4-BIT SINGLE-CHIP MICROCONTROLLERS WITH DEDICATED HARDWARE FOR DIGITAL TUNING SYSTEM

The μ PD17704, 17705, 17707, 17708, and 17709 are 4-bit single-chip CMOS microcontrollers containing hardware for digital tuning systems.

Provided with a wealth of hardware, these microcontrollers are available in many variations of ROM and RAM capacities to support various applications.

Therefore, a high-performance, multi-function digital tuning system can be configured with only one chip.
In addition, a one-time PROM model, μ PD17P709, which can be written only once and therefore is ideal for program evaluation and small-scale production of a μ PD17704, 17705, 17707, 17708, or 17709 system, is also available.

FEATURES

	μ PD17704	μ PD17705	μ PD17707	μ PD17708	μ PD17709
Program memory (ROM)	16 K bytes $(8192 \times 16$ bits $)$	24 K bytes $(12288 \times 16$ bits $)$	32 K bytes $(16384 \times 16$ bits $)$		
General Purpose data memory (RAM)	672×4 bits	1120×4 bits	1776×4 bits		

- Instruction execution time
$1.78 \mu \mathrm{~s}$ (with $\mathrm{fx}=4.5-\mathrm{MHz}$ crystal oscillator)
- PLL frequency synthesizer

Dual modulus prescaler (130 MHz MAX.), programmable divider, phase comparator, charge pump

- Abundant peripheral hardware units

General-purpose I/O ports, serial interfaces, A/D
converter, D/A converter (PWM output), BEEP
output, frequency counter

- Many interrupts

External : 6 sources
Internal : 6 sources

- Power-ON reset, CE reset, and power failure detection circuit
- Supply voltage: VdD $=5 \mathrm{~V} \pm 10 \%$

Unless otherwise specified, the μ PD17709 is treated as the representative model in this document.

ORDERING INFORMATION

	Part Number	Package
\star	$\mu \mathrm{PD} 17704 \mathrm{GC}-\times \times \times$-3B9	80-pin plastic QFP ($14 \times 14 \mathrm{~mm}, 0.65 \mathrm{~mm}$ pitch)
\star	$\mu \mathrm{PD} 17705 \mathrm{GC}-\times \times \times-3 \mathrm{~B} 9$	80-pin plastic QFP ($14 \times 14 \mathrm{~mm}, 0.65 \mathrm{~mm}$ pitch)
	$\mu \mathrm{PD} 17707 \mathrm{GC}-\times \times \times-3 \mathrm{~B} 9$	80-pin plastic QFP ($14 \times 14 \mathrm{~mm}, 0.65 \mathrm{~mm}$ pitch)
	$\mu \mathrm{PD} 17708 \mathrm{GC}-\times \times \times-3 \mathrm{~B} 9$	80-pin plastic QFP ($14 \times 14 \mathrm{~mm}, 0.65 \mathrm{~mm}$ pitch)
	$\mu \mathrm{PD} 17709 \mathrm{GC}-\times \times \times-3 \mathrm{~B} 9$	80-pin plastic QFP ($14 \times 14 \mathrm{~mm}, 0.65 \mathrm{~mm}$ pitch)

Remark $\times x \times$ indicates a ROM code number.

FUNCTIONAL OUTLINE

Part Number Item		$\mu \mathrm{PD} 17704$	μ PD17705	$\mu \mathrm{PD} 17707$	μ PD17708	μ PD17709
Program memory (ROM)		16K bytes (8192×16 bits)	24K bytes (12	8×16 bits)	32 K bytes (84×16 bits)
General-purpose data memory (RAM)		672×4 bits		1120×4 bits		1176×4 bits
Instruction execution time		$1.78 \mu \mathrm{~s}$ (with $\mathrm{fx}=4.5-\mathrm{MHz}$ crystal oscillator)				
General-purpose port		- I/O port : 46 pins - Input port : 12 pins - Output port: 4 pins				
Stack level		- Address stack: 15 levels - Interrupt stack: 4 levels - DBF stack : 4 levels (can be manipulated via software)				
Interrupt		- External: 6 sources (falling edge of CE pin, INT0 through INT4) - Internal : 6 sources (timers 0 through 3, serial interfaces 0 and 1)				
Timer		5 channels - Basic timer (clock: 10, 20, 50, 100 Hz) : 1 channel - 8-bit timer with gate counter (clock: $1 \mathrm{k}, 2 \mathrm{k}, 10 \mathrm{k}, 100 \mathrm{kHz}$): 1 channel - 8-bit timer (clock: $1 \mathrm{k}, 2 \mathrm{k}, 10 \mathrm{k}, 100 \mathrm{kHz}$) : 2 channels - 8-bit timer multiplexed with PWM (clock: $440 \mathrm{~Hz}, 4.4 \mathrm{kHz}$) : 1 channel				
A/D converter		8 bits $\times 6$ channels (hardware mode and software mode selectable)				
D/A converter (PWM)		3 channels (8-bit or 9 -bit resolution selectable by software) Output frequency: $4.4 \mathrm{kHz}, 440 \mathrm{~Hz}$ (with 8-bit PWM selected) $2.2 \mathrm{kHz}, 220 \mathrm{~Hz}$ (with 9-bit PWM selected)				
Serial interface		2 units (3 channels) - 3-wire serial I/O : 2 channels - 2-wire serial $\mathrm{I} / \mathrm{O} / \mathrm{I}^{2} \mathrm{C}$ bus: 1 channel				
PLL frequency synthesizer	Division mode	- Direct division mode (VCOL pin (MF mode) : 0.5 to 3 MHz) - Pulse swallow mode (VCOL pin (HF mode) : 10 to 40 MHz) (VCOH pin (VHF mode): 60 to 130 MHz)				
	Reference frequency	13 types selectable (1, 1.25, $2.5,3,5,6.25,9,10,12.5,18,20,25,50 \mathrm{kHz}$)				
	Charge pump	Two error-out output pins (EO0, EO1)				
	Phase comparator	Unlock status detectable by program				

Part Number Item	$\mu \mathrm{PD} 17704$	$\mu \mathrm{PD} 17705$	μ PD17707	$\mu \mathrm{PD} 17708$	$\mu \mathrm{PD} 17709$
Frequency counter	- Intermediate frequency (IF) measurement P1C0/FMIFC pin: in FMIF mode 10 to 11 MHz in AMIF mode 0.4 to 0.5 MHz P1C1/AMIFC pin: in AMIF mode 0.4 to 0.5 MHz - External gate width measurement P2A1/FCG1, P2A0/FCG0 pin				
BEEP output	2 pins Output frequency: $1 \mathrm{kHz}, 3 \mathrm{kHz}, 4 \mathrm{kHz}, 6.7 \mathrm{kHz}$ (BEEPO pin) $67 \mathrm{~Hz}, 200 \mathrm{~Hz}, 3 \mathrm{kHz}, 4 \mathrm{kHz}$ (BEEP1 pin)				
Reset	- Power-ON reset (on power application) - Reset by RESET pin - Watchdog timer reset Can be set only once on power application: 65536 instruction, 131072 instruction, or no-use selectable - Stack pointer overflow/underflow reset Can be set only once on power application: interrupt stack or address stack selectable - CE reset (CE pin low \rightarrow high level) CE reset delay timing can be set. - Power failure detection function				
Standby	- Clock stop mode (STOP) - Halt mode (HALT)				
Supply voltage	- PLL operation: VDD $=4.5$ to 5.5 V - CPU operation: VDD $=3.5$ to 5.5 V				
Package	80-pin plastic QFP ($14 \times 14 \mathrm{~mm}, 0.65 \mathrm{~mm}$ pitch)				

PIN CONFIGURATION (Top View)

80-pin plastic QFP ($14 \times 14 \mathrm{~mm}, 0.65 \mathrm{~mm}$ pitch $)$

$$
\mu \mathrm{PD} 17704 \mathrm{GC}-\times \times \times-3 \mathrm{~B} 9
$$

μ PD17705GC-xxx-3B9
μ PD17707GC- $x \times x-3 B 9$
μ PD17708GC-xxx-3B9
μ PD17709GC-×xx-3B9

PIN NAME

AD0-AD5	$:$ A/D converter input
AMIFC	: AM frequency counter input
BEEP0, BEEP1 : BEEP output	
CE	: Chip enable
EO0, EO1	: Error-out output
FCG0, FGC1	: Frequency counter gate input
FMIFC	: FM frequency counter input
GND0-GND2	: Ground 0 to 2
INT0-INT4	: External interrupt input
PWM0-PWM2	: D/A converter output
P0A0-P0A3	: Port 0A
P0B0-P0B3	: Port 0B
P0C0-P0C3	: Port 0C
P0D0-P0D3	: Port 0D
P1A0-P1A3	: Port 1A
P1B0-P1B3	: Port 1B
P1C0-P1C3	: Port 1C
P1D0-P1D3	: Port 1D
P2A0-P2A2	: Port 2A
P2B0-P2B3	: Port 2B

P2C0-P2C3	: Port 2C
P2D0-P2D2	: Port 2D
P3A0-P3A3	: Port 3A
P3B0-P3B3	: Port 3B
P3C0-P3C3	: Port 3C
P3D0-P3D3	: Port 3D
REG	: CPU regulator
$\overline{\text { RESET }}$: Reset input
SCK0, SCK1	: 3-wire serial clock I/O
SCL	: 2-wire serial clock I/O
SDA	: 2-wire serial data I/O
SIO, SI1	: 3-wire serial data input
SO0, SO1	: 3-wire serial data output
TEST	: Test input
TM0G	: Timer 0 gate input
VCOH	: Local oscillation high input
VCOL	: Local oscillation low input
VDD0, VDD1	: Power supply
XIN, Xout	: Main clock oscillation

BLOCK DIAGRAM

TABLE OF CONTESNTS

1. PIN FUNCTIONS 11
1.1 Pin Function List 11
1.2 Equivalent Circuits of Pins 16
1.3 Connections of Unused Pins 21
1.4 Cautions on Using CE, INT0 through INT4, and RESET Pins 23
1.5 Cautions on Using TEST Pin 23
2. PROGRAM MEMORY (ROM) 24
2.1 Outline of Program Memory 24
2.2 Program Memory 25
2.3 Program Counter 26
2.4 Flow of Program 26
2.5 Cautions on Using Program Memory 29
3. ADDRESS STACK (ASK) 30
3.1 Outline of Address Stack 30
3.2 Address Stack Register (ASR) 30
3.3 Stack Pointer (SP) 32
3.4 Operation of Address Stack 33
3.5 Cautions on Using Address Stack 34
4. DATA MEMORY (RAM) 35
4.1 Outline of Data Memory 35
4.2 Configuration and Function of Data Memory 38
4.3 Data Memory Addressing 42
4.4 Cautions on Using Data Memory 43
5. SYSTEM REGISTERS (SYSREG) 44
5.1 Outline of System Registers 44
5.2 System Register List 45
5.3 Address Register (AR) 46
5.4 Window Register (WR) 48
5.5 Bank Register (BANK) 49
5.6 Index Register (IX) and Data Memory Row Address Pointer (MP: memory pointer) 50
5.7 General Register Pointer (RP) 52
5.8 Program Status Word (PSWORD) 54
6. GENERAL REGISTER (GR) 56
6.1 Outline of General Register 56
6.2 General Register 56
6.3 Generating Address of General Register by Each Instruction 57
6.4 Cautions on Using General Register 57
7. ALU (Arithmetic Logic Unit) BLOCK 58
7.1 Outline of ALU Block 58
7.2 Configuration and Function of Each Block 59
7.3 ALU Processing Instruction List 59
7.4 Cautions on Using ALU 63
8. REGISTER FILE (RF) 64
8.1 Outline of Register File 64
8.2 Configuration and Function of Register File 65
8.3 Control Registers 66
8.4 Port Input/Output Selection Registers 78
8.5 Cautions on Using Register File 84
9. DATA BUFFER (DBF) 85
9.1 Outline of Data Buffer 85
9.2 Data Buffer 86
9.3 Relationships between Peripheral Hardware and Data Buffer 87
9.4 Cautions on Using Data Buffer 90
10. DATA BUFFER STACK 91
10.1 Outline of Data Buffer Stack 91
10.2 Data Buffer Stack Register 91
10.3 Data Buffer Stack Pointer 93
10.4 Operation of Data Buffer Stack 94
10.5 Using Data Buffer Stack 95
10.6 Cautions on Using Data Buffer Stack 95
11. GENERAL-PURPOSE PORT 96
11.1 Outline of General-purpose Port 96
11.2 General-Purpose I/O Port (P0A, P0B, P0C, P1D, P2A, P2B, P2C, P2D, P3A, P3B, P3C, P3D) 99
11.3 General-Purpose Input Port (P0D, P1A, P1C) 113
11.4 General-Purpose Output Port (P1B) 116
12. INTERRUPT 117
12.1 Outline of Interrupt Block 117
12.2 Interrupt Control Block 119
12.3 Interrupt Stack Register 133
12.4 Stack Pointer, Address Stack Registers, and Program Counter 137
12.5 Interrupt Enable Flip-Flop (INTE) 137
12.6 Accepting Interrupt 138
12.7 Operations after Interrupt Has Been Accepted 143
12.8 Returning from Interrupt Routine 143
12.9 External Interrupts (CE and INT0 through INT4 pins) 144
12.10 Internal Interrupts 147
13. TIMERS 148
13.1 Outline of Timers 148
13.2 Basic Timer 0 150
13.3 Timer 0 163
13.4 Timer 1 172
13.5 Timer 2 179
13.6 Timer 3 186
14. A/D CONVERTER 193
14.1 Outline of A/D Converter 193
14.2 Input Selection Block 194
14.3 Compare Voltage Generation and Compare Blocks 196
14.4 Comparison Timing Chart 199
14.5 Using A/D Converter 200
14.6 Cautions on Using A/D Converter 201
14.7 Status at Reset 201
15. D/A CONVERTER (PWM mode) 202
15.1 Outline of D/A Converter 202
15.2 PWM Clock Selection Register 203
15.3 PWM Output Selection Block 204
15.4 Duty Setting Block 207
15.5 Clock Generation Block 211
15.6 D/A Converter Output Wave 211
15.7 Example of Using D/A Converter 214
15.8 Status at Reset 215
16. SERIAL INTERFACES 216
16.1 Outline of Serial Interfaces 216
16.2 Serial Interface 0 217
16.3 Serial Interface 1 245
17. PLL FREQUENCY SYNTHESIZER 255
17.1 Outline of PLL Frequency Synthesizer 255
17.2 Input Selection Block and Programmable Divider 256
17.3 Reference Frequency Generator 260
17.4 Phase Comparator (ϕ-DET), Charge Pump, and Unlock FF 262
17.5 PLL Disabled Status 266
17.6 Using PLL Frequency Synthesizer 267
17.7 Status at Reset 271
18. FREQUENCY COUNTER 272
18.1 Outline of Frequency Counter 272
18.2 Input/Output Selection Block and Gate Time Control Block 273
18.3 Start/Stop Control Block and IF Counter 276
18.4 Using IF Counter 283
18.5 Using External Gate Counter 285
18.6 Status at Reset 286
19. BEEP 287
19.1 Outline of BEEP 287
19.2 I/O Selection Block and Output Selection Block 288
19.3 Clock Selection Block and Clock Generation Block 290
19.4 Output Waveform of BEEP 291
19.5 Status at Reset 291
20. STANDBY 292
20.1 Outline of Standby Function 292
20.2 Halt Function 293
20.3 Clock Stop Function 299
20.4 Device Operation in Halt and Clock Stop Status 301
20.5 Cautions on Processing of Each Pin in Halt and Clock Stop Status 301
20.6 Device Operation Control Function of CE Pin 303
21. RESET 306
21.1 Outline of Reset 306
21.2 CE Reset 307
21.3 Power-ON Reset 313
21.4 Relationship between CE Reset and Power-ON Reset 316
21.5 Reset by RESET Pin 320
21.6 WDT\&SP Reset 321
21.7 Power Failure Detection 327
22. INSTRUCTION SET 332
22.1 Outline of Instruction Set 332
22.2 Legend 333
22.3 Instruction List 334
22.4 Assembler (RA17K) Embedded Macro Instruction 336
23. RESERVED SYMBOLS 337
23.1 Data Buffer (DBF) 337
23.2 System Registers (SYSREG) 337
23.3 Port Registers 338
23.4 Register File (Control Registers) 340
23.5 Peripheral Hardware Registers 345
23.6 Others 345
24. ELECTRICAL CHARACTERISTICS 346
25. PACKAGE DRAWING 349
26. RECOMMENDED SOLDERING CONDITIONS 350
APPENDIX A. CAUTIONS ON CONNECTING CRYSTAL RESONATOR 351
APPENDIX B. DEVELOPMENT TOOLS 352

1. PIN FUNCTIONS

1.1 Pin Function List

Pin No.	Symbol		Function			Output Form
$\begin{gathered} 1 \\ 41 \\ 42 \end{gathered}$	INT2 INT1 INTO	Edge-detectable vectored interrupt input pins. Rising or falling edge can be specified.				-
$\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { P1A3/INT4 } \\ & \text { P1A2/INT3 } \\ & \text { P1A1 } \\ & \text { P1A0/TM0G } \end{aligned}$	Port 1A multiplexed with external interrupt request signal input and event signal input pins. - P1A3 through P1A0 - 4-bit input port - INT4, INT3 - Edge-detectable vectored interrupt - TMOG - Input for gate of 8-bit timer 0				-
		At reset			With clock stopped	
		Power-ON reset	WDT\&SP reset	CE reset		
		Input (P1A3 through P1A0)	Input (P1A3 through P1A0)	Retained	Retained	
$\begin{aligned} & 6 \\ & \text { \| } \\ & 9 \end{aligned}$	$\begin{gathered} \text { P3A3 } \\ \text { \| } \\ \text { P3A0 } \end{gathered}$	4-bit I/O port. Can be set in input or output mode in 4-bit units.				CMOS push-pull
		At reset			With clock stopped	
		Power-ON reset	WDT\&SP reset	CE reset		
		Input	Input	Retained	Retained	
$\begin{gathered} 10 \\ \text { \| } \\ 13 \end{gathered}$	$\begin{gathered} \text { P3B3 } \\ \text { \| } \\ \text { P3B0 } \end{gathered}$	4-bit I/O port. Can be set in input or output mode in 4-bit units.				CMOS push-pull
		At reset			With clock stopped	
		Power-ON reset	WDT\&SP reset	CE reset		
		Input	Input	Retained	Retained	
$\begin{aligned} & 14 \\ & 15 \\ & 16 \end{aligned}$	$\begin{aligned} & \text { P2A2 } \\ & \text { P2A1/FCG1 } \\ & \text { P2A0/FCG0 } \end{aligned}$	Port 2A multiplexed with external gate counter input pins. - P2A2 through P2A0 - 3-bit I/O port - Can be set in input or output mode in 1-bit units. - FCG1, FCG0 - Input for external gate counter				CMOS push-pull
		At reset			With clock stopped	
		Power-ON reset	WDT\&SP reset	CE reset		
		Input (P2A2 through P2A0)	Input (P2A2 through P2A0)	Retained (P2A2 through P2A0)	Retained (P2A2 through P2A0)	

