tables

Switches shown for logic "0" input

Logic	PI5A126	PI5A127			
1	ON	OFF			
0	OFF	ON			

Absolute Maximum Ratings

Voltages Referenced to GND	
V ₊	$-0.5V$ to $+7V$
V _{IN} , V _{COM} , V _{NC} , V _{NO} (Note 1)	-0.5V to V++2V
or 30mA, which	hever occurs first
Current (any terminal except COM,NO,NC)	30mA
Current, COM, NO, NC	100mA
(Pulsed at 1ms, 10% duty cycle)	120mA

Thermal Information

Continuous Power Dissipation	
-6 (derate 7mW/°C above +70°C)	550mW
Storage Temperature	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Note 1:

Signals on NC, NO, COM, or IN exceeding V+ or GND are clamped by internal diodes. Limit forward diode current to 30mA.

Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Electrical Specifications - Single +5V Supply

 $(V + = +5V \pm 10\%, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V)$

Parameter	Symbol	Conditions	Temp. (°C)	Min. ⁽²⁾	Typ. ⁽¹⁾	Max. ⁽²⁾	Units	
Analog Switch	Analog Switch							
Analog Signal Range ⁽³⁾	V _{ANALOG}		Full	0		V+	V	
On Resistance	D		25		7.2	10		
On Resistance	R_{ON}	$V+ = 4.5V, I_{COM} = -30mA,$	Full			12		
On-Resistance Match	A.D.	V_{NO} or $V_{NC} = +2.5V$	25		0.20	2		
Between Channels ⁽⁴⁾	$\Delta R_{ m ON}$		Full			4	Ω	
On-Resistance	R _{FLAT(ON)}	$V+=5V$, $I_{COM}=-30\text{mA}$.	V+ = 5V, $I_{COM} = -30$ mA,	25		2.72	3.5	
Flatness ⁽⁵⁾		$V_{NO} \text{ or } V_{NC} = 1V, 2.5V, 4V$	Full			4		
NO or NC Off Leakage	I _{NO(OFF) or}	$V_{+} = 5.5V$, $V_{COM} = 0V$, V_{NO} or $V_{NC} = 4.5V$	25		0.18			
Current ⁽⁶⁾	I _{NC(OFF)}		Full	-200		200		
COM Off Leakage Current ⁽⁶⁾		$I_{COM(OFF)} \begin{tabular}{ll} $V_{+} = 5.5V, \\ $V_{COM} = + 4.5V, V_{NO} \\ $or V_{NC} = \pm 0V$ \end{tabular}$	25		0.20		nA	
Current	,		Full	-200		200		
COM On Leakage Current ⁽⁶⁾	I _{COM(ON)}	$V+=5.5V$, $V_{COM}=+4.5V$ V_{NO} or $V_{NC}=+4.5V$	25		0.20			
			Full	-200		200		

2

Electrical Specifications - Single +5V Supply (continued)