Pin No.	Symbol	Function				Output Form
$\begin{gathered} 17 \\ 18 \\ \text { \| } \\ 20 \end{gathered}$	$\begin{aligned} & \text { P1B3 } \\ & \text { P1B2/PWM2 } \\ & \text { \| } \\ & \text { P1B0/PWM0 } \end{aligned}$	Port 1B multiplexed with D/A converter output pins. - P1B3 through P1B0 - 4-bit output port - PWM2 through P2M0 - 8- or 9-bit D/A converter output				N -ch open-drain$(12 \mathrm{~V})$
		At reset			With clock stopped	
		Power-ON reset	WDT\&SP reset	CE reset		
		Outputs low level (P1B3 through P1B0)	Outputs low level (P1B3 through P1B0)	Retained	Retained (P1B3 through P1B0)	
$\begin{aligned} & 21 \\ & 33 \\ & 75 \end{aligned}$	GND2 GND1 GND0	Ground				-
$\begin{gathered} 22 \\ \text { \| } \\ 25 \end{gathered}$	$\begin{gathered} \text { P0D3/AD3 } \\ \text { \| } \\ \text { P0D0/AD0 } \end{gathered}$	Port OD multiplexed with A/D converter input pins - POD3 through PODO - 4-bit input port - Can be connected with pull-down resistor in 1-bit units. - AD3 through AD0 - Analog input of A / D converter with 8 -bit resolution				-
		At reset			With clock stopped	
		Power-ON reset	WDT\&SP reset	CE reset		
		Input with pull-down resistor (POD3 through P0D0)	Input with pull-down resistor (POD3 through P0D0)	Retained	Retained	
$\begin{aligned} & 26 \\ & 27 \\ & 28 \\ & 29 \end{aligned}$	$\begin{aligned} & \text { P1C3/AD5 } \\ & \text { P1C2/AD4 } \\ & \text { P1C1/AMIFC } \\ & \text { P1C0/FMIFC } \end{aligned}$	Port 1C multiplexed with A/D converter input and IF counter input pins. - P1C3 through P1C0 - 4-bit input port - AD5, AD4 - Analog input to A/D converter with 8-bit resolution - FMIFC, AMIFC - Input to frequency counter				-
		At reset			With clock stopped	
		Power-ON reset	WDT\&SP reset	CE reset		
		Input (P1C3 through P1C0)	Input (P1C3 through P1C0)	- P1C3/AD5, P1C2/AD4 retained - P1C1/AMIFC, P1C0/FMIFC input (P1C1, P1C0)	- P1C3/AD5, P1C2/AD4 retained - P1C1/AMIFC, P1C0/FMIFC input (P1C1, P1C0)	

Pin No.	Symbol	Function				Output Form
$\begin{aligned} & 30 \\ & 79 \end{aligned}$	$\begin{aligned} & \text { Vod1 } \\ & \text { Vdd0 } \end{aligned}$	Power supply. Supply the same voltage to these pins. - With CPU and peripheral function operating: 4.5 to 5.5 V - With CPU operating : 3.5 to 5.5 V - With clock stopped : 2.2 to 5.5 V				-
$\begin{aligned} & 31 \\ & 32 \end{aligned}$	$\begin{aligned} & \mathrm{VCOH} \\ & \mathrm{VCOL} \end{aligned}$	PLL local oscillation (VCO) frequency input. - VCOH - Active with VHF mode selected by program; otherwise, pulled down. - VCOL - Active with HF or MW mode selected by program; otherwise, pulled down. Because the input of these pins goes into an AC amplifier, cut the DC component of the input signal with a capacitor.				-
$\begin{aligned} & 34 \\ & 35 \end{aligned}$	$\begin{aligned} & \mathrm{EOO} \\ & \mathrm{EO} \end{aligned}$	Output from charge pump of PLL frequency synthesizer. Outputs the divided frequency of local oscillation and the result of comparison of the phase difference of reference frequency.				CMOS 3-state
		At reset			With clock stopped	
		Power-ON reset	WDT\&SP reset	CE reset		
		High-impedance output	High-impedance output	High-impendance output	High-impedance output	
36	TEST	Test input pin. Be sure to connect this pin to GND.				-
$\begin{aligned} & 37 \\ & 38 \\ & 39 \\ & 40 \end{aligned}$	$\begin{aligned} & \text { P1D3 } \\ & \text { P1D2 } \\ & \text { P1D1/BEEP1 } \\ & \text { P1D0/BEEP0 } \end{aligned}$	Port 1D and BEEP output. - P1D3 through P1D0 - 4-bit I/O port - Can be set in input or output mode in 1-bit units. - BEEP1, BEEP0 - BEEP output				CMOS push-pull
		At reset			With clock stopped	
		Power-ON reset	WDT\&SP reset	CE reset		
		Input (P1D3 through P1D0)	Input (P1D3 through P1D0)	Retained (P1D3 through P1D0)	Retained (P1D3 through P1D0)	
$\begin{gathered} 43 \\ \mid \end{gathered}$	$\begin{gathered} \text { P2B3 } \\ \text { \| } \end{gathered}$	4-bit I/O Port. Can be set in input or output mode in 1-bit units.				CMOS push-pull
46	P2B0	At reset			With clock stopped	
		Power-ON reset	WDT\&SP reset	CE reset		
		Input	Input	Retained	Retained	
47	P3C3	4-bit I/O Port. Can be set in input or output mode in 4-bit units.				CMOS push-pull
50	P3C0	At reset			With clock stopped	
		Power-ON reset	WDT\&SP reset	CE reset		
		Input	Input	Retained	Retained	

Pin No.	Symbol	Function				Output Form
$\begin{gathered} 51 \\ \text { । } \\ 54 \end{gathered}$	$\begin{aligned} & \text { P3D3 } \\ & \text { । } \\ & \text { P3D0 } \end{aligned}$	4-bit I/O Port. Can be set in input or output mode in 4-bit units.				CMOS push-pull
		At reset			With clock stopped	
		Power-ON reset	WDT\&SP reset	CE reset		
		Input	Input	Retained	Retained	
$\begin{gathered} 55 \\ \text { \| } \\ 58 \end{gathered}$	$\begin{gathered} \mathrm{P} 2 \mathrm{C} 3 \\ \text { । } \\ \mathrm{P} 2 \mathrm{C} 0 \end{gathered}$	4-bit I/O Port. Can be set in input or output mode in 4-bit units.				CMOS push-pull
		At reset			With clock stopped	
		Power-ON reset	WDT\&SP reset	CE reset		
		Input	Input	Retained	Retained	
$\begin{gathered} 59 \\ \text { । } \\ 62 \end{gathered}$	$\begin{gathered} \text { POC3 } \\ \text { \| } \\ \text { POC0 } \end{gathered}$	4-bit I/O Port. Can be set in input or output mode in 4 -bit units.				CMOS push-pull
		At reset			With clock stopped	
		Power-ON reset	WDT\&SP reset	CE reset		
		Input	Input	Retained	Retained	
$\begin{aligned} & 63 \\ & 64 \end{aligned}$	P0A3/DSA P0A2/SCL	Ports POA and POB are multiplexed with I/O of serial interface. - POA3 through POAO - 4-bit I/O port - Can be set in input or output mode in 1-bit units. - P0B3 through P0B0 - 4-bit I/O port - Can be set in input or output mode in 1-bit units. - SDA, SCL - Serial data and serial clock I/O of serial interface 0 in 2-wire serial I/O or ${ }^{2}$ C bus mode - $\overline{\text { SCKO }}, \mathrm{SOO}, \mathrm{SIO}$ - Serial clock I/O, serial data output, and serial data input of serial interface 0 in 3-wire serial I/O mode - $\overline{\text { SCK1 }}$, SO1, SI1 - Serial clock I/O, serial data output, serial data input of serial interface 1 in 3-wire serial I/O mode				N -ch open-drain
656667686970	$\begin{aligned} & \text { P0A1/sCK0 } \\ & \text { P0A0/SO0 } \\ & \text { P0B3/SI0 } \\ & \text { P0B2/SCK1 } \\ & \text { P0B1/SO1 } \\ & \text { P0B0/SI1 } \end{aligned}$					cMOS push-pull
		At reset			With clock stopped	
		Power-ON reset	WDT\&SP reset	CE reset		
		Input $\binom{$ POA3 through POAO, }{ POB3 through POBO }	Input $\binom{$ POA3 through POAO, }{ POB3 through POBO }	$\begin{array}{\|l} \hline \text { Retained } \\ \binom{\text { POA3 through POAO, }}{\text { POB3 through POBO }} \\ \hline \end{array}$	Retained $\binom{$ POA3 through POAO, }{ POB3 through POBO }	
$\begin{gathered} 71 \\ \text { \| } \\ 73 \end{gathered}$	$\begin{gathered} \text { P2D2 } \\ \text { । } \\ \text { P2D0 } \end{gathered}$	3-bit I/O port. Can be set in input or output mode in 1-bit units.				CMOS push-pull
		At reset			With clock stopped	
		Power-ON reset	WDT\&SP reset	CE reset		
		Input	Input	Retained	Retained	

Pin No.	Symbol	Function	Output Form
74	REG	CPU regulator. Connect this pin to GND via $0.1-\mu$ F capacitor.	-
76	Xout	XIN	Ground pins of crystal resonator.
78	CE	Device operation-selection, CE reset, and interrupt signal input pin. Device operation-select When CE is high, PLL frequency synthesizer can operate. When CE is low, PLL frequency synthesizer is automatically disabled internally. CE reset When CE goes high, device is reset at rising edge of internal basic timer setting pulse. This pin also has reset timing delay function. Interrupt Vectored interrupt occurs at falling edge of this pin.	-
80	$\overline{R E S E T}$	Reset input	-

1.2 Equivalent Circuits of Pins

(1) POA (P0A1/ $\overline{\mathrm{SCKO}}, \mathrm{P} 0 \mathrm{~A} 0 / \mathrm{SO} 0)$

P0B (P0B3/SI0, P0B2/SCK1, P0B1/SO1, P0B0/SI1)
POC (POC3, P0C2, P0C1, P0C0)
P1D (P1D3, P1D2, P1D1/BEEP1, P1D0/BEEP0)
P2A (P2A2, P2A1/FCG1, P2A0/FCG0)
P2B (P2B3, P2B2, P2B1, P2B0)
P2C (P2C3, P2C2, P2C1, P2C0)
P2D (P2D2, P2D1, P2D0)
P3A (P3A3, P3A2, P3A1, P3A0)
P3B (P3B3, P3B2, P3B1, P3B0)
P3C (P3C3, P3C2, P3C1, P3C0)
P3D (P3D3, P3D2, P3D1, P3D0)
(I/O)

Note This is an internal signal that is output when the clock stop instruction is executed, and its circuit is designed not to increase the current consumption due to noise even if it is floated.
(2) POA (POA3/SDA, POA2/SCL) (I/O)

Note This is an internal signal that is output when the clock stop instruction is executed, and its circuit is designed not to increase the current consumption due to noise even if it is floated.
(3) P1B (P1B3, P1B2/PWM2, P1B1/PWM1, P1B0/PWM0) (output)

(4) P0D (P0D3/AD3, P0D2/AD2, P0D1/AD1, P0D0/AD0) (input)

Note This is an internal signal that is output when the clock stop instruction is executed, and its circuit is designed not to increase the current consumption due to noise even if it is floated.
(5) P1A (P1A1) (input)

Note This is an internal signal output on execution of the clock stop instruction, and its circuit is designed not to increase the current consumption due to noise even if the pin is floated.
(6) P1C (P1C3/AD5, P1C2/AD4) (input)

Note This is an internal signal output on execution of the clock stop instruction, and its circuit is designed not to increase the current consumption due to noise even if the pin is floated.
(7) P1C (P1C1/AMIFC, P1C0/FMIFC) (input)

Note This is an internal signal output on execution of the clock stop instruction, and its circuit is designed not to increase the current consumption due to noise even if the pin is floated.
(8) CE

(9) Xout (output), Xin (input)

(10) EO1, EOO (output)

(11) $\mathrm{VCOH}, \mathrm{VCOL}$ (Input)

1.3 Connections of Unused Pins

It is recommended to connect unused pins as follows:

Table 1-1. Connections of Unused Pins (1/2)

Pin Name		I/O Mode	Recommended Connections of Unused Pins
Port pin	P0D3/AD3-P0D0/AD0	Input	Individually connect to GND via resistor ${ }^{\text {Note } 1 .}$
	$\begin{aligned} & \text { P1C3/AD5 } \\ & \text { P1C2/AD4 } \\ & \text { P1C1/AMIFCNote } 2^{\text {P1C0/FMIFCNote } 2} \end{aligned}$		
			Set in port mode and individually connect to Vod or GND via resistor ${ }^{\text {Note }} 1$.
	P1A3/INT4 P1A2/INT3 P1A1 P1A0/TM0G		Individually connect to GND via resistor ${ }^{\text {Note } 1 .}$
	$\begin{aligned} & \text { P1B3 } \\ & \text { P1B2/PWM2-P1B0/PWM0 } \end{aligned}$	N -ch open-drain output	Set to low-level output by software and then open.
	$\begin{aligned} & \mathrm{P} 0 \mathrm{~A} 3 / \mathrm{SDA} \\ & \mathrm{P} 0 \mathrm{~A} 2 / \mathrm{SCL} \\ & \mathrm{P} 0 \mathrm{~A} 1 / \overline{\mathrm{SCK0}} \\ & \mathrm{P} 0 \mathrm{~A} 0 / \mathrm{SO} \end{aligned}$	1/0 ${ }^{\text {Note } 3}$	Set in general-purpose input port mode by software and individually connect to VDD or GND via resistor ${ }^{\text {Note }} 1$.
	P0B3/SIO P0B2/ $\overline{\text { SCK } 1}$ P0B1/SO1 P0B0/SII		
	P0C3-P0C0		
	P1D3 P1D2 P1D1/BEEP1 P1D0/BEEP0		
	P2A2 P2A1/FCG1 P2A0/FCG0		
	P2B3-P2B0		
	P2C3-P2C0		
	P2D2-P2D0		

Notes 1. If a pin is externally pulled up (connected to Vod via resistor) or pulled down (connected to GND via resistor) with a high resistance, the pin almost enters a high-impedance state, increasing the current (through-current) consumption of the port. Generally, the resistance of a pull-up or pulldown resistor is several $10 \mathrm{k} \Omega$, though it depends on the application circuit.
2. Do not set these pins as AMIFC and FMIFC pins; otherwise, the current consumption will increase.
3. The I/O ports are set in the general-purpose I/O port mode at power-ON reset, when reset by the $\overline{\text { RESET }}$ pin, or when reset due to overflow or underflow of the watchdog timer or the stack.

Table 1-1. Connections of Unused Pins (2/2)

Pin Name		I/O Mode	Recommended Connections of Unused Pins
Port pin	Р3А3-P3A0	I/ONote 2	Set in general-purpose input port mode by software and individually connect to VDD or GND via resistorNote 1 .
	Р3B3-P3B0		
	P3C3-P3C0		
	P3D3-P3D0		
Pins other than port pins	CE	Input	Connect to Vdo via resistorNote ${ }^{1}$.
	EO1	Output	Open
	EOO		
	INT0-INT2	Input	Individually connect to GND via resistor ${ }^{\text {Note }} 1$.
	RESET	Input	Connect to VDD via resistorNote 1.
	TEST	-	Directly connect to GND.
	$\begin{aligned} & \mathrm{VCOH} \\ & \mathrm{VCOL} \end{aligned}$	Input	Disable PLL via software and open.

Notes 1. If a pin is externally pulled up (connected to Vod via resistor) or pulled down (connected to GND via resistor) with a high resistance, the pin almost enters a high-impedance state, increasing the current (through-current) consumption of the port. Generally, the resistance of a pull-up or pulldown resistor is several $10 \mathrm{k} \Omega$, though it depends on the application circuit.
2. The I/O ports are set in the general-purpose input port mode at power-ON reset, when reset by the RESET pin, or when reset due to overflow or underflow of the watchdog timer or the stack.

1.4 Cautions on Using CE, INTO through INT4, and RESET Pins

The CE, INTO through INT4, and RESET pins have a function to set a test mode in which the internal operations of the μ PD17709 are tested (IC test), in addition to the functions listed in 1.1 Pin Function List.

When a voltage exceeding $V_{D D}$ is applied to any of these pins, the device is set in the test mode. If a noise exceeding VDD is superimposed during normal operation, therefore, the test mode is set by mistake, hindering the normal operation.

Especially if the wiring length of pins is too long, noise is superimposed on these pins. In consequence, the above problem occurs.

Therefore, keep the wiring length as short as possible to prevent noise from being superimposed. If superimposition of noise is unavoidable, connect an external component as illustrated below to suppress the noise.

- Connect a diode with low V_{F} between a pin and Vod.

- Connect a capacitor between a pin and Vdd.

1.5 Cautions on Using TEST Pin

When Vod is applied to the TEST pin, the device is set in the test mode. Therefore, be sure to keep the wiring length of this pin as short as possible, and directly connect it to the GND pin.

If the wiring length between the TEST pin and GND pin is too long, or if external noise is superimposed on the TEST pin, generating a potential difference between the TEST pin and GND pin, your program may not run normally.

2. PROGRAM MEMORY (ROM)

2.1 Outline of Program Memory

Figure 2-1 outlines the program memory.
As shown in this figure, the addresses of the program memory are specified by the program counter.
The program memory has the following two major functions.

- To store programs
- To store constant data

Figure 2-1. Outline of Program Memory

Program counter	Address specification	Program memory
		Instruction
		\vdots
		!
		Constant data
		\vdots

2.2 Program Memory

Figure 2-2 shows the configuration of the program memory.
As shown in this figure, the μ PD17704 has 16 K bytes (8192×16 bits) of program memory, the μ PD17707 has 24 K bytes (12288×16 bits), and the μ PD17708 and 17709 have 32 K bytes (16384×16 bits).

Therefore, the program memory addresses of the $\mu \mathrm{PD} 17704$ are 0000 H through 1 FFFH , those of the μ PD17705, 17707 are 0000H through 2FFFH, and those of the μ PD17708 and 17709 are 0000H through 3FFFH.

Because all "instructions" are "one-word instructions", one instruction can be stored to one address of the program memory.

As constant data, the contents of the program memory are read to the data buffer by using a table reference instruction.

Figure 2-2. Configuration of Program Memory

2.3 Program Counter

2.3.1 Configuration of program counter

Figure 2-3 shows the configuration of the program counter.
As shown in this figure, the program counter consists of a 13-bit binary counter and a 1-bit segment register (SGR). Bits 11 and 12 of the program counter indicate a page.

The program counter specifies an address of the program memory.

Figure 2-3. Configuration of Program Counter

SGR	PC_{12}	PC_{11}	PC_{10}	PC9	PC_{8}	PC_{7}	PC6	PC_{5}	PC_{4}	PC_{3}	PC_{2}	PC_{1}	PCo
			PC										

2.3.2 Segment register (SGR)

The segment register specifies a segment of the program memory.
Table 2-1 shows the relationships between the segment register and program memory.
The segment register is set only when the SYSCAL entry instruction is executed.

Table 2-1. Relationships between Segment Register and Program Memory

Value of Segment Register	Segment of Program Memory
0	Segment 0
1	Segment 1

2.4 Flow of Program

The flow of the program is controlled by the program counter that specifies an address of the program memory

The program flow when each instruction is executed is described below.
Figure $2-5$ shows the value that is set to the program counter when each instruction is executed.
Table 2-2 shows the vector address when an interrupt is accepted.

2.4.1 Branch instruction

(1) Direct branch ("BR addr")

The branch destination address of the direct branch instruction is in the same segment of the program memory. In other words, a branch cannot be executed exceeding a segment.
(2) Indirect branch ("BR @AR")

The branch destination addresses of the indirect branch instruction are all the addresses of the program memory, i.e., addresses 0000 H through 1FFFH for the μ PD17704, addresses 0000 H through 2FFFH for the μ PD17705, 17707, and 0000H through 3FFFH for the μ PD17708 and 17709.
For further information, also refer to 5.3 Address Register (AR).

2.4.2 Subroutine

(1) Direct subroutine call ("CALL addr")

The first address of a subroutine that can be called by the direct subroutine instruction is in page 0 of each segment (addresses 0000H through 07FFH).
(2) Indirect subroutine call (CALL @AR)

The first addresses of a subroutine that can be called by the indirect subroutine call instruction are all the addresses of the program memory, i.e., addresses 000 H through 1 FFFH for the μ PD17704, addresses 0000 H through 2FFFH for the μ PD17705, 17707, and 0000H through 3FFFH for the μ PD17708 and 17709.
For further information, also refer to 5.3 Address Register (AR).

2.4.3 Table reference

The addresses that can be referenced by the table reference instruction ("MOVT DBF, @AR") are all the addresses of the program memory, i.e., addresses 0000 H through 1FFFH for the μ PD17704, addresses 0000 H through 2FFFH for the μ PD17705, 17707, and 0000H through 3FFFH for the μ PD17708 and 17709.

For further information, also refer to 5.3 Address Register (AR) and 9.2.2 Table reference instruction (MOVT, DBF, @AR).

2.4.4 System call

The first address of a subroutine that can be called by the system call instruction ("SYSCAL entry") is the first 16 steps of each block (block 0 to 7) in page 0 of segment 1 (system segment).

Figure 2-4. Outline of System Call Instruction

Figure 2-5. Value of Program Counter Upon Execution of Instruction

Program counter	Contents of Program Counter (PC)																								
Instruction	SGR	b_{12}	b_{11}	b_{10}	b9	b8	b_{7}	b_{6}	b_{5}	b_{4}	b_{3}	b_{2}	b_{1}	bo											
BR addr Page 0 Page 1 Page 2 Page 3	Retained	0	0	Operand of instruction (addr)																					
		0	1																						
		1	0																						
		1																							
CALL addr	Retained	0	0	Operand of instruction (addr)																					
SYSCAL entry	1	0	0	entry			0	0	0	0	entryL														
BR @AR	Contents of address register																								
CALL @AR																									
MOVT DBF, @AR																									
RET	Contents of address stack register (ASR) (return address) specified by stack pointer (SP)																								
RETSK																									
RETI																									
Other instructions (including skip instruction)	Retained							men																	
When interrupt is accepted	0					r	res	f	in	rup															
Power-ON reset,																									
$\overline{\text { RESET }}$ pin,	0	0	0	0	0	0	0	0	0	0	0	0	0	0											
CE reset																									

entryн : high-order 3 bits of entry
entryL : low-order 4 bits of entry
Table 2-2. Interrupt Vector Address

Order	Internal/External	Interrupt Source	Vector Address
1	External	Falling edge of CE pin	00 CH
2	External	INT0 pin	00 BH
3	External	INT1 pin	00 AH
4	External	INT2 pin	009 H
5	External	INT3 pin	008 H
6	External	INT4 pin	007 H
7	Internal	Timer 0	006 H
8	Internal	Timer 1	005 H
9	Internal	Timer 2	004 H
10	Internal	Timer 3	003 H
11	Internal	Serial interface 0	002 H
12	Internal	Serial interface 1	001 H

2.5 Cautions on Using Program Memory

2.5.1 Last address in each segment

The segment register is not connected to the binary counter.
Therefore, address 0000 H of segment 0 is specified next to address 1 FFFH , which is the last address of segment 0.

To specify between segments, a dedicated instruction such as an indirect branch, indirect subroutine call, or system call instruction is used.

3. ADDRESS STACK (ASK)

3.1 Outline of Address Stack

Figure 3-1 outlines the address stack.
The address stack consists of a stack pointer and address stack registers.
The address of an address stack register is specified by the stack pointer.
The address stack saves a return address when a subroutine call instruction is executed or when an interrupt is accepted.

The address stack is also used when the table reference instruction is executed.

Figure 3-1. Outline of Address Stack

3.2 Address Stack Register (ASR)

Figure 3-2 shows the configuration of the address stack register.
The address stack register consists of sixteen 16-bit registers ASR0 through ASR15. Actually, however, it consists of fifteen 16-bit registers (ASR0 through ASR14) because no register is allocated to ASR15.

The address stack saves a return address when a subroutine is called, when an interrupt is accepted, and when the table reference instruction is executed.

Figure 3-2. Configuration of Address Stack Register

3.3 Stack Pointer (SP)

3.3.1 Configuration and function of stack pointer

Figure 3-3 shows the configuration and functions of the stack pointer.
The stack pointer consists of a 4-bit binary counter.
It specifies the address of an address stack register.
A value can be directly read from or written to the stack pointer by using a register manipulation instruction.

Figure 3-3. Configuration and Function of Stack Pointer

$\begin{aligned} & \overleftarrow{\otimes} \\ & \stackrel{\otimes}{\otimes} \\ & \stackrel{y}{4} \end{aligned}$	Power-ON reset	1	1	1	1
	WDT\&SP reset	1	1	1	1
	CE reset	1	1	1	1
Clock stop		Retained			

[^0]
3.4 Operation of Address Stack

3.4.1 Subroutine call instruction ("CALL addr", "CALL @AR") and return instruction ("RET", "RETSK")

When a subroutine call instruction is executed, the value of the stack pointer is decremented by one, and the return address is stored to an address stack register specified by the stack pointer.

When the return instruction is executed, the contents of the address stack register (return address) specified by the stack pointer are restored to the program counter, and the value of the stack pointer is incremented by one.

3.4.2 Table reference instruction ("MOVT DBF, @AR")

When the table reference instruction is executed, the value of the stack pointer is incremented by one, and the return address is stored to an address stack register specified by the stack pointer.

Next, the contents of the program memory specified by the address register are read to the data buffer, the contents of the address stack register (return value) specified by the stack pointer are restored to the program counter, and the value of the stack pointer is incremented by one.

3.4.3 When interrupt is accepted and on execution of return instruction ("RETI")

When an interrupt is accepted, the value of the stack pointer is decremented by one, and the return address is stored to an address stack register specified by the stack pointer.

When the return instruction is executed, the contents of an address stack register (return value) specified by the stack pointer are restored to the program counter, and the value of the stack pointer is incremented by one.

3.4.4 Address stack manipulation instruction ("PUSH AR", "POP AR")

When the "PUSH" instruction is executed, the value of the stack pointer is decremented by one, and the contents of the address register are transferred to an address stack register specified by the stack pointer.

When the "POP" instruction is executed, the contents of an address stack register specified by the stack pointer are transferred to the address register, and the value of the stack pointer is incremented by one.

3.4.5 System call instruction ("SYSCAL entry") and return instruction ("RET", "RETSK")

When the "SYSCAL entry" instruction is executed, the value of the stack pointer is decremented by one, and the return address and the value of the segment register are stored to an address stack register specified by the stack pointer.

When the return instruction is executed, the contents of an address stack register (return value) specified by the stack pointer are restored to the program counter and segment register, and the value of the stack pointer is incremented by one.

3.5 Cautions on Using Address Stack

3.5.1 Nesting level and operation on overflow

The value of address stack register (ASR15) is "undefined" when the value of the stack pointer is 0FH.
Accordingly, if a subroutine call or system call exceeding 15 levels, or an interrupt is used without manipulating the stack, execution returns to an "undefined" address.

3.5.2 Reset on detection of overflow or underflow of address stack

Whether the device is reset on detection of overflow or underflow of the address stack can be specified by program. At reset, the program is started from address 0 , and some control registers are initialized.

This reset function is valid at power-ON reset or reset by the $\overline{R E S E T}$ pin. For details, refer to 21. RESET.

4. DATA MEMORY (RAM)

4.1 Outline of Data Memory

Figure 4-1 outlines the data memory.
As shown in the figure, system registers, a data buffer, port registers, and port input/output selection registers are located on the data memory.

The data memory stores data, transfers data with the peripheral hardware or ports, and controls the CPU.

Figure 4-1. Outline of Data Memory (1/3)
(a) μ PD17709

Note Port input/output selection registers are allocated to addresses 60 H through 6FH of BANK 15.

Figure 4-1. Outline of Data Memory (2/3)
(b) μ PD17707, 17708

Note Port input/output selection registers are allocated to addresses 60H through 6FH of BANK 15.

Cautions 1. The μ PD17707 and 17708 do not have BANKs 10 through 14.
2. Nothing is allocated to addresses 00H through 5FH of BANK15.

Figure 4-1. Outline of Data Memory (3/3)
(c) μ PD17704, 17705

Note Port input/output selection registers are allocated to addresses 60H through 6FH of BANK 15.

Cautions 1. The μ PD17704 and 17705 do not have BANKs 6 through 14.
2. Nothing is allocated to addresses 00H through 5FH of BANK15.

4.2 Configuration and Function of Data Memory

Figure 4-2 shows the configuration of the data memory.
As shown in this figure, the data memory is divided into several banks with each bank made up of a total of 128 nibbles with 7H row addresses and 0FH column addresses.

The data memory can be divided into five functional blocks. Each block is described in 4.2.1 through 4.2.5 below.

The contents of the data memory can be operated on, compared, judged, and transferred in 4-bit units with a single data memory manipulation instruction.

Table 4-1 lists the data memory manipulation instructions.

4.2.1 System registers (SYSREG)

The system registers are allocated to addresses 74 H through 7 FH .
Because the system registers are allocated to all banks, the same system registers exist at addresses 74 H through 7FH of any bank.

For details, refer to 5. SYSTEM REGISTER (SYSREG).

4.2.2 Data buffer (DBF)

The data buffer is allocated to addresses 0CH through 0FH of BANK 0.
For details, refer to 9. DATA BUFFER (DBF).

4.2.3 Port registers

The port registers are allocated to addresses 70 H through 73 H of BANKs 0 through 3.
For details, refer to 11. GENERAL-PURPOSE PORTS.

4.2.4 Port input/output selection registers

Port input/output selection registers are allocated to addresses 60H through 6FH of BANK15.
For details, refer to 8.4 Port Input/Output Selection Register.

4.2.5 General-purpose data memory

The general-purpose data memory is allocated to the addresses of the data memory excluding those of the system registers, port registers, and port input/output selection registers.
(a) μ PD17709

The general-purpose data memory of the μ PD17709 consists of a total of 1776 nibbles of the 112 nibbles each of BANKs 0 through 15 (BANK15 only has 96 nibbles).
(b) μ PD17707, 17708

The general-purpose data memory of the μ PD17707 and 17708 consists of a total of 1120 nibbles of the 112 nibbles each of BANKs 0 through 9.
(c) μ PD17704, 17705

The general-purpose data memory of the μ PD17704 and 17705 consists of a total of 672 nibbles of the 112 nibbles each of BANKs 0 through 5.

Figure 4-2. Configuration of Data Memory (1/3)
(a) μ PD17709

BANK4-BANK14

BANK15
Column address

Note An identical system register exists.

Figure 4-2. Configuration of Data Memory (2/3)
(b) μ PD17707, 17708

BANK15
Column address
$\begin{array}{llllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \text { A } & \text { B } & \text { C } & D & E & F\end{array}$

Note An identical system register exists.

Cautions 1. The μ PD17707 and 17708 do not have BANKs 10 through 14.
2. Nothing is allocated to addresses 00H through 5FH of BANK15.

Figure 4-2. Configuration of Data Memory (3/3)
(c) μ PD17704, 17705

BANK4, BANK5

	Column address															
	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
0																
1																
\% 2																
흥 3																
34																
\bigcirc																
6																
7		ixed	to				Syst	em	reg	iste	ers	(SY	SR	EG)	$)^{\text {Note }}$	

BANK15

Note An identical system register exists.

Cautions 1. The μ PD17704 and 17705 do not have BANKs 6 through 14.
2. Nothing is allocated to addresses 00 H through 5FH of BANK15.

Table 4-1. Data Memory Manipulation Instructions

Function		Instruction
Operation	Add	ADD
		ADDC
	Subtract	SUB
		SUBC
	Logic	AND
		OR
		XOR
Compare		SKE
		SKGE
		SKLT
		SKNE
Transfer		MOV
		LD
		ST
Judge		SKT
		SKF

4.3 Data Memory Addressing

Figure 4-3 shows address specification of the data memory.
An address of the data memory is specified by a bank, row address, and column address.
A row address and a column address are directly specified by a data memory manipulation instruction. However, a bank is specified by the contents of a bank register.

For the details of the bank register, refer to 5. SYSTEM REGISTER (SYSREG).

Figure 4-3. Address Specification of Data Memory

4.4 Cautions on Using Data Memory

4.4.1 At power-ON reset

The contents of the general-purpose data memory are "undefined" at power-ON reset.
Initialize the data memory as necessary.

4.4.2 Cautions on data memory not provided

If a data memory manipulation instruction that reads the data memory is executed to a data memory address not provided, undefined data is read.

Nothing is changed even if data is written to such an address.

5. SYSTEM REGISTERS (SYSREG)

5.1 Outline of System Registers

Figure 5-1 shows the location of the system registers on the data memory and their outline.
As shown in the figure, the system registers are allocated to addresses 74 H through 7 FH of all the banks of the data memory. Therefore, identical system registers exist at addresses 74 H through 7 FH of any bank.

Because the system registers are located on the data memory, they can be manipulated by all data memory manipulation instructions.

Seven types of system registers are available depending on function.

Figure 5-1. Location and Outline of System Registers on Data Memory

Column address

Remark The μ PD17704 and 17705 do not have the BANKs 6 through 14. The μ PD17707 and 17708 do not have BANKs 10 through 14.

Address	74H	75H	76H	77H	78H	79H	7AH	7BH	7 CH	7DH	7EH	7FH				
Name	Address register (AR)				Window register (WR)	Bank register (BANK)	Index register(IX)			General register pointer (RP)		Progr				
					status											
					Data memory row address pointer (MP)			word								
					(PSWORD)											
Function	Controls program memory address								Transfers	Specifies	Modifies address of data memory			Specifies address of general register		Controls
					data with	bank of	operation									
					register	data										
						memory										

5.2 System Register List

Figure 5-2 shows the configurations of the system registers.

Figure 5-2. Configuration of System Registers

5.3 Address Register (AR)

5.3.1 Configuration of address register

Figure 5-3 shows the configuration of the address register.
As shown in the figure, the address register consists of 16 bits of system register addresses 74 H through 77H (AR3 through AR0).

Figure 5-3. Configuration of Address Register

	Address	74H				75H				76H				77H			
	Name	Address register (AR)															
	Symbol	AR3				AR2				AR1				AR0			
	Bit	b_{3}	b_{2}	b_{1}	bo	b_{3}	b_{2}	b_{1}	b_{0}	b_{3}	b_{2}	b_{1}	bo	b_{3}	b_{2}	b_{1}	b_{0}
	Data	$\begin{aligned} & \widehat{\mathrm{M}} \\ & \mathrm{~S} \\ & \underline{\mathrm{~B}} \end{aligned}$															$\begin{array}{r}\text { ¢ } \\ \text { S } \\ \text { B } \\ \hline\end{array}$
$\left\|\begin{array}{l} \stackrel{\rightharpoonup}{\otimes} \\ \stackrel{\omega}{\omega} \\ \stackrel{\rightharpoonup}{\leftrightarrows} \end{array}\right\|$	Power-ON reset	0				0				0				0			
	WDT\&SP reset	0				0				0				0			
	CE reset	0				0				0				0			
	Clock stop	Retained															

Power-ON reset : Reset by RESET pin on power application
WDT\&SP reset : Reset by watchdog timer and stack pointer
CE reset : CE reset
Clock stop : On execution of clock stop instruction

5.3.2 Function of address register

The address register specifies a program memory address when the table reference instruction ("MOVT DBF, @AR"), stack manipulation instruction ("PUSH AR", "POP AR"), indirect branch instruction ("BR @AR"), or indirect subroutine call instruction ("CALL @AR") is executed.

A dedicated instruction ("INC AR") is available that can increment the contents of the address instruction by one.

The following paragraphs (1) through (5) describe the operation of the address register when the respective instructions are executed.
(1) Table reference instruction ("MOVT DBF, @AR")

When the table reference instruction is executed, the constant data (16 bits) of a program memory address specified by the contents of the address register are read to the data buffer.
The constant data that can be specified by the address register is stored to address 0000 H to 1 FFFH in the case of μ PD17704, address 0000 H to 2 FFFH in the case of the μ PD17705 and 17707, and address 0000 H to $3 F F F H$ in the case of the μ PD17708 and 17709.
(2) Stack manipulation instruction ("PUSH AR", "POP AR")

When the "PUSH AR" instruction is executed, the value of the stack pointer is decremented by one, and the contents of the address register (AR) are transferred to an address stack register specified by the stack pointer whose value has been decremented by one.
When the "POP AR" instruction is executed, the contents of an address stack register specified by the stack pointer are transferred to the address register, and the value of the stack pointer is incremented by one.

(3) Indirect branch instruction ("BR @AR")

When this instruction is executed, the program branches to a program memory address specified by the contents of the address register.
The branch address that can be specified by the address register is 0000 H to 1 FFFH in the case of μ PD17704, 0000 H to 2 FFFH in the case of the μ PD17705 and 17707 , and 0000 H to 3 FFFH in the case of the μ PD17705 and 17708 and 17709.
(4) Indirect subroutine call instruction ("CALL @AR")

The subroutine at a program memory address specified by the contents of the address register can be called.
The first address of the subroutine that can be specified by the address register is 0000 H to 1 FFFH in the case of the μ PD17704, 0000H to 2FFFH in the case of the μ PD17705 and 17707, and 0000 H to 3 FFFH in the case of the μ PD17708 and 17709.
(5) Address register increment instruction ("INC AR")

This instruction increments the contents of the address register by one.

5.3.3 Address register and data buffer

The address register can transfer data as part of the peripheral hardware via the data buffer. For details, refer to 9. DATA BUFFER (DBF).