 $(V+ = +5V \pm 10\%, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V)$

Parameter	Symbol	Conditions	Temp(°C)	Min. ⁽¹⁾	Typ. ⁽²⁾	Max.(1)	Units
Logic Input							
Input High Voltage	V _{IH}	Guaranteed logic High Level		2			V
Input Low Voltage	V _{IL}	Guaranteed logic Low Level	Full			0.8	
Input Current with Voltage High	I _{INH}	$V_{IN} = 2.4V$, all others = $0.8V$	rull	-1	0.005	1	
Input Current with Voltage Low	I _{INL}	$V_{IN} = 0.8V$, all others = $2.4V$		-1	0.005	1	
Dynamic			•				
Turn-On Time	tox		25		7	15	ns
Turii-Oii Tiirie	ton	Van - 5V Figure 1	Full			20	
Turn-Off Time	t	$V_{CC} = 5V$, Figure 1	25		1	7	
Turn-Oil Time	toff		Full			10	
Charge Injection ⁽³⁾	Q	$C_L = 1$ nF, Vgen = 0V, Rgen = 0 Ω , Figure 2	25		1.6	10	pC
Off Isolation	OIRR	$R_L = 50\Omega$, $C_L = 5pF$, $f = 10MHz$, Figure 3			-43		- dB
Crosstalk	Xtalk	$R_L = 50\Omega$, $C_L = 5pF$, f = 10 MHz, Figure 4			-43		
NC or NO Capacitance	C(off)	C 41 XX - 71 - 7			5.5		
COM Off Capacitance	Ccom(off)	f = 1kHz, Figure 5			5.5		pF
COM On Capacitance	Ccom(on)	f = 1kHz, Figure 6			13		
-3dB Bandwidth	BW	$R_L = 50\Omega$, Figure 7	- Full		326		MHz
Distortion	D	$R_{L} = 10$			0.2		%
Supply	•						
Power-Supply Range	V+			2		6	V
Positve Supply Current	I+	$V+ = 5.5V, \ V_{IN} = 0V$ or $V_{CC}, \ V+$ All Channels on or off	Full			1	μΑ

Notes:

- 1. The algebraic convention, where the most negative value is a minimum and the most positive is a maximum, is used in this data sheet.
- Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design
- 4. $\Delta R_{ON} = R_{ON} \max R_{ON} \min$.
- 5. Flatness is defined as the difference between the maximum and minimum value of ON-resistance measured.
- Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C. 6.
- Off Isolation = $20\log_{10} [V_{COM}/(V_{NO} \text{ or } V_{NC})]$. See Figure 3.

$\textbf{Electrical Specifications - Single + 3.3V Supply} (V + = +3.3V \pm 10\%, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V)$

Parameter	Symbol	Conditions	Temp.(°C)	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Units
Analog Switch	Analog Switch						
Analog Signal Range ⁽³⁾	Vanalog			0		V+	V
On-Resistance	D	$V+ = 3V, I_{COM} = -30mA,$	25		12	18	Ω
On-Resistance	R _{ON}	V_{NO} or $V_{NC} = 1.5V$	Full			22	
On-Resistance Match	$\Delta R_{ m ON}$		25		1	1	
Between Channels ⁽⁴⁾	ΔKON	$V+ = 3.3V$, $I_{COM} = -30mA$,	Full			2	
On-Resistance Flatness ^(3,5)	Dry (TYO)	$V_{NO} \text{ or } V_{NC} = 0.8V, 2.5V$	25		3.5	4	
Off-Resistance Flattiess	R _{FLAT} (ON)		Full			5	
Dynamic							
Turn-On Time	t _{ON}	$V+ = 3.3V, V_{NO}$ or $V_{NC} = 1.5V$, Figure 1	25		14	25	
Turn-On Time			Full			40	ns
Turn-Off Time			25		4.5	12	
Turn-On Time			Full			20	
Charge Injection ⁽³⁾	Q	$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ V, Figure 2	25		1.3	10	pC
Supply							
Supply Current	I+	$V+=3.6V,\ V_{IN}=0V\ or\ V+$ All Channels on or off	Full			1	μА

4

Test Circuits/Timing Diagrams

Figure 1. Switching Time

Figure 2. Charge Injection

5

Test Circuits/Timing Diagrams (continued)

Signal Generator OdBm

Analyzer

Analyzer

GND

GND

Figure 3. Off Isolation

Figure 4. Crosstalk

Figure 5. Channel-Off Capacitance

Figure 6. Channel-On Capacitance

$\begin{array}{c|c} \hline 10nF +5V & \\ \hline NC \text{ or } & COM \\ \hline NO & \\ \hline R_g = 50\Omega & \\ \hline GND & \\ \hline \end{array}$

Figure 7. Bandwidth

Ordering Information

P/N	Package
PI5A126W	Narrow SOIC-8
PI5A126UX	MSOP-8
PI5A127W	Narrow SOIC-8
PI5A127UX	MSOP-8

Pericom Semiconductor Corporation

2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com