5.3.4 Cautions on Using Address Register

Because the address register is configured in 16 bits, it can specify an address up to FFFFH.
However, the program memory exists at addresses 0000 H to 1 FFFH in the case of $\mu \mathrm{PD} 17704,0000 \mathrm{H}$ to 2FFFH in the case of the μ PD17705 and 17707 and 0000 H to 3FFFH in the case of the μ PD17708 and 17709.

Therefore, the maximum value that can be set to the address register of the μ PD17704 is address 1 FFFH. In the case of the μ PD17705 and 17707, it is address 2FFFH. In the case of the μ PD17708 and 17709, it is address 3FFFH.

5.4 Window Register (WR)

5.4.1 Configuration of window register

Figure 5-4 shows the configuration of the window register.
As shown in the figure, the window register consists of 4 bits of system register address 78 H (WR).

Figure 5-4. Configuration of Window Register

	Address	78H			
	Name	Window register (WR)			
	Symbol	WR			
	Bit	b_{3}	b_{2}	b_{1}	b_{0}
Data		\widehat{M} S B \sim			L S B
	Power-ON reset	Undefined			
	WDT\&SP reset	Retained			
	CE reset				
	Clock stop				

5.4.2 Function of window register

The window register is used to transfer data with the register file (RF) to be described later.
Data transfer between the window register and register file is manipulated by using dedicated instructions "PEEK WR, rf" and "POKE, rf WR" (rf: address of register file).

The following paragraphs (1) and (2) describe the operation of the window register when these instructions are executed.

For further information, also refer to 8. REGISTER FILE (RF).
(1) "PEEK WR, rf" instruction

When this instruction is executed, the contents of the register file addressed by "rf" are transferred to the window register.
(2) "POKE rf, WR" instruction

When this instruction is executed, the contents of the window register are transferred to the register file addressed by "rf".

5.5 Bank Register (BANK)

5.5.1 Configuration of bank register

Figure 5-5 shows the configuration of the bank register.
As shown in the figure, the bank register consists of 4 bits of system register address 79 H (BANK).

Figure 5-5. Configuration of Bank Register

Address		79H			
Name		Bank register (BANK)			
Symbol		BANK			
	Bit	b_{3}	b2	b_{1}	bo
Data		$\begin{aligned} & \widehat{M} \\ & \mathrm{~S} \\ & \mathrm{~B} \\ & \mathbf{V}^{2} \end{aligned}$			L S B \sim
	Power-ON reset	0			
	WDT\&SP reset	0			
	CE reset	0			
	Clock stop	Retained			

5.5.2 Function of bank register

The bank register specifies a bank of the data memory.
Table 5-1 shows the relationships between the value of the bank register and a bank of the data memory that is specified.

Because the bank register is one of the system registers, its contents can be rewritten regardless of the bank currently specified.

When manipulating a bank register, therefore, the status of the bank at that time is irrelevant.

Table 5-1. Data Memory Bank Specification

Bank Register (BANK)				Bank of Data Memory	Bank Register (BANK)				Bank of Data Memory
b_{3}	b_{2}	b_{1}	bo		b_{3}	b_{2}	b_{1}	bo	
0	0	0	0	BANK0	1	0	0	0	BANK8 ${ }^{\text {Note }}$
0	0	0	1	BANK1	1	0	0	1	BANK9 ${ }^{\text {Note }}$
0	0	1	0	BANK2	1	0	1	0	BANK10 ${ }^{\text {Note }}$
0	0	1	1	BANK3	1	0	1	1	BANK11 ${ }^{\text {Note }}$
0	1	0	0	BANK4	1	1	0	0	BANK12 ${ }^{\text {Note }}$
0	1	0	1	BANK5	1	1	0	1	BANK13 ${ }^{\text {Note }}$
0	1	1	0	BANK6 ${ }^{\text {Note }}$	1	1	1	0	BANK14 ${ }^{\text {Note }}$
0	1	1	1	BANK7 ${ }^{\text {Note }}$	1	1	1	1	BANK15

Note Do not set BANKs 6 through 14 in the μ PD17704 and 17705, and BANKs 10 through 14 in the μ PD17707 and 17708 because these banks are not provided.

Caution The area to which the data memory is allocated differs depending on the model. For details, refer to Figure 4-2 Configuration of Data Memory.

5.6 Index Register (IX) and Data Memory Row Address Pointer (MP: memory pointer)

5.6.1 Configuration of index register and data memory row address pointer

Figure 5-6 shows the configuration of the index register and data memory row address pointer.
As shown in the figure, the index register consists of an index register (IX) made up of 11 bits (the low-order 3 bits (IXH) of system register address 7AH, and 7BH and 7CH (IXM, IXL)) and an index enable flag (IXE) at the lowest bit position of 7FH (PSW).

The data memory row address pointer (memory pointer) consists of a data memory row address pointer (MP) that is made up of 7 bits of the low-order 3 bits of $7 \mathrm{AH}(\mathrm{MPH})$ and $7 \mathrm{BH}(\mathrm{MPL})$, and a data memory row address pointer enable flag (memory pointer enable flag: MPE) at the lowest bit position of 7AH (MPH).

In other words, the high-order 7 bits of the index register are shared with the data memory row address pointer

Figure 5-6. Configuration of Index Register and Data Memory Row Address Pointer

R: retained

5.6.2 Functions of index register and data memory row address pointer

The index register and data memory row address pointer modify the addresses of the data memory. The following paragraphs (1) and (2) describe their functions.
A dedicated instruction ("INC IX") that increments the value of the index register by one is available.
For the details of address modification, refer to 7. ALU (Arithmetic Logic Unit) BLOCK.
(1) Index register (IX)

When a data memory manipulation instruction is executed, the data memory address is modified by the contents of the index register.
This modification, however, is valid only when the IXE flag is set to 1.
To modify the address, the bank, row address, and column address of the data memory are ORed with the contents of the index register, and the instruction is executed to a data memory address (called real address) specified by the result of this OR operation.
All data memory manipulation instructions are subject to address modification by the index register. The following instructions, however, are not subject to address modification by the index register.

INC	AR	RORC	
INX	IX	CALL	addr
MOVT	DBF, @AR	CALL @AR	
PUSH	AR	RET	
POP	AR	RETSK	
PEEK	WR,rf	RETI	
POKE	rf,WR	EI	
GET	DBF,p	DI	
PUT	p, DBF	STOP s	
BR	addr	HALT h	
BR	@AR	NOP	

(2) Data memory row address pointer (MP)

When the general register indirect transfer instruction ("MOV @r,m" or "MOV m,@r") is executed, the indirect transfer destination address is modified.
This modification, however, is valid only when the MPE flag is set to 1 .
To modify the address, the bank and row address at the indirect transfer destination are replaced by the contents of the data memory row address pointer.
Instructions other than the general register indirect transfer instruction are not subject to address modification.

(3) Index register increment instruction ("INC IX")

This instruction increments the contents of the index register by one.
Because the index register is configured of 10 bits, its contents are incremented to " 000 H " if the "INC IX" instruction is executed when the contents of the index register are "3FFH".

5.7 General Register Pointer (RP)

5.7.1 Configuration of General Register Pointer

Figure 5-7 shows the configuration of the general register pointer.
As shown in the figure, the general register pointer consists of 7 bits including 4 bits of system register address 7DH (RPH) and the high-order 3 bits of address 7EH (RPL).

Figure 5-7. Configuration of General Register Pointer

	Address	7DH				7EH			
	Name	General register pointer(RP)							
	Symbol	RPH				RPL			
	Bit	b_{3}	b_{2}	b_{1}	b_{0}	b_{3}	b_{2}	b_{1}	b_{0}
	Data	\widehat{M} S B						C	C
$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{\otimes} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{\rightleftarrows} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}\right.$	Power-ON reset	0				0			
	WDT\&SP reset	0				0			
	CE reset	0				0			
	Clock stop	Retained				Retained			

5.7.2 Function of general register pointer

The general register pointer specifies a general register on the data memory.
Figure $5-8$ shows the addresses of the general registers specified by the general register pointer.
As shown in the figure, a bank is specified by the high-order 4 bits (RPH: address 7DH) of the general register pointer, and a row address is specified by the low-order 3 bits (RPL: address 7EH).

Because the valid number of bits of the general register pointer is 7 , all the row addresses (0 H through 7 FH) of all the banks can be specified as general registers.

For the details of the operation of the general register, refer to 6. GENERAL REGISTER (GR).

Figure 5-8. Address of General Register Specified by General Register Pointer

Remark The μ PD17704 and 17705 do not have BANKs 6 through 14. The μ PD17707 and 17708 do not have BANKs 10 through 14.

Caution The area to which the data memory is allocated differs depending on the model. For details, refer to Figure 4-2 Configuration of Data Memory.

5.7.3 Cautions on using general register pointer

The lowest bit of address 7EH (RPL) of the general register pointer is allocated as the BCD flag of the program status word.

When rewriting RPL, therefore, pay attention to the value of the BCD flag.

5.8 Program Status Word (PSWORD)

5.8.1 Configuration of program status word

Figure 5-9 shows the configuration of the program status word.
As shown in the figure, th program status word consists of a total of 5 bits including the lowest bit of system register address 7 EH (RPL) and 4 bits of address 7 FH (PSW).

Each bit of the program status word has its own function. The 5 bits of the program status word are BCD flag (BCD), compare flag (CMP), carry flag (CY), zero flag (Z), and index enable flag (IXE).

Figure 5-9. Configuration of Program Status Word

5.8.2 Function of program status word

The program status word is a register that sets the conditions under which the ALU (Arithmetic Logic Unit) executes an operation or data transfer, or indicates the result of an operation.

Table 5-2 outlines the function of each flag of the program status word.
For details, refer to 7. ALU (Arithmetic Logic Unit) BLOCK.

Table 5-2. Outline of Function of Each Flag of Program Status Word

5.8.3 Cautions on using program status word

When an arithmetic operation (addition or subtraction) is executed to the program status word, the "result" of the arithmetic operation is stored.

For example, even if an operation that generates a carry is executed, if the result of the operation is 0000B, 0000B is stored to the PSW.

6. GENERAL REGISTER (GR)

6.1 Outline of General Register

Figure 6-1 outlines the general register.
As shown in the figure, the general register is specified in the data memory by the general register pointer. The bank and row address of the general register are specified by the general register pointer.
The general register is used to transfer or operate data between data memory addresses.

Figure 6-1. Outline of General Register

Remark The μ PD17704 and 17705 do not have BANKs 6 through 14.
The μ PD17707 and 17708 do not have BANKs 10 through 14.

6.2 General Register

The general register consists of 16 nibbles (16×4 bis) of the same row address on the data memory.
For the range of the banks and row addresses that can be specified by the general register pointer as a general register, refer to 5.7 General Register Pointer (RP).

The 16 nibbles of the same row address specified as a general register operate or transfer data with the data memory by a single instruction.

In other words, operation or data transfer between data memory addresses can be executed by a single instruction.

The general register can be controlled by the data memory manipulation instruction, like the other data memory areas.

6.3 Generating Address of General Register by Each Instruction

The following sections 6.3.1 and 6.3.2 explain how the address of the general register is generated when each instruction is executed.

For the details of the operation of each instruction, refer to 7. ALU (Arithmetic Logic Unit) BLOCK.
6.3.1 Add ("ADD r, m", "ADDC r, m"),
subtract ("SUB r, m", "SUBC r, m"),
logical operation ("AND r, m", "OR r, m", "XOR r, m"),
direct transfer ("LD r, m", "ST m, r"), and
rotation ("RORC r") instructions
Table 6-1 shows the address of the general register specified by operand " r " of an instruction. Operand " r " of an instruction specifies only a column address.

Table 6-1. Generating Address of General Register

						add			um	add	
	b_{3}	b2	b_{1}	bo	b2	b_{1}	bo	b_{3}	b2	b_{1}	bo
General register address	Contents of general register pointer							r			

6.3.2 Indirect transfer ("MOV @r, m", "MOV m, @r") instruction

Table 6-2 shows a general register address specified by instruction operand "r" and an indirect transfer address specified by "@r".

Table 6-2. Generating Address of General Register

	Bank				Row address			Column address			
	b_{3}	b_{2}	b_{1}	b_{0}	b_{2}	b_{1}	b_{0}	b_{3}	b_{2}	b_{1}	bo
General register address	Contents of general register pointer							r			
Indirect transfer address	Same as data memory							Contents of "r"			

6.4 Cautions on Using General Register

6.4.1 Row address of general register

Because the row address of the general register is specified by the general register pointer, the currently specified bank may differ from the bank of the general register.

6.4.2 Operation between general register and immediate data

No instruction is available that executes an operation between the general register and immediate data.
To execute an operation between the general register and immediate data, the general register must be treated as a data memory area.

7. ALU (Arithmetic Logic Unit) BLOCK

7.1 Outline of ALU Block

Figure 7-1 outlines the ALU block.
As shown in the figure, the ALU block consists of an ALU, temporary registers A and B, program status word, decimal adjustment circuit, and memory address control circuit.

The ALU operates on, judges, compares, rotates, and transfers 4-bit data in the data memory.

Figure 7-1. Outline of ALU Block

7.2 Configuration and Function of Each Block

7.2.1 ALU

The ALU performs arithmetic operation, logical operation, bit judgment, comparison, rotation, and transfer of 4-bit data according to instructions specified by the program.

7.2.2 Temporay registers A and B

Temporary registers A and B temporarily store 4-bit data.
These registers are automatically used when an instruction is executed, and cannot be controlled by program.

7.2.3 Program status word

The program status word controls the operation of and stores the status of the ALU.
For further information on the program status word, also refer to 5.8 Program Status Word (PSWORD).

7.2.4 Decimal adjustment circuit

The decimal adjustment circuit converts the result of an arithmetic operation into a decimal number if the BCD flag of the program status word is set to "1" during arthmetic operations.

7.2.5 Address control circuit

The address control circuit specifies an address of the data memory.
At this time, address modification by the index register and data memory row address pointer is also controlled.

7.3 ALU Processing Instruction List

Table 7-1 lists the ALU operations when each instruction is executed.
Table 7-2 shows how data memory addresses are modified by the index register and data memory row address pointer.

Table 7-3 shows decimal adjustment data when a decimal operation is performed.

Table 7-1. List of ALU Processing Instruction Operations

	Instruction		Difference in Operation Depending on Program Status Word (PSWORD)					Address Modification	
Function			Value of BCD flag	Value of CMP flag	Operation	Operation of CY flag	Operation of Z flag	Index	Memory pointer
Add	ADD	r, m m, \#n4	0		Stores result of binary operation	Set if carry or borrow occurs; otherwise, reset	Set if result of operation is 0000 B ; otherwise, reset	Modifies	Does not modify
	ADDC	r, m m, \#n4	0	1	Does not store result of binary operation		Retains status if result of operation is 0000 B ; otherwise, reset		
Subtract	SUB	$\begin{array}{\|l\|} \hline \mathrm{r}, \mathrm{~m} \\ \hline \mathrm{~m}, \# \mathrm{n} 4 \\ \hline \end{array}$	1	0	Stores result of decimal operation		Set if result of operation is 0000 B ; otherwise, reset		
	SUBC		1	1	Does not store result of decimal operation		Retains status if result of operation is 0000 B ; otherwise, reset		
Logical operation	OR	r, m	Don't care IDon't care (retained) $\stackrel{(\text { retained }) ~}{\text {) }}$		Not affected	Retains previous status	Retains previous status	Modifies	Does not modify
		m, \#n4							
	AND	r, m							
		m, \#n4							
	XOR	r, m							
		m, \#n4							
Judge	SKT	m, \#n	Don't care 'Don't care (retained)! (reset)		Not affected	Retains previous status	Retains previous status	Modifies	Does not modify
	SKF	m, \#n							
Compare	SKE	m, \#n4	Don't care IDon't care (retained) $)^{1}$ (retained)		Not affected	Retains previous status	Retains previous status	Modifies	Does not modify
	SKNE	m, \#n4							
	SKGE	m, \#n4							
	SKLT	m, \#n4							
Transfer	LD	r, m	Don't care 'Don't care (retained) ${ }_{1}^{1}$ (retained)		Not affected	Retains previous status	Retains previous status	Modifies	Does not modify Modifies
	ST	m, r							
	MOV	m, \#n4							
		@r, m							
		m, @r							
Rotate	RORC r		Don't care (retained)	Don't care (retained)	Not affected	Value of b_{0} of general register	Retains previous status	Does not modify	Does not modify

Table 7-2. Modification of Data Memory Address and Indirect Transfer Address by Index Register and Data Memory Row Address Pointer

BANK	: bank register
IX	: index register
IXE	: index enable flag
IXH	: bits 10 through 8 of index register
IXM	: bits 7 through 4 of index register
IXL	: bits 3 through 0 of index register
m	: data memory address indicated by mR, mc
mR	: data memory row address (high-order)
mc	: data memory column address (low-order)
MP	: data memory row address pointer
MPE	: memory pointer enable flag
r	: general register column address
RP	: general register pointer
(X)	: contents addressed by X
	X: direct address such as " m " and " $r "$

Table 7-3. Decimal Adjustment Data

Operation Result	Hexadecimal Addition		Decimal Addition		Operation Result	Hexadecimal Addition		Decimal Addition	
	CY	Operation result	CY	Operation result		CY	Operation result	CY	Operation result
0	0	0000B	0	0000B	0	0	0000B	0	0000B
1	0	0001B	0	0001B	1	0	0001B	0	0001B
2	0	0010B	0	0010B	2	0	0010B	0	0010B
3	0	0011B	0	0011B	3	0	0011B	0	0011B
4	0	0100B	0	0100B	4	0	0100B	0	0100B
5	0	0101B	0	0101B	5	0	0101B	0	0101B
6	0	0110B	0	0110B	6	0	0110B	0	0110B
7	0	0111B	0	0111B	7	0	0111B	0	0111B
8	0	1000B	0	1000B	8	0	1000B	0	1000B
9	0	1001B	0	1001B	9	0	1001B	0	1001B
10	0	1010B	1	0000B	10	0	1010B	1	1100B
11	0	1011B	1	0001B	11	0	1011B	1	1101B
12	0	1100B	1	0010B	12	0	1100B	1	1110B
13	0	1101B	1	0011B	13	0	1101B	1	1111B
14	0	1110B	1	0100B	14	0	1110B	1	1100B
15	0	1111B	1	0101B	15	0	1111B	1	1101B
16	1	0000B	1	0110B	-16	1	0000B	1	1110B
17	1	0001B	1	0111B	-15	1	0001B	1	1111B
18	1	0010B	1	1000B	-14	1	0010B	1	1100B
19	1	0011B	1	1001B	-13	1	0011B	1	1101B
20	1	0100B	1	1110B	-12	1	0100B	1	1110B
21	1	0101B	1	1111B	-11	1	0101B	1	1111B
22	1	0110B	1	1100B	-10	1	0110B	1	0000B
23	1	0111B	1	1101B	-9	1	0111B	1	0001B
24	1	1000B	1	1110B	-8	1	1000B	1	0010B
25	1	1001B	1	1111B	-7	1	1001B	1	0011B
26	1	1010B	1	1100B	-6	1	1010B	1	0100B
27	1	1011B	1	1101B	-5	1	1011B	1	0101B
28	1	1100B	1	1010B	-4	1	1100B	1	0110B
29	1	1101B	1	1011B	-3	1	1101B	1	0111B
30	1	1110B	1	1100B	-2	1	1110B	1	1000B
31	1	1111B	1	1101B	-1	1	1111B	1	1001B

Remark Decimal adjustment is not correctly carried out in the shaded area in the above table.

7.4 Cautions on Using ALU

7.4.1 Cautions on execution operation to program status word

If an arithmetic operation is executed to the program status word, the result of the operation is stored to the program status word.

The CY and Z flags in the program status word are usually set or reset by the result of the arithmetic operation. If an arithmetic operation is executed to the program status word itself, the result of the operation is stored to the program status word, and consequently, it cannot be judged whether a carry or borrow occurs or whether the result of the operation is zero.

If the CMP flag is set, however, the result of the operation is not stored to the program status word. Therefore, the CY and Z flags are set or reset normally.

7.4.2 Cautions on executing decimal operation

The decimal operation can be executed only when the result of the operation falls within the following ranges:
(1) Result of addition : 0 to 19 in decimal
(2) Result of subtraction: 0 to 9 or -10 to -1 in decimal

If a decimal operation is executed exceeding or falling below the above ranges, the result is a value greater than 1010B (0AH).

8. REGISTER FILE (RF)

8.1 Outline of Register File

Figure 8-1 outlines the register file.
As shown in the figure, the rgister file consists of the control registers existing on a space different from the data memory, and a portion overlapping the data memory.

The control registers set conditions of the peripheral hardware units.
The data on the register file can be read or written via window register.

Figure 8-1. Outline of Register File

Window register

8.2 Configuration and Function of Register File

Figure 8-2 shows the configuration of the register file and the relationships between the register file and data memory.

The register file is assigned addresses in 4-bit units, like the data memory, and consists of a total of 128 nibbles with row addresses 0 H through 7 FH and column addresses 0 H through 0 FH .

Addresses 00 H through 3 FH are control registers that sets the conditions of the peripheral hardware units.
Addresses 40 H through 7 FH overlap the data memory.
In other words, addresses 40 H through 7 FH of the register file are addresses 40 H through 7 FH of the currently-selected bank of data memory.

Because addresses 40 H through 7FH of the register file overlap the same addresses of the data memory, these addresses of the register file can be manipulated in the same manner as the data memory, except that the addresses of the register file can also be manipulated by using register file manipulation instructions ("PEEK WR, rf" and "POKE rf, WR"). Note, however, that addresses 60H through 6FH of BANK15 are assigned port input/output selection registers (for details refer to 8.4 Port Input/Output Selection Registers).

Figure 8-2. Configuration of Register File and Relationship with Data Memory

Remark The μ PD17704 and 17705 do not have BANKs 6 through 14. The μ PD17707 and 17708 do not have BANKs 10 through 14.

8.2.1 Register file manipulation instructions ("PEEK WR, rf", "POKE rf, WR")

Data is read from or written to the register file via the window register of the system registers, by using the following instructions.
(1) "PEEK WR, rf"

Reads data of the register file addressed by "rf" to the window register.

(2) "POKE rf, WR"

Writes the data of the window register to the register file addressed by "rf".

8.3 Control Registers

Figure 8-3 shows the configuration of the control registers.
As shown in the figure, the control registers consist of a total of 64 nibbles (64×4 bits) of addresses 00 H through 3FH of the register file.

Of these 64 nibbles, however, only 53 nibbles are actually used. The remaining 11 nibbles are unused registers and prohibited from being written or read.

Each control register has an attribute of 1 nibble that identifies four types of registers: read/write (R/W), readonly (R), write-only (W), and read-and-reset (R\&Reset) registers.

Nothing is changed even if data is written to a read-only (R and R\&Reset) register.
An "undefined" value is read if a write-only (W) register is read.
Among the 4 -bit data in 1 nibble, the bit fixed to " 0 " is always " 0 " when it is read, and is also " 0 " when it is written.

The 11 nibbles of unused registers are undefined when their contents are read, and nothing changes even when they are written.

Table 8-1 lists the peripheral hardware control functions of the control registers.
[MEMO]

Figure 8-3. Configuration of Control Registers (1/2)

Column Address Row Address Item		0	1	2	3	4	5	6	7
$\begin{gathered} 0 \\ (8)^{\text {Note }} \end{gathered}$	Name		Stack pointer	Watchdog timer clock selection	Watchdog timer counter reset	Data buffer stack pointer	Stack overflow/ underflow reset selection	CE reset timer carry counter	MOVT bit selection
	Symbol	1 1 1 1 1			W 0 0 0 \mathbf{D} R \mathbf{E} S 	$\begin{array}{\|c:c:c:c} \hline 0 & 0 & \widehat{D} & \widehat{D} \\ & & B & B \\ & & \mathrm{~F} & \mathrm{~F} \\ & & S & S \\ & & \mathrm{P} & \mathrm{P} \\ & & 1 & 0 \\ & & - & - \\ \hline \end{array}$	0 0 I A S S P P R R R R E E S S S 	C C C C E E E E C C C C N N N N T T T 3 2 1 0 0 	$\begin{array}{l:l\|l\|l} \hline 0 & 0 & M & M \\ & 1 & O & O \\ & 1 & V & V \\ & & T & T \\ & & S & S \\ & & E & E \\ & & \mathrm{~L} & \mathrm{~L} \\ & & 1 & 0 \\ \hline \end{array}$
	Read/ Write		R/W	R/W	W \& Reset	R	R/W	R/W	R/W
$\begin{gathered} 1 \\ (9)^{\text {Note }} \end{gathered}$	Name	PLL mode selection	PLL reference frequency selection	PLL unlock FF	BEEP/general -purpose port pin function selection	BEEP clock selection		Watchdog timer/stack pointer reset status detection	Basic timer 0 carry
	Symbol	P 0 P P L L L L L L S M M C D D N 1 0 F 0	$\begin{array}{l:l:l\|l} \hline \mathrm{P} & \mathrm{P} & \mathrm{P} & \mathrm{P} \\ \mathrm{~L} & \mathrm{~L} & \mathrm{~L} & \mathrm{~L} \\ \mathrm{~L} & \mathrm{~L} & \mathrm{~L} & \mathrm{~L} \\ \mathrm{R} & \mathrm{R} & \mathrm{R} & \mathrm{R} \\ \mathrm{~F} & \mathrm{~F} & \mathrm{~F} & \mathrm{~F} \\ \mathrm{C} & \mathrm{C} & \mathrm{C} & \mathrm{~K} \\ \mathrm{~K} & \mathrm{~K} & \mathrm{~K} & \mathrm{~K} \\ 3 & 2 & 1 & 0 \\ \hline \end{array}$		0 0 B B E E E E P P 1 0 S S E E L L	B B B B E E E E E E E E P P P P 1 1 0 0 C C C C K K K K 1 0 1 0			
	Read/ Write	R/W	R/W	R\&Reset	R/W	R/W		R\&Reset	R\&Reset
$\begin{gathered} 2 \\ (A)^{\text {Note }} \end{gathered}$	Name	FCG channel selection	IF counter gate status detection	IF counter mode selection	IF counter control	A/D converter channel selection	A/D converter mode selection	PWM clock selection	PWM/general- purpose port pin function selection
	Symbol	$\begin{array}{l:l:l:l}0 & 0 & \mathrm{~F} & \mathrm{~F} \\ & \mathrm{C} & \mathrm{C} \\ & \mathrm{G} & \mathrm{G} \\ & & \mathrm{C} & \mathrm{C} \\ & & \mathrm{H} & \mathrm{H} \\ & & 1 & 0 \\ & & & 0 \\ & & & \\ & & \\ & \end{array}$		I I I I F F F F C C C C M M C C D D K K 1 0 1 0 0 	0 0 I I F F C C S R T E R S 1 S 	$\begin{array}{\|l\|l:l:l} \hline 0 & A & A & A \\ & D & D & D \\ & C & C & C \\ & C & C & C \\ & C & H & H \\ & H & H & 0 \\ & 2 & 1 & 0 \\ & & & \\ & & & \\ \hline \end{array}$	$\begin{array}{\|l\|l:l:l} \hline 0 & A & A & A \\ & D & D & D \\ & C & C & C \\ 1 & M & S \\ & D & C & M \\ & D & T & P \\ & & & \\ & & & \\ \hline \end{array}$	$\begin{array}{\|l:l:l:l} \hline 0 & P & 0 & P \\ & W & W \\ & M & M \\ & \mathrm{~B} & \mathrm{M} \\ & 1 & \mathrm{C} \\ & \mathrm{~T} & \mathrm{~K} \\ & \mathrm{~T} & \\ & & & \\ : & & & \\ \hline \end{array}$	0
	Read/ Write	R/W	R	R/W	W	R/W	R/W R 	R/W	R/W
	Name					Serial interface 1 interrupt request	Serial interface 0 interrupt request	Timer 3 interrupt request	Timer 2 interrupt request
	Symbol	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						0 0 0 1 R R Q Q 1 M 3 	
	Read/ Write					R/W	R/W	R/W	R/W

Note () indicates an address that is used when the assembler is used.

Figure 8-3. Configuration of Control Register (2/2)

8	9	A	B	C	D	E	F
System register interrupt stack pointer		Serial I/OO wait status judgment	Serial I/OO clock selection	Serial I/OO interrupt mode selection	Serial I/OO status detection	Serial I/O0 wait control	Serial I/OO mode selection
$\begin{array}{\|l:l:l:l} 0 & & & \\ & S & S & S \\ & \mathrm{Y} & \mathrm{Y} \\ \mathrm{~S} & \mathrm{~S} & \mathrm{~S} \\ \mathrm{R} & \mathrm{R} & \mathrm{R} \\ & \mathrm{~S} & \mathrm{~S} & \mathrm{~S} \\ \mathrm{P} & \mathrm{P} & \mathrm{P} \\ 2 & 1 & 0 \\ \hline \end{array}$			0 S S S B 1 1 M O 0 D 0 0 C C K K 1 0 1 0 		S S S 1 1 B B O O S B 0 0 T S S S T Y F F 8 9 	S S S S B 1 1 1 A O O 0 C 0 0 0 K N W W W R R T Q Q 1 0	S S S 1 B 1 1 O O O 0 0 0 C M T H S X
R		R	R/W	R/W	R	R/W	R/W
Basic timer 0 clock selection					Serial I/O1 mode selection	Interrupt edge selection 1	Interrupt edge selection 2
0 0 B B T T M M 1 0 0 C C K K 1 0 				!		I I I I E N E N G T G T $\mathbf{4}$ 4 3 3 S E E L E L	$\begin{array}{c:c:c:c} 0 & \mathrm{I} & \mathrm{I} & \mathrm{I} \\ & \mathrm{E} & \mathrm{E} & \mathrm{E} \\ & \mathrm{G} & \mathrm{G} & \mathrm{G} \\ & 2 & 1 & 0 \end{array}$
R/W					R/W	R/W	R/W
Timer 3 control	Timer 2 counter clock selection	Timer 1 counter clock selection	Timer 0 counter clock selection	Timer 0 mode selection	Interrupt enable 1	Interrupt enable 2	Interrupt enable 3
$\begin{array}{c:c:c} \mathrm{T} & 0 & \mathrm{~T} \\ \mathrm{M} & \mathrm{~T} & \mathrm{M} \\ 3 & & 3 \\ \mathrm{~S} & \mathrm{~B} \\ \mathrm{~S} & \mathrm{E} & \mathrm{R} \\ \mathrm{E} & & \mathrm{~N} \\ \mathrm{~L} & \mathrm{E} \\ \hline \end{array}$	$\begin{array}{c:c:c:c} \mathrm{T} & \mathrm{~T} & \mathrm{~T} & \mathrm{~T} \\ \mathrm{M} & \mathrm{M} & \mathrm{M} & \mathrm{M} \\ 2 & 2 & 2 & 2 \\ \mathrm{E} & \mathrm{R} & \mathrm{C} & \mathrm{C} \\ \mathrm{~N} & \mathrm{E} & \mathrm{~K} & \mathrm{~K} \\ & \mathrm{~S} & 1 & 0 \end{array}$	$\begin{array}{c:c:c:c} \mathrm{T} & \mathrm{~T} & \mathrm{~T} & \mathrm{~T} \\ \mathrm{M} & \mathrm{M} & \mathrm{M} & \mathrm{M} \\ 1 & 1 & 1 & 1 \\ \mathrm{E} & \mathrm{R} & \mathrm{C} & \mathrm{C} \\ \mathrm{~N} & \mathrm{E} & \mathrm{~K} & \mathrm{~K} \\ & \mathrm{~S} & 1 & 0 \end{array}$	$\begin{array}{c:c:c:c} \mathrm{T} & \mathrm{~T} & \mathrm{~T} & \mathrm{~T} \\ \mathrm{M} & \mathrm{M} & \mathrm{M} & \mathrm{M} \\ 0 & 0 & 0 & 0 \\ \mathrm{E} & \mathrm{R} & \mathrm{C} & \mathrm{C} \\ \mathrm{~N} & \mathrm{E} & \mathrm{~K} & \mathrm{~K} \\ & \mathrm{~S} & 1 & 0 \end{array}$		1 1 1 1 P P P P S S T T 1 1 M M O O 3 2 1 0 2	1 1 1 1 P P P P T 4 3 M M 1 0 	
R/W							
Timer 1 interrupt request	Timer 0 interrupt request	INT4 pin interrupt request	INT3 pin interrupt request	INT2 pin interrupt request	INT1 pin interrupt request	INTO pin interrupt request	CE pin interrupt request
		1 0 0 1 N R T R 4 4		1 0 0 1 N R \mathbf{T} R 2 2 2			
R/W	R						

Table 8-1. Peripheral Hardware Control Functions of Control Registers (1/8)

Peripheral Hardware	Control Register				Peripheral Hardware Control Function			At Reset			Clock Stop
	Name	Address	Read/ Write	$\begin{aligned} & b_{3} \\ & b_{2} \\ & b_{1} \\ & b_{0} \end{aligned} \text { Symbol }$	Function	Set value		Power- ON reset	WDT \& SP reset	CE reset	
						0	1				
Stack	Stack pointer	01H	R/W					F	F	F	Retained
	Interrupt stack pointer of system register	08H	R					5	5	5	Retained
	Data buffer stack pointer	04H	R		Fixed to "0" Detects nesting level of data buffer stack	- - - 0 0 Level 0 Level 1 0 1	\qquad Level 2 Level 3 1	0	0	0	Retained
	Stack overflow/ underflow reset selection	05H	R/W		Fixed to "0" Selects interrupt stack overflow/underflow reset (can be set only once following power application) Selects address stack overflow/underflow reset (can be set only once following power application)	Reset prohibited	Reset valid	3	Retained	Retained	Retained
Watchdog timer	Watchdog timer clock selection	02H	R/W		Fixed to "0" Selects clock of watchdog timer (can be set only once following power application)	- - - 0 - - Not 65536 S used instruction pr 0 1 0		3	Retained	Retained	Retained
	Watchdog timer counter reset	03H	 Reset		Resets watchdog timer counter Fixed to "0"	Invalid	Reset if written	Undefined	Undefined	Undefined	Undefined
	WDT\&SP reset status detection	16 H	 Reset		Detects resetting of watchdog timer/stack pointer	No reset request	Reset request	0	1	Retained	Retained

Table 8-1. Peripheral Hardware Control Functions of Control Registers (2/8)

Peripheral Hardware	Control Register				Peripheral Hardware Control Function				At Reset			Clock Stop
	Name	Address	Read/ Write	$\left\lvert\, \begin{aligned} & b_{3} \\ & b_{2} \\ & b_{1} \\ & b_{0} \end{aligned}\right. \text { Symbol }$	Function	Set value			Power- ON reset	WDT \& SP reset	CE reset	
CE	CE reset timer carry counter	06H	R/W	CECNT3 $-\quad-\quad-$ CECNT2 ---- CECNT1 ---- CECNTO	Sets number of CE reset timer carry counts	$\begin{aligned} & \text { 0: Setting p } \\ & \text { 2: } 2 \text { counts } \\ & \text { 5: } 5 \text { counts } \\ & \text { 8: } 8 \text { counts } \\ & \text { B: } 11 \text { coun } \\ & \text { E: } 14 \text { count } \end{aligned}$	prohibited ts $3: 3$ co ts 6: 6 co ts $9: 9$ co unts C: 12 unts F: 15	1: 1 count nts $4: 4$ counts nts 7:7 counts nts A: 10 counts unts D: 13 counts ounts	1	Retained	Retained	1
	MOVT bit selection	07H	R/W		Fixed to "0" Sets bit transferred by MOVT (transferred to DBF1, 0 during 8 -bit transfer)	$\overline{00}$ 16-bit transfer 01		$\overline{1}$ Low-order 8-bit transfer 0	0	0	0	Retained
Serial interface	Serial I/O0 wait status judgment	OAH	R		Fixed to "0" Judges wait status of serial interface 0	During	g wait	uring serial mmunication	0	0	0	0
	Serial I/OO clock selection	OBH	R/W		Fixed to "0" Selects operation mode of $I^{2} \mathrm{C}$ bus during slave transmission Sets internal clck of serial interface 0		inues ssing - - 375 kHz 1	eception mode is et automatically	0	0	0	0
	Serial I/OO interrupt mode selection	0 CH	R/W		Fixed to "0" Sets interrupt condition of serial interface 0			- ---- clock Stop start condition 1	0	0	0	0
	Serial I/OO status detection	ODH	R		Detects clock counter Detects number of clocks (${ }^{2} \mathrm{C}$ bus mode) Detects start condition (${ }^{2}$ C bus mode)	Set at 8 Set at 9 Set from 9th cloc Set from stop con	8th clock 9th clock m start ck m start ondition	dition to dition to	0	0	0	0
	Serial I/OO wait control	OEH	R/W		Sets and detects acknowledge (${ }^{2} \mathrm{C}$ bus mode) Enables wait Sets wait mode	$\begin{array}{ll} \text { Sets and } \\ - & - \\ - & \text { Enabl } \\ \hdashline- & - \\ \text { No } & 0 \\ \text { Nota } & \text { Data } \\ \text { wait } & \text { wait } \\ 0 & 1 \end{array}$	nd detect ta Ackno wait 0	0,1 Cleared ledge Address wait 1	0	0	0	0

Table 8-1. Peripheral Hardware Control Functions of Control Registers (3/8)

Peripheral Hardware	Control Register				Peripheral Hardware Control Function			At Reset			Clock Stop
	Name	Address	Read/ Write	$\begin{aligned} & b_{3} \\ & b_{2} \\ & b_{1} \\ & b_{0} \end{aligned} \text { Symbol }$	Function	Set value		Power- ON reset	WDT \& SP reset	CE reset	
Serial interface	Serial I/O0 mode selection	OFH	R/W	SIOOCH SB_{-} $-\quad-\quad-$ SIOOMS $-Z_{-}$ SIOOTX	Selects serial I/O0 mode Sets master/slave Sets transfer direction			0	0	0	0
	Serial I/01 mode selection	1DH	R/W		Starts or stops operation Sets status of P0B1/SO1 pin Sets I/O clock			0	0	0	0
PLL frequency synthesizer	PLL mode selection	10 H	R/W	PLLSCNF ---- 0 PLLMD1 PLLMD0 --	Sets low-order bits of swallow counter Fixed to "0" Sets division mode of PLL	$\left\lvert\, \begin{aligned} & \text { Lowest bit is } 0 \\ & ---------- \\ & ------- \\ & 0 \\ & \text { Disabled } \\ & 0 \end{aligned}\right.$		$\frac{U}{0}-$	$\begin{aligned} & U \\ & - \\ & 0 \end{aligned}$	$\begin{gathered} R \\ 0 \end{gathered}$	$\begin{gathered} R \\ - \\ 0 \end{gathered}$
	PLL reference frequency selection	11H	R/W		Sets reference frequency of PLL	$0: 1.25 \mathrm{kHz}$ $1: 2.5 \mathrm{k}$ 3: 10 kHz 4: 6.25 6: 25 kHz $7: 50 \mathrm{k}$ 9: 9 kHz A: 18 k B: Setting prohibited C: 1 kHz D: 20 k E: Setting prohibited F: PLL disabled	kHz $2: 5 \mathrm{kHz}$ kHz $5: 12.5 \mathrm{kHz}$ kHz $8: 3 \mathrm{kHz}$ kHz d kHz d	F	F	F	F
	PLL unlcok FF	12 H	$\begin{aligned} & \text { R \& } \\ & \text { Reset } \end{aligned}$	$\begin{array}{llll} 0 & & \\ -0 & - & - \\ 0 & - & - \\ 0 & & \\ \hline \text { PLLUL } \end{array}$	Fixed to "0" Detects status of unlock FF	Locked	Unclocked	Undefined	Undefined	Retained	Retained
BEEP	BEEP/generalpurpose port pin function selection	13 H	R/W		Fixed to "0" Selects function of P1D1/BEEP1 pin Selects function of P1DO/BEEPO pin	General-purpose I/O port	BEEP	0	0	0	0
	BEEP clock selection	14H	R/W	BEEP1CK1 ---- BEEP1CK0 ---- BEEPOCK1 ---- BEEPOCK0	Sets output frequency of BEEP1 Sets output frequency of BEEPO	$\left\lvert\, \begin{array}{ll} 0 & 0 \\ 4 \mathrm{kHz} & 3 \mathrm{kHz} \\ 0 & 1 \\ \hdashline- & 0 \\ 0 & - \\ 1 \mathrm{kHz} & 3 \mathrm{kHz} \\ 0 & 1 \end{array}\right.$	$\begin{array}{ll} 1 & 1 \\ 200 \mathrm{~Hz} & 67 \mathrm{~Hz} \\ 0 & 1 \\ \hdashline- & - \\ 1 & - \\ 4 \mathrm{kHz} & 6.7 \mathrm{kHz} \\ 0 & 1 \end{array}$	0	0	0	0

[^1]Table 8-1. Peripheral Hardware Control Functions of Control Registers (4/8)

Peripheral Hardware	Control Register				Peripheral Hardware Control Function			At Reset			Clock Stop
	Name	Address	Read/ Write	$\begin{aligned} & b_{3} \\ & b_{2} \\ & b_{1} \\ & b_{0} \end{aligned} \text { Symbol }$	Function	Set value		Power- ON reset	WDT \& SP reset	CE reset	
Timer	Basic timer 0 carry	17H	 Reset	$\left[\begin{array}{l} 0 \\ -0 \\ - \\ 0 \\ 0 \\ -\quad-\quad- \\ \text { BTMOCY } \end{array}\right]$	Fixed to "0"	------------FF resetFF set		0	Retained	1	Retained
	Basic timer 0 clock selection	18H	R/W		Fixed to "0" Selects clock of basic timer 0			0	0	Retained	Retained
	Timer 3 control	28 H	R/W	$\begin{aligned} & \text { TM3SEL } \\ & \hdashline---- \\ & 0 \\ & ------ \\ & \text { TM3EN } \\ & ------ \\ & \text { TM3RES } \end{aligned}$	Selects timer 3 and D/A converter Fixed to "0" Starts or stops timer 3 counter Resets timer 3 counter			0	0	Retained	0
	Timer 2 counter clock selection	29 H	R/W	TM2EN ---- TM2RES ----- TM2CK1 $-\quad-\quad-$ TM2CK0	Starts or stops timer 2 counter Resets timer 2 counter Sets basic clock of timer 2 counter		Starts ---- Reset $-\quad---$ 1 $\quad 1 \mathrm{kHz}$ 1	0	0	Retained	0
	Timer 1 counter clock selection	2AH	R/W		Starts or stops timer 1 counter Resets timer 1 counter Sets basic clock of timer 1 counter		Starts Reset	0	0	Retained	0
	Timer 0 counter clock selection	2 BH	R/W	TMOEN ---- TMORES ------ TMOCK1 $-\quad-\quad-$ TMOCKO	Starts or stops timer 0 counter Resets timer 0 counter Sets basic clock of timer 0 counter	$\left\lvert\,$Stops ----- Not affected ----- 0 100 kHz 10 kHz 0 $\quad 1\right.$		0	0	Retained	0
	Timer 0 mode selection	2 CH	R/W		Detects timer 0 overflow Sets edge of gate close input signal Sets edge of gate open input signal Selects modulo counter/gate counter of timer 0		Overflow alling edge	0	0	Retained	0

Table 8-1. Peripheral Hardware Control Functions of Control Registers (5/8)

Table 8-1. Peripheral Hardware Control Functions of Control Registers (6/8)

Peripheral Hardware	Control Register				Peripheral Hardware Control Function			At Reset			Clock Stop
	Name	Address	Read/ Write	$\begin{aligned} & b_{3} \\ & b_{2} \\ & b_{1} \\ & b_{0} \end{aligned} \text { Symbol }$	Function	Set value		Power- ON reset	WDT \& SP reset	CE reset	
						0	1				
Interrupt	Serial interface 0 interrupt request	35 H	R/W		Fixed to "0" Detects serial int interrupt request	No interrupt request Interrupt request		0	0	Retained	Retained
	Timer 3 interrupt request	36 H	R/W		Fixed to "0"	No interrupt request	Interrupt request	0	0	Retained	Retained
	Timer 2 interrupt request	37H	R/W		Fixed to "0" Detects timer 2 interrupt request	No interrupt request	Interrupt request	0	0	Retained	Retained
	Timer 1 interrupt request	38 H	R/W	$\begin{array}{\|l\|l\|} \hline 0 \\ -1 & - \\ 0 & - \\ \hline 0 & - \\ \hline \text { IRQTM1 } \end{array}$	Fixed to "0" Detects timer 1 interrupt request	No interrupt request	Interrupt request	0	0	Retained	Retained
	Timer 0 interrupt request	39 H	R/W	$\begin{array}{\|lll} \hline 0 & & \\ -0 & \cdots & - \\ 0 & - & - \\ 0 & & \\ \hline \text { IRQTMO } \end{array}$	Fixed to "0" Detects timer 0 interrupt request	No interrupt request	Interrupt request	0	0	Retained	Retained
	INT4 pin interrupt request	ЗАН	R/W	INT4 $0-\cdots$ 0 0 IRQ4 $-\cdots$	Detects INT4 pin status Fixed to "0" Detects INT4 pin interrupt request	Low level - - - - - No interrupt request	High level Interrupt request	$-\frac{U}{0}$	$\begin{aligned} & U \\ & \hline \\ & \hline \end{aligned}$		
	INT3 pin interrupt request	3BH	R/W		Detects INT3 pin status Fixed to "0" Detects INT3 pin interrupt request	Low level - - - - - No interrupt request	High level - - - - - Interrupt request	$-\frac{U}{0}$	$\begin{gathered} U \\ - \\ 0 \end{gathered}$		
	INT2 pin interrupt request	3 CH	R/W	INT2 0 0 0 $0-\cdots-\cdots$ IRQ2 $-\cdots$	Detects INT2 pin status Fixed to "0"	Low level - - - - - No interrupt request	High level \qquad	$-\frac{U}{0}$	$\begin{aligned} & U \\ & - \\ & 0 \end{aligned}$		
	INT1 pin interrupt request	3DH	R/W	INT1 0 0 0 IRQ1 $-\ldots$	Detects INT1 pin status Fixed to "0" Detects INT1 pin interrupt request	Low level - - - - - - No interrupt request	High level Interrupt request	$\begin{gathered} U \\ --- \\ 0 \end{gathered}$	$\begin{aligned} & U \\ & - \\ & 0 \end{aligned}$		

U: Undefined

Table 8-1. Peripheral Hardware Control Functions of Control Registers (7/8)

Peripheral Hardware	Control Register				Peripheral Hardware Control Function			At Reset			$\begin{aligned} & \text { Clock } \\ & \text { Stop } \end{aligned}$
	Name	Address	Read Write	$\begin{aligned} & b_{3} \\ & b_{2} \\ & b_{1} \\ & b_{0} \end{aligned}$	Function	Set value		Power- ON reset	WDT \& SP reset	CE reset	
						0	1				
Interrupt	INTO pin interrupt request	3EH	R/W	INTO	Detects INT0 pin status	Low level	High level	U	U	U	U
					Fixed to "0"			0	0	Retained	Retain
				IRQ0	Detects INTO pin interrupt request	No interupt request	Interrupt request				
	CE pin interrupt request	3FH	R	CE	Detects CE pin status	Low level	High level	U	U	U	U
				0	Fixed to "0"			0	0	0	0
				CECNTSTT	Detects CE reset counter status	Stops	Operates				
				IRQCE	Detects CE pin interrupt request	No interupt request	Interrupt request	0	0	R	R
IF counter	FCG channel selection	20 H	R/W	0	Fixed to "0"			0	0	0	0
				$\left[\begin{array}{l} \mathrm{FCGCH} 1 \\ \hdashline-\overline{\mathrm{FCGCHO}} \end{array}\right.$	Sets pin to be used as FCG	$\begin{array}{ll} 0 & 0 \\ \text { FCG } & \text { FCGO } \\ \text { not used } & \text { pin } \\ 0 & 1 \end{array}$	$\begin{array}{lll} & 1 & \\ \text { FCG1 } & \\ \text { Fin } & \text { Setting } \\ \text { pronibited } & 1 \end{array}$				
	IF counter gate status detection	21H	R	$\begin{array}{\|ll\|l} 0 & & \\ \hline 0 & - & - \\ 0 & - & - \\ 0 \end{array}$	Fixed to "0"			0	0	0	0
				IFCGOSTT	Detects IF counter gate status	Closed	Open				
	IF counter mode selection	22 H	R/W		Sets IF counter mode Sets IF counter gate time and FCG count frequency	$\|$0 0 FCG AMIFC 0 1 0 -1 - 0 0 1 1 ms 4 ms 8 1 kHz 100 kHz 90 0 1 0		0	0	0	0
	IF counter control	23H	W	$\begin{array}{\|l\|l\|} \hline 0 \\ \hline 0 & \ldots \\ \hline \end{array}$	Fixed to "0"			0	0	0	0
				$\begin{aligned} & \text { IFCSTRT } \\ & \hdashline----- \\ & \text { IFCRES } \end{aligned}$	Starts or stops IF counter Resets IF counter data	Nothing affected Nothing affected	Starts counter Starts counter				
$\begin{array}{\|l\|} \hline A / D \\ \text { converter } \end{array}$	A/D converter channel selection	24 H	R/W	0	Fixed to "0"			0	0	Retained	Retained
				$\begin{array}{\|c} \mathrm{ADCCH} 2 \\ -\overline{-}-\overline{-} \\ \mathrm{ADCCH} 1 \\ -\overline{-}-\overline{-} \\ \mathrm{ADCCH} 0 \end{array}$	Selects pin used for A/D converter	O: A/D converter not 1: PODO/ADO pin 3: POD2/AD2 pin 5: P1C2/AD4 pin 7: Setting prohibited	not used 2: POD1/AD1pin 4: POD3/AD3 pin 6: P1C3/AD5 pin d				
	A/D converter mode selection	25H	R/W	0	Fixed to "0"			0	0	0	0
				ADCMD	Selects comparison mode of A/D converter	Software mode	Hardware mode			Retained	Retained
			R	ADCSTT	Detects operating status of A/D converter	Conversion ends	Converting			0	0
				ADCCMP	Detects comparison result of A/D converter	$V_{\text {AdCREF }}>V_{\text {Adocin }}$	$V_{\text {Adocer }}$ < $\mathrm{V}_{\text {adocin }}$			0	Retained

U: Undefined R: Retained

Table 8-1. Peripheral Hardware Control Functions of Control Registers (8/8)

Peripheral Hardware	Control Register				Peripheral Hardware Control Function			At Reset			Clock Stop
	Name	Address	Read/ Write	$\left\lvert\, \begin{aligned} & b_{3} \\ & b_{2} \\ & b_{1} \\ & b_{0} \end{aligned}\right. \text { Symbol }$	Function	Set value		Power- ON reset	WDT \& SP reset	CE reset	
D/A converter	PWM clock selection	26 H	R/W		Fixed to "0" Selects number of bits of PWM counter Fixed to "0" Selects output clock of timer 3	8 bits $\begin{gathered} ------ \\ ------- \\ 4.4 \mathrm{kHz}(8) / \\ 2.2 \mathrm{kHz}(9) \end{gathered}$	9 bits $440 \mathrm{~Hz}(8) /$ $220 \text { Hz (9) }$	0	0	Retained	0
	PWM/generalpurpose port pin function selection	27H	R/W		Fixed to "0" Selects function of P1B2/PWM2 pin Selects function of P1B1/PWM1 pin Selects function of P1B0/PWM0 pin	General-purpose output port	D/A converter	0	0	Retained	0

8.4 Port Input/Output Selection Registers

Figure 8-4 shows the configuration of the port input/output selection registers.
As shown in this figure, the port input/output select registers consist of a total of 16 nibbles (16×4 bits) at addresses 60 H through 6FH of BANK 15 of the data memory.

Table 8-2 lists the control functions of the port input/output selection registers.
[MEMO]

Figure 8-4. Configuration of Port Input/Output Selection Registers (1/2)

Figure 8-4. Configuration of Port Input/Output Selection Registers (2/2)

8	9	A	B	C	D	E	F
Port 2D bit I/O selection	Port 2C bit I/O selection	Port 2B bit I/O selection	Port 2A bit I/O selection	Port 1D bit I/O selection	Port 0C bit I/O selection	Port 0B bit I/O selection	Port 0A bit I/O selection
0 O P: P	P P: P:P	P P:P P	0 P P P	$\mathrm{P} P \mathrm{P}$	P P:P P	P P:P P	P P:P P
222	2222	2222	2 2	1 1 1 1	0 0 0 0	0 0 0 0	0 0000
D D D	C C C C	B B B B	A A A	D: D: D	C:CC	B B B B	A A A
B B B	B B B B	B B B B	B B B	B B B B	B: B B B	B B В B	B B B B
111	1 1 1 1	1111	$1 \begin{array}{l:l}1 & 1\end{array}$	1 1 111	1:1:11	11111	1 1 1 1
0 O	OOOO	OOOO	O	OOOO	O:OOO	OOOO	OOOO
2 1	3 $2: 10$	3 $2: 10$	2 1	3 2110	3 2120	3 2 0	3 2 1
R/W							

Table 8-2. Control Functions of Port Input/Output Selection Registers (1/2)

Peripheral Hardware	Port Input/Output Selection Register				Control Function			At Reset			Clock Stop
	Name	$\left\lvert\, \begin{aligned} & \text { Address } \\ & \text { (BANK15) } \end{aligned}\right.$	Read/ Write	$\begin{aligned} & b_{3} \\ & b_{2} \\ & b_{1} \\ & b_{0} \end{aligned} \text { Symbol }$	Function	Set value		Power- ON reset	WDT \& SP reset	CE reset	
						0	1				
Input/ output port	Port OD pulldown resistor selection	66 H	R/W			Pull-down resistor used	$\begin{gathered} \text { Pull-down } \\ \text { resistor not used } \end{gathered}$	0	0	Retained	Retained
	$\begin{aligned} & \text { Group I/O } \\ & \text { selection } \end{aligned}$	67H	R/W	P3DGIO ---- P3CGIO ---- P3BGIO ----- P3AGIO	Selects input/output of port 3D Selects input/output of port 3C Selects input/output of port 3B Selects input/output of port 3A	Input	Output	0	0	Retained	Retained
	Port 2D bit I/O selection	68 H	R/W					0	0	Retained	Retained
	Port 2C bit I/O selection	69H	R/W		Selects input/output of port P2C3 Selects input/output of port P2C2 Selects input/output of port P2C1 Selects input/output of port P2C0	Input	Output	0	0	Retained	Retained
	Port 2B bit I/O selection	6AH	R/W		Selects input/output of port P2B3 Selects input/output of port P2B2 Selects input/output of port P2B1 Selects input/output of port P2B0	Input	Output	0	0	Retained	Retained
	Port 2A bit I/O selection	6BH	R/W	$\begin{aligned} & 0 \\ & -\quad-\quad-- \\ & \text { P2ABIO2 } \\ & ----- \\ & \text { P2ABIO1 } \\ & \hline \text { P2ABIO0 } \end{aligned}$		$-\underset{\text { Input }}{\text { Output }}$		0	0	Retained	Retained
	Port 1D bit I/0 selection	6 CH	R/W			Input	Output	0	0	Retained	Retained
	Port OC bit I/O selection	6DH	R/W			Input	Output	0	0	Retained	Retained
	Port OB bit I/O selection	6EH	R/W			Input	Output	0	0	Retained	Retained

Table 8-2. Control Functions of Port Input/Output Selection Registers (2/2)

Peripheral Hardware	Port Input/Output Selection Register				Control Function			At Reset			Clock Stop
	Name	Address (BANK15)	Read/ Write	$\begin{aligned} & b_{3} \\ & b_{2} \\ & b_{1} \\ & b_{0} \end{aligned}$	Function	Set value		Power- ON reset	WDT \& SP reset	CE reset	
						0	1				
	Port 0A bit I/O selection	6FH	R/W	POABIO3	Selects input/output of port POA3	Input	Output	0	0	Retained	Retained
output				POABIO2	Selects input/output of port POA2						
port				P0ABIO1	Selects input/output of port POA1						
				POABIOO	Selects input/output of port POAO						

8.5 Cautions on Using Register File

Keep in mind the following points (1) through (3) when using the write-only (W), read-only (R), and unused registers of the control registers (addresses 00 H through 3 FH of the register file).
(1) An "undefined value" is read if a write-only register is read.
(2) Nothing is affected even if a read-only register is written.
(3) An "undefined value" is read if an unused register is read. Nor is anything affected if this register is written.

9. DATA BUFFER (DBF)

9.1 Outline of Data Buffer

Figure 9-1 outlines the data buffer.
The data buffer is located on the data memory and has the following two functions.

- Reads constant data on the program memory (table reference)
- Transfers data with the peripheral hardware units

Figure 9-1. Outline of Data Buffr

9.2 Data Buffer

9.2.1 Configuration of data buffer

Figure 9-2 shows the configuration of the data buffer.
As shown in the figure, the data buffer consists of a total of 16 bits of addresses 0 CH through 0FH of BANK 0 on the data memory.

The 16-bit data is configured with bit 3 of address 0 CH as the MSB and bit 0 of address 0 FH as the LSB.
Because the data buffer is located on the data memory, it can be manipulated by all data memory manipulation instructions.

Figure 9-2. Configuration of Data Buffer

Column address

9.2.2 Table reference instruction ("MOVT DBF, @AR")

This instruction moves the contents of the program memory addressed by the contents of the address register to the data buffer.

The number of bits transferred by the table reference instruction can be specified by MOVT selection register (address 07 H) of the control registers.

When 8-bit data is transferred, it is read to DBF1 and 0 .
When the table reference instruction is used, one stack level is used.
All the addresses of the program memory can be referenced by the table reference instruction.

9.2.3 Peripheral hardware control instructions ("PUT" and "GET")

The operations of the "PUT" and "GET" instructions are as follows:
(1) GET DBF, p

Reads the data of a peripheral register addressed by " p " to the data buffer.
(2) PUT p, DBF

Sets the data of the data buffer to a peripheral register addressed by " p ".

9.3 Relationships between Peripheral Hardware and Data Buffer

Table 9-1 shows the relationships between the peripheral hardware and the data buffer.

Table 9-1. Relationships between Peripheral Hardware and Data Buffer (1/2)

Peripheral Hardware		Peripheral Register Transferring Data with Data Buffer					
		Name	Symbol	Peripheral address	Execution of PUT/GET instruction	$\begin{gathered} \text { I/O } \\ \text { bit } \end{gathered}$	Actual bit
A/D converter		A/D converter reference voltage setting register	ADCR	02H	PUT/GET	8	8
Serial interface	Serial interface 0	Presettable shift register 0	SIOOSFR	03H	PUT/GET	8	8
	Serial interface 1	Presettable shift register 1	SIO1SFR	04H			
Timer 0		Timer 0 modulo register	TMOM	1 AH	PUT/GET	8	8
		Timer 0 counter	TMOC	1BH	GET	8	8
Timer 1		Timer 1 modulo register	TM1M	1 CH	PUT/GET	8	8
		Timer 1 counter	TM1C	1DH	GET	8	8
Timer 2		Timer 2 modulo register	TM2M	1EH	PUT/GET	8	8
		Timer 2 counter	TM2C	1FH	GET	8	8
Address register		Address register	AR	40 H	PUT/GET	16	16
Data buffer stack		DBF stack	DBFSTK	41 H	PUT/GET	16	16
PLL frequency synthesizer ${ }^{\text {Note }}$		PLL data register	PLLR	42 H	PUT/GET	16	16
Frequency counter		IF counter data register	IFC	43H	GET	16	16
D/A converter (PWM output)	P1B0/PWM0 pin	PWM data register 0	PWMR0	44H	PUT/GET	16	9
	P1B1/PWM1 pin	PWM data register 1	PWMR1	45 H			
	P1B2/PWM2 pin	PWM data register 2	PWMR2	46H	PUT/GET	16	9
Timer 3		Timer 3 modulo register	TM3M				8

Note The programmable counter of the PLL frequency synthesizer is configured of 17 bits, of which the highorder 16 bits indicate the PLL data register (PLLR) and the low-order bits are allocated to the PLLSCNF flag (the third bit of address 10 H).
For details, refer to 17. PLL FREQUENCY SYNTHESIZER.

Table 9-1. Relationships between Peripheral Hardware and Data Buffer (2/2)

At Reset			Clock Stop	Function
Power-ON reset	WDT\&SP reset	CE reset		
0	0	$0^{\text {Note }}$	$0^{\text {Note }}$	Sets compare voltage Vadcref of A/D converter
Undefined	Undefined	Undefined	Undefined	Sets serial-out data and reads serial-in data
FF	FF	Retained	FF	Sets modulo register value of timer 0
0	0	Retained	0	Reads count value of timer 0 counter
FF	FF	Retained	FF	Sets modulo register value of timer 1
0	0	Retained	0	Reads count value of timer 1 counter
FF	FF	Retained	FF	Sets modulo register value of timer 2
0	0	Retained	0	Reads count value of timer 2 counter
0	0	0	Retained	Transfers data with address register
Undefined	Undefined	Retained	Retained	Saves data of data buffer
Undefined	Undefined	Retained	Retained	Sets division value (N value) of PLL
0	0	0	0	Reads count value of frequency counter
1FF	1FF	Retained	1FF	Sets duty of output signal of D/A converter
				Sets duty of output signal of D/A converter (multiplexed with modulo register of timer 3)
				Sets modulo register value of timer 3

Note Value in hardare mode. "Retained" in software mode.

9.4 Cautions on Using Data Buffer

Keep the following points in mind concerning the unused peripheral addresses, write-only peripheral register (PUT only), and read-only peripheral register (GET only) when transferring data with the peripheral hardware via data buffer.

- An "undefined value" is read if a write-only register is read.
- Nothing is affected even if a read-only register is written.
- An "undefined value" is read if an unused address is read. Nor is anything affected if this address is written.

10. DATA BUFFER STACK

10.1 Outline of Data Buffer Stack

Figure 10-1 outlines the data buffer stack.
As shown in the figure, the data buffer stack consists of a data buffer stack pointer and data buffer stack registers.

The data buffer stack saves or restores the contents of the data buffer when the "PUT" or "GET" instruction is executed.

Therefore, the contents of the data buffer can be saved by one instruction when an interrupt is accepted.

Figure 10-1. Outline of Data Buffer Stack

10.2 Data Buffer Stack Register

Figure 10-2 shows the configuration of the data buffer stack registers.
As shown in the figure, the data buffer stack registers consist of four 16-bit registers.
The contents of the data buffer are saved by executing the "PUT" instruction, and the saved data is restored by executing the "GET" instruction.

The data buffer contents can be successively saved up to 4 levels.

Figure 10-2. Configuration of Data Buffer Stack Register

10.3 Data Buffer Stack Pointer

The data buffer stack pointer detects the multiplexing level of the data buffer stack registers.
When the "PUT" instruction is executed to the data buffer stack, the value of the data buffer stack pointer is incremented by one; when the "GET" instruction is executed, the value of the pointer is decremented by one.

The data buffer stack pointer can be only read and cannot be written.
The configuration and function of the data buffer stack pointer are illustrated below.

$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{\otimes} \\ & \stackrel{\omega}{0} \\ & \stackrel{4}{4} \end{aligned}\right.$	Power-ON reset	0 0 0 0				
	WDT\&SP reset			0		0
	CE reset			0		0
Clock stop			1	'Re	etai	

10.4 Operation of Data Buffer Stack

Figure 10-3 shows the operation of the data buffer stack.
As shown in the figure, when the PUT instruction is executed, the contents of the data buffer are transferred to a data buffer stack register specified by the stack pointer, and the stack pointer is incremented by one.

When the GET instruction is executed, the contents of a data buffer stack register specified by the stack pointer are transferred to the data buffer, and the stack pointer is decremented by one.

Therefore, note that the value of the stack pointer is set to 1 if data has been written once because its initial value is 0 , and that the stack pointer is set to 0 when data has been written four times.

Note that when writing (PUT) exceeding four levels, the first data are discarded.

Figure 10-3. Operation of Data Buffer Stack
(a) If writing does not exceed level 4

(b) If writing exceeds level 4

10.5 Using Data Buffer Stack

A program example is shown below.

Example To save the contents of the data buffer and address register by using INTO interrupt routine (the contents of the data buffer and address register are not automatically saved when an interrupt occurs).

START:
BR INITIAL ; Reset address
; Interrupt vector address

NOP	; SI01
NOP	; SI00
NOP	; TM3
NOP	; TM2
NOP	; TM1
NOP	; TM0
NOP	; INT4
NOP	; INT3
NOP	INT2
NOP	INT1
BR	INTINTO
NOP	INT0
	INown edge of CE

INTINTO:
PUT DBFSTK, DBF ; Saves contents of DBF to first level of data buffer ; stack (DBFSTK)
GET DBF, AR ; Transfers contents of address register (AR) to DBF
PUT DBFSTK, DBF ; Saves contents of AR to second level of data buffer ; stack

Processing B ; INT0 interrupt processing
GET DBF, DBFSTK ; Restores second level of data buffer stack to data buffer,
PUT AR, DBF ; and restores contents of data buffer to address register
GET DBF, DBFSTK ; Restores first level of data buffer stack to data buffer
EI
RETI
INITIAL:
SET1 IP0
El
LOOP:
Processing A
BR LOOP
END

10.6 Cautions on Using Data Buffer Stack

The contents of the data buffer stack are not automatically saved when an interrupt is accepted, and therefore, must be saved by software.

Even when a bank of the data memory other than BANKO is specified, the contents of the data buffer (existing in BANKO) can be saved or restored by using the "PUT" and "GET" instructions.

11. GENERAL-PURPOSE PORT

The general-purpose ports output high-level, low-level, or floating signals to external circuits, and read highlevel or low-level signals from external circuits.

11.1 Outline of General-purpose Port

Table 11-1 shows the relationships between each port and port register.
The general-prupose ports are classified into I/O, input, and output ports.
The I/O ports are further subclassified into bit I/O ports that can be set in the input or output mode in 1-bit (1-pin) units, and group I/O ports that can be set in the input or output mode in 4-bit (4-pin) units. The inut or output mode of each I/O port is specified by the port input/output selection registers (addresses 60H through 6 FH) of BANK15.

Table 11-1. Relationships between Port (Pin) and Port Register (1/3)

Port	Pin			Data Setting Method				
	No.	Symbol	I/O	Port register (data memory)				
						Symbol	Bit symbol (reserved word)	
Port 0A	63	P0A3	I/O (bit I/O)	BANK0	70 H	POA	b_{3}	POA3
	64	POA2					b_{2}	P0A2
	65	P0A1					b_{1}	P0A1
	66	POAO					bo	POAO
Port 0B	67	P0B3	I/O (bit I/O)		71H	POB	b_{3}	P0B3
	68	P0B2					b_{2}	P0B2
	69	P0B1					b_{1}	P0B1
	70	P0B0					bo	POB0
Port 0C	59	P0C3	I/O (bit I/O)		72H	POC	b_{3}	P0C3
	60	P0C2					b_{2}	P0C2
	61	P0C1					b_{1}	P0C1
	62	P0C0					bo	P0C0
Port 0D	22	P0D3	Input		73H	POD	b_{3}	P0D3
	23	P0D2					b2	P0D2
		P0D1					b_{1}	P0D1
	25	POD0					bo	PODO

Table 11-1. Relationships between Port (Pin) and Port Register (2/3)

Port	Pin			Data Setting Method				
	No.	Symbol	I/O	Port register (data memory)				
				Bank	Address	Symbol	Bit symbol(reserved word)	
Port 1A	$\begin{array}{r} -\frac{2}{3} \\ --\frac{2}{4} \\ --\frac{4}{5} \end{array}$		Input	BANK1	70 H	P1A	b_{3} $-\mathrm{b}_{2}$ $-b_{1}$ $-b_{1}$ $\mathrm{~b}_{0}$	
Port 1B	$\begin{gathered} 17 \\ -\quad-1 \\ -18 \\ \hdashline 19 \\ -- \\ 20 \end{gathered}$	P1B3 --- P1B2 P1B1 --- P1B0	Output		71H	P1B	b_{3} $-\mathrm{b}_{2}$ $-\mathrm{b}_{1}$ $\mathrm{~b}_{0}$	
Port 1C	26 $-\quad-$ -27 -28 $-\quad-$ 29		Input		72H	P1C	b_{3} $-\mathrm{b}_{2}$ $-\mathrm{b}_{2}$ $\mathrm{~b}_{1}$ $\mathrm{~b}_{0}$	
Port 1D	37 -- -38 $-\quad$ 39 - 40	P1D3 P1D2 ---- P1D1 P1D0	I/O (bit I/O)		73H	P1D	b_{3} $-\mathrm{b}_{2}$ $-\mathrm{b}_{2}$ $-\mathrm{b}_{1}$ $\mathrm{~b}_{0}$	
Port 2A				BANK2	70 H	P2A	$\begin{gathered} b_{3} \\ -b_{2} \\ -b_{1} \\ -b_{1} \\ \hdashline b_{0} \end{gathered}$	
Port 2B	$\left[\begin{array}{c} 43 \\ --- \\ 44 \\ -- \\ \hline-5 \\ - \\ \hline 46 \end{array}\right.$		I/O (bit I/O)		71H	P2B	b_{3} $-\mathrm{b}_{2}$ $-\mathrm{b}_{1}$ $-b_{0}$ $\mathrm{~b}_{0}$	P2B3 P2B2 P2B1 P2B0
Port 2C	55 $-\mathbf{-}$ -56 $-\quad-$ $-\frac{57}{58}$	P 2 C 3 $-\mathrm{C}-\mathrm{C}^{2}-$ $\mathrm{P} 2 \mathrm{C}-$ P 2 C 1 ---- P 2 C 0	I/O (bit I/O)		72H	P2C	$\begin{aligned} & \mathrm{b}_{3} \\ & -\frac{1}{\mathrm{~b}_{2}} \\ & -\mathrm{b}_{1} \\ & -\mathrm{b}_{0} \end{aligned}$	$\begin{aligned} & \mathrm{P} 2 \mathrm{C} 3 \\ & -\mathrm{-} \\ & \mathrm{P} 2 \mathrm{C} 2 \\ & -\mathrm{P} 2 \mathrm{C} 1 \\ & ---- \\ & \mathrm{P} 2 \mathrm{C} 0 \end{aligned}$
Port 2D			I/O (bit I/O)		73H	P2D	b_{3} $-\mathrm{b}_{2}$ $-\mathrm{b}_{2}$ $-\mathrm{b}_{1}$ $\mathrm{~b}_{0}$	

Table 11-1. Relationships between Port (Pin) and Port Register (3/3)

Port	Pin			Data Setting Method			
	No.	Symbol	I/O	Port register (data memory)			
				Bank	Address	Symbol	Bit symbol (reserved word)
Port 3A	$\begin{array}{r} -\frac{6}{7} \\ --\frac{8}{9} \\ --\frac{8}{9} \end{array}$		$\begin{aligned} & \text { I/O } \\ & \text { (group I/O) } \end{aligned}$	BANK3	70 H	P3A	
Port 3B	$\left[\begin{array}{c} 10 \\ -1 \\ -11 \\ -12 \\ -13 \end{array}\right.$		$\begin{aligned} & \text { I/O } \\ & \text { (group I/O) } \end{aligned}$		71H	P3B	
Port 3C	47 $-\quad-$ -48 - 49 - 50	P3C3 ----- P3C2 ---- P3C1 ---- P3C0	$\begin{aligned} & \text { I/O } \\ & \text { (group I/O) } \end{aligned}$		72 H	P3C	
Port 3D	51 $-\quad-$ -52 $-\quad$ -23 -54	P3D3 ----- P3D2 ---- P3D1 ---- P3D0	$\begin{aligned} & \text { I/O } \\ & \text { (group I/O) } \end{aligned}$		73 H	P3D	
-	No pin		-	BANK4 \| BANK15Note	70H-73H	-	Fixed to "0"

Note The μ PD17704 and 17705 do not have BANKs 6 through 14. μ PD17707 and 17708 do not have BANKs 10 through 14.
11.2 General-Purpose I/O Port (P0A, P0B, P0C, P1D, P2A, P2B, P2C, P2D, P3A, P3B, P3C, P3D)

11.2.1 Configuration of I/O port

The following paragraphs (1) and (2) show the configuration of the I/O ports.
(1) POA (POA1, POAO)

POB (POB3, POB2, POB1, POBO)
POC (POC3, POC2, POC1, POCO)
P1D (P1D3, P1D2, P1D1, P1D0)
P2A (P2A2, P2A1, P2A0)
P2B (P2B3, P2B2, P2B1, P2B0)
P2C (P2C3, P2C2, P2C1, P2C0)
P2D (P2D2, P2D1, P2D0)
P3A (P3A3, P3A2, P3A1, P3A0)
P3B (P3B3, P3B2, P3B1, P3B0)
P3C (P3C3, P3C2, P3C1, P3C0)
P3D (P3D3, P3D2, P3D1, P3D0)

Note This is an internal signal that is output when the clock stop instruction is executed, and this circuit is designed not to increase the current consumption due to noise even if it is floated.
(2) POA (POA3, POA2)

Note This is an internal signal that is output when the clock stop instruction is executed, and this circuit is designed not to increase the current consumption due to noise even if it is floated.

11.2.2 Using I/O port

The input or output mode of the I/O ports is set by I/O selection register P0A, P0B, P0C, P1D, P2A, P2B, P2C, P2D, P3A, P3B, P3C, or P3D of the control registers.

Because P0A, P0B, P0C, P1D, P2A, P2B, P2C, and P2D are bit I/O ports, they can be set in the input or output mode in 1-bit units.

P3A, P3B, P3C, and P3D are group I/O ports, and therefore they are set in the input or output mode in 4bit units.

Setting the output data of or reading the input data of a port is carried out by executing an instruction that writes data to or reads data from the port.
11.2 .3 shows the configuration of the I/O selection register of each port.
11.2 .4 and 11.2.5 describe how each port is used as an input or output port.
11.2.6 describes the points to be noted when using the I/O ports.

11.2.3 I/O port I/O selection register

The following I/O selection registers of the I/O ports are available.

- Port OA bit I/O selection register
- Port OB bit I/O selection register
- Port OC bit I/O selection register
- Port 1D bit I/O selection register
- Port 2A bit I/O selection register
- Port 2B bit I/O selection register
- Port 2C bit I/O selection register
- Port 2D bit I/O selection register
- Group I/O selection registers (port 3A, port 3B, port 3C, port 3D)

Each I/O selection register sets the input or output mode of the corresponding port pin.
The following paragraphs (1) through (9) descibe the configuration and functions of the above I/O selection registers.
(1) Port OA bit I/O selection register

	Power-ON reset	0	0	
	WDT\&SP reset	0	0	
	CE reset	Retained		
Clock stop		Retained		

(2) Port OB bit I / O selection register

| Name | Flag symbol | | | Address | Read/Write | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | b | b2 | b1 | bo | | |
| Port OB bit I/O selection | P | P | P | P | (BANK15) | R/W |
| | 0 | 0 | 0 | 0 | $6 E H$ | |
| | B | B | B | B | | |
| | B | B | B | B | | |
| | I | I | I | I | | |
| | O | O | O | O | | |
| | 3 | 2 | 1 | 0 | | |

	Sets input/output mode of port
0	Sets POBO pin in input mode
1	Sets POB0 pin in output mode

	Sets input/output mode of port
0	
1	Sets P0B2 pin in input mode
Sets POB2 pin in output mode	

	Sets input/output mode of port
0	Sets POB3 pin in input mode
1	Sets POB3 pin in output mode

	Power-ON reset	0	0	0	0
	WDT\&SP reset	0	0	0	0
	CE reset	Retained			
Clock stop		Retained			

(3) Port OC bit I/O selection register

| Name | Flag symbol | | | Address | Read/Write | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | b $_{3}$ | b $_{2}$ | b1 | bo | | |
| Port 0C bit I/O selection | P | P | P | P | (BANK15) | R/W |
| | 0 | 0 | 0 | 0 | $6 D H$ | |
| | C | C | C | C | | |
| | B | B | B | B | | |
| | I | I | I | I | | |
| | O | O | O | O | | |
| | 3 | 2 | 1 | 0 | | |

	Sets input/output mode of port
0	Sets POC0 pin in input mode
1	Sets POCO pin in output mode

Sets input/output mode of port
Sets P0C1 pin in input mode
Sets P0C1 pin in output mode

	Sets input/output mode of port
0	Sets POC2 pin in input mode
Sets POC2 pin in output mode	

0	Sets input/output mode of port
1	Sets POC3 pin in input mode
Sets POC3 pin in output mode	

	Power-ON reset	0	0	0	0
	WDT\&SP reset	0	0	0	0
	CE reset	Retained			
Clock stop		Retained			

(4) Port 1D bit I/O selection register

| Name | Flag symbol | | | Address | Read/Write | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | b | b2 | b1 | bo | | |
| Port 1D bit I/O selection | P | P | P | P | (BANK15) | R/W |
| | 1 | 1 | 1 | 1 | 6 CH | |
| | D | D | D | D | | |
| | B | B | B | B | | |
| | I | I | I | I | | |
| | O | O | O | O | | |
| | 3 | 2 | 1 | 0 | | |

	Sets input/output mode of port
0	Sets P1D0 pin in input mode
	1

Sers input/output mode of port
0

苞	Power-ON reset	0	0	0
	WDT\&SP reset	0	0	0
	CE reset	Retained		
Clock stop		Retained		

(5) Port 2A bit I/O selection register

| Name | Flag symbol | | | Address | Read/Write | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | b $_{3}$ | b $_{2}$ | b $_{1}$ | bo $_{0}$ | | |
| Port 2A bit I/O selection | 0 | P | P | P | (BANK15) | R/W |
| | | 2 | 2 | 2 | $6 B H$ | |
| | | A | A | A | | |
| | | B | B | B | | |
| | | I | I | I | | |
| | | O | O | O | | |
| | | 2 | 1 | 0 | | |

	Sets input/output mode of port
0	Sets P2A0 pin in input mode
1	Sets P2A0 pin in output mode

	Sets input/output mode of port
	Sets P2A2 pin in input mode
Sets P2A2 pin in output mode "0"	

$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{\otimes} \\ & \stackrel{\omega}{む} \\ & \stackrel{\rightharpoonup}{¿} \end{aligned}\right.$	Power-ON reset	0	0	0
	WDT\&SP reset		0	0
	CE reset	Retained		
Clock stop		Retained		

(6) Port 2B bit I/O selection register

$\begin{aligned} & \stackrel{\rightharpoonup}{\otimes} \\ & \stackrel{\omega}{0} \\ & \stackrel{せ}{\rightleftarrows} \end{aligned}$	Power-ON reset	0	0	0	0
	WDT\&SP reset	0	0	0	0
	CE reset	Retained			
Clock stop		Retained			

(7) Port 2C bit I/O selection register

$\begin{aligned} & \stackrel{\rightharpoonup}{\oplus} \\ & \stackrel{\omega}{0} \\ & \stackrel{\overleftarrow{~}}{2} \end{aligned}$	Power-ON reset		0	0	0
	WDT\&SP reset	0	0	0	0
	CE reset	Retained			
Clock stop		Retained			

(8) Port 2D bit I/O selection register

+	Power-ON reset	0 0 0:0			
	WDT\&SP reset		0	0	0
	CE reset			etain	
Clock stop		,		etain	

(9) Group I/O selection register (ports 3A, 3B, 3C, 3D)

$$	Power-ON reset	0	0	0	0
	WDT\&SP reset	0	0	0	0
	CE reset	Retained			
Clock stop		Retained			

11.2.4 When using I/O port as input port

The port pin to be set in the input mode is selected by the I/O selection register corresponding to the port.
Ports P0A, P0B, P0C, P1D, P2A, P2B, P2C, and P2D can be set in the input or output mode in 1-bit units. P3A, P3B, P3C, and P3D can be set in the input or output mode in 4-bit units.

The pin set in the input mode is floated ($\mathrm{Hi}-\mathrm{Z}$) and waits for input of an external signal.
The input data is read by executing a read instruction (such as SKT) to the port register corresponding to the port pin.
" 1 " is read from the port register when a high level is input to the corresponding port pin; when a low level is input to the port pin, " 0 " is read from the register.

When a write instruction (such as MOV) is executed to the port register corresponding to the pin set in the input mode, the contents of the output latch are rewritten.

11.2.5 When using I/O port as output port

The port pin to be set in the output mode is selected by the I/O selection register corresponding to the port.
Ports P0A, P0B, P0C, P1D, P2A, P2B, P2C, and P2D can be set in the input or output mode in 1-bit units. P3A, P3B, P3C, and P3D can be set in the input or output mode in 4-bit units.

The pin set in the output mode outputs the contents of the output latch.
The output data is set by executing a write instruction (such as MOV) to the port register corresponding to the port pin.

Write " 1 " to the port register to output a high level to the port pin; write " 0 " to output a low level. The port pin can be also floated ($\mathrm{Hi}-\mathrm{Z}$) if it is set in the input mode.

If a read instruction (such as SKT) is executed to the port register corresponding to a port pin set in the output mode, the contents of the output latch are read.

Note, however, that the contents of the output latch of the POA3 and POA2 pins may differ from the read contents because the status of these pins are read as are (refer to 11.2.6).

11.2.6 Cautions on using I/O port (POA3 and POA2 pins)

When using the POA3 and POA2 pins in the output mode, the contents of the output latch may be rewritten as shown in the example below.

Example To set the POA3 and POA2 pins in the output mode

```
    BANK15
INITFLG POABI03, POABI02, NOT POABI01, NOT P0ABIO0 ; Sets POA3 and POA2 pins in output mode
INITFLG POA3, P0A2, NOT POA1, NOT POA0 ; Outputs high level to P0A3 and
    P0A2 pins
; <1>
CLR1 POA3 ; Outputs low level to P0A3 pin
MACRO EXTEND
AND .MF.POA3 SHR 4, #.DF.(NOT POA3 AND 0FH)
If the POA2 pin is externally made low when the instruction in the above example \(<1>\) is executed, the contents of the output latch of the POA2 pin are rewritten to " 0 " by the CLR1 instruction. In other words, if an instruction that reads the contents of port register POA is executed while the POA3 or POA2 pin is set in the output mode, the contents of the output latch are rewritten to the pin level at that time, regardless of the previous status.
```


11.2.7 Status of I/O port at reset

(1) At power-ON reset

All the I/O ports are set in the input mode.
The contents of the output latch are reset to " 0 ".
(2) At WDT\&SP reset

All the I/O ports are set in the input mode.
The contents of the output latch are reset to " 0 ".
(3) At CE reset

The setting of the input or output mode is retained.
The contents of the output latch are also retained.
(4) On execution of clock stop instruction

The setting of the input or output mode is retained.
The contents of the output latch are also retained.
(5) In halt status

The previous status is retained.

11.3 General-Purpose Input Port (P0D, P1A, P1C)

11.3.1 Configuration of input port

The following paragraphs (1) and (2) show the configuration of the input port.
(1) P0D (P0D3, P0D2, P0D1, P0D0)

Note This is an internal signal output on execution of the clock stop instruction, and its circuit is designed not to increase the current consumption due to noise even if the pin is floated.
(2) P1A (P1A3, P1A2, P1A1, P1A0) P1C (P1C3, P1C2, P1C1, P1C0)

Note This is an internal signal output on execution of the clock stop instruction, and its circuit is designed not to increase the current consumption due to noise even if the pin is floated. (Except P1A3, P1A2, P1A0)

11.3.2 Using input port

The input data is read by executing a read instruction (such as SKT) to the port register corresponding to the port pin.
" 1 " is read from the port register when a high level is input to the corresponding port pin; when a low level is input to the port pin, " 0 " is read from the register.

Nothing is affected even if a write instruction (such as MOV) is executed to the port register.
POD has a pull-down resistor that can be connected or disconnected by software in 1-bit units. The pull-down resistor is connected when " 0 " is written to the corresponding bit of the port 0D pull-down resistor selection register. When " 1 " is written to the corresponding bit of this register, the pull-down resistor is disconnected.

11.3.3 Port OD pull-down resistor selection register

The port OD pull-down resistor selection register specifies whether a pull-down resistor is connected to P0D3 through PODO pins. The configuration and function of this register are illustrated below.

- Port OD pull-down resistor selection register

Name	Flag symbol			Address	Read/Write	
	b $_{3}$	b2	b1	bo		
	P	P	P	P	(BANK15)	R/W
	0	0	0	0	$66 H$	
	D	D	D	D		
	P	P	P	P		
	L	L	L	L		
	D	D	D	D		
	3	2	1	0		

11.3.4 Status of input port at reset

(1) At power-ON reset

All the input ports are set in the input mode.
All the pull-down resistors of POD are connected.
(2) At WDT\&SP reset

All the input ports are set in the input mode.
All the pull-down resistors of POD are connected.
(3) At CE reset

The input ports are set in the input mode.
The pull-down resistors of POD retain the previous status.
(4) On execution of clock stop instruction

The input ports are set in the input mode.
The pull-down resistors of POD retain the previous status.
(5) In halt status

The previous status is retained.

11.4 General-Purpose Output Port (P1B)

11.4.1 Configuration of output port

The configuration of the output port is shown below.
(1) P1B (P1B3, P1B2, P1B1, P1B0)

11.4.2 Using output port

The output port outputs the contents of the output latch to each pin.
The output data is set by executing a write instruction (such as MOV) to the port register corresponding to the port pin.

Write " 1 " to the port register to output a high level to the port pin; write " 0 " to output a low level.
However, because P1B is an N-ch open-drain output port, it is floated when it outputs a high level. Therefore, an external pull-up resistor must be connected to this port.

If a read instruction (such as SKT) is executed to the port register, the contents of the output latch are read.

11.4.3 Status of output port at reset

(1) At power-ON reset

The contents of the output latch are output.
The contents of the output latch are reset to " 0 ".

(2) At WDT\&SP reset

The contents of the output latch are output.
The contents of the output latch are reset to " 0 ".

(3) At CE reset

The contents of the output latch are output.
The contents of the output latch are retained.
(4) On execution of clock stop instruction

The contents of the output latch are output.
The contents of the output latch are retained.
(5) In halt status

The contents of the output latch are output.
The contents of the output latch are retained.

12. INTERRUPT

12.1 Outline of Interrupt Block

Figure 12-1 outlines the interrupt block.
As shown in the figure, the interrupt block temporarily stops the currently executed program and branches execution to a vector address in response to an interrupt request output by a peripheral hardware unit.

The interrupt block consists of an "interrupt request servicing block" corresponding to each peripheral hardware unit, "interrupt enable flip-flop" that enables all interrupts, "stack pointer" that is controlled when an interrupt is accepted, "address stack registers", "program counter", and "interrupt stack".

The "interrupt control block" of each peripheral hardware unit consists of an "interrupt request flag (IRQ×xx)" that detects the corresponding interrupt request, "interrupt enable flag (IP $\times \times \times$)" that enables the interrupt, and "vector address generator (VAG)" that specifies a vector address when the interrupt is accepted.

The μ PD17709 has the following 12 types of maskable interrupts.

- CE pin falling edge interrupt
- INT0 through INT4 interrupts
- Timer 0 through timer 3 interrupts
- Serial interface 0 and serial interface 1 interrupts

When an interrupt is accepted, execution branches to a predetermined address, and the interrupt is serviced.

Figure 12-1. Outline of Interrupt Block

12.2 Interrupt Control Block

An interrupt control block is provided for each peripheral hardware unit. This block detects issuance of an interrupt request, enables the interrupt, and generates a vector address when the interrupt is accepted.

12.2.1 Configuration and function of interrupt request flag (IRQ $\times \times \times \times$)

Each interrupt request flag is set to 1 when an interrupt request is issued by the corresponding peripheral hardware unit, and is reset to 0 when the interrupt is accepted.

Writing the interrupt request flag to " 1 " via a window register is equivalent to issuance of the interrupt request.
By detecting the interrupt request flag when an interrupt is not enabled, issuance status of each interrupt request can be detected.

Once the interrupt request flag has been set, it is not reset until the corresponding interrupt is accepted, or until " 0 " is written to the flag via a window register.

Even if two or more interrupt requests are issued at the same time, the interrupt request flag corresponding to the interrupt that has not been accepted is not reset.

Figures 12-2 through 12-13 show the configuration and function of the respective interrupt request registers.

Figure 12-2. Configuration of Serial Interface 1 Interrupt Request Register

Name	Flag symbol				Address	Read/Write		
	b_{3}	b2	b_{1}	b_{0}				
Serial interface 1 interrupt request	0	0	0	I R Q S 1 0 1	34 H	R/W		
			$-$		Indicates interrupt req Interrupt request not issued			
				0				
				1	Interrupt request issued			
					Fixed to "0"			

	Power-ON reset	0	0 0		0
	WDT\&SP reset				0
	CE reset				R
	ck stop				R

R: Retained

Figure 12-3. Configuration of Serial Interface 0 Interrupt Request Register

	Power-ON reset	0	0 0		
	WDT\&SP reset				0
	CE reset				R
Clock stop			,		R

R: Retained

Figure 12-4. Configuration of Timer 3 Interrupt Request Register

$\begin{aligned} & \stackrel{\rightharpoonup}{\otimes} \\ & \stackrel{\otimes}{0} \\ & \stackrel{4}{4} \end{aligned}$	Power-ON reset		00 000		
	WDT\&SP reset				0
	CE reset				R
	ck stop		1		R

R: Retained

Figure 12-5. Configuration of Timer 2 Interrupt Request Register

$\begin{aligned} & \overleftarrow{\otimes} \\ & \text { 义 } \\ & \text { 世 } \end{aligned}$	Power-ON reset	$\begin{array}{l:l:l:}0 & 0 & 0\end{array}$			
	WDT\&SP reset				0
	CE reset				R
	ck stop				R

R: Retained

Figure 12-6. Configuration of Timer 1 Interrupt Request Register

$\begin{aligned} & \stackrel{\rightharpoonup}{\Phi} \\ & \stackrel{\rightharpoonup}{\otimes} \\ & \stackrel{\rightharpoonup}{4} \end{aligned}$	Power-ON reset	$\begin{array}{l:l:l:}0 & 0 & 0\end{array}$			
	WDT\&SP reset				0
	CE reset				R
	ck stop		1		R

R: Retained

Figure 12-7. Configuration of Timer 0 Interrupt Request Register

	Power-ON reset	$\begin{array}{l:l:l:l}0 & 0 & 0 & 0\end{array}$			
	WDT\&SP reset	,			0
	CE reset	!			R
	ck stop	,			R

R: Retained

Figure 12-8. Configuration of INT4 Pin Interrupt Request Register

$\begin{aligned} & \stackrel{\rightharpoonup}{\mathbb{W}} \\ & \stackrel{\rightharpoonup}{ \pm} \\ & \stackrel{\rightharpoonup}{\mathbf{0}} \end{aligned}$	Power-ON reset	U 0 0:0 0			
	WDT\&SP reset	U			0
	CE reset	U			R
	ck stop	U			R

U: Undefined, R : Retained

Figure 12-9. Configuration of INT3 Pin Interrupt Request Register

	Power-ON reset	U 0 O 0 O			
	WDT\&SP reset	U			0
	CE reset	U			R
	k stop	U			R

U: Undefined, R : Retained

Figure 12-10. Configuration of INT2 Pin Interrupt Request Register

	Power-ON reset	U: $0: 000$			
	WDT\&SP reset	U			0
	CE reset	U			R
Clock stop		U			R

U: Undefined, R : Retained

Figure 12-11. Configuration of INT1 Pin Interrupt Request Register

	Power-ON reset	U 00 O 0 O: 0			
	WDT\&SP reset	U	'		0
	CE reset	U			
	ck stop	U			

U: Undefined, R: Retained

Figure 12-12. Configuration of INTO Pin Interrupt Request Register

$\begin{aligned} & \stackrel{\rightharpoonup}{\otimes} \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{\rightleftarrows} \end{aligned}$	Power-ON reset	U 0000			
	WDT\&SP reset	U			0
	CE reset	U			R
Clock stop		U			R

U: Undefined, R: Retained

Figure 12-13. Configuration of CE Pin Interrupt Request Register

$\begin{aligned} & \stackrel{\rightharpoonup}{\otimes} \\ & 0 \\ & \stackrel{0}{<} \end{aligned}$	Power-ON reset	U	0		0
	WDT\&SP reset	U		0	0
	CE reset	U		0	R
Clock stop		U		0	R

U : Undefined, R : Retained

12.2.2 Function and configuration of interrupt request flag (IP $\times \times \times$)

Each interrupt request flag enables the interrupt of the corresponding peripheral hardware unit. In order for an interrupt to be accepted, all the following conditions must be satisfied.

- The interrupt must be enabled by the corresponding interrupt request flag.
- The interrupt request must be issued by the corresponding interrupt request flag.
- The El instruction (which enables all interrupts) must be executed.

The interrupt enable flags are located on the interrupt enable register on the register file.
Figures 12-14 through 12-16 show the configuration and function of each interrupt enable register.

Figure 12-14. Configuration of Interrupt Enable Register 1

	Power-ON reset	0	0	0
	WDT\&SP reset	0	0	0
	CE reset	Retained		
Clock stop		Retained		

Figure 12-15. Configuration of Interrupt Enable Register 2

	Power-ON reset	0 0 0	0
	WDT\&SP reset	$\begin{array}{l:l:l}0 & 0 & 0\end{array}$	0
	CE reset	Retained	
Clock stop		Retained	

Figure 12-16. Configuration of Interrupt Enable Register 3

	Power-ON reset	0	0	0	0
	WDT\&SP reset	0	0	0	0
	CE reset	Retained			
Clock stop		Retained			

12.2.3 Vector address generator (VAG)

The vector address generator generates a branch address (vector address) of the program memory corresponding to an interrupt source that has been accepted from the corresponding peripheral hardware.

Table 12-1 shows the vector addresses of the respective interrupt sources.

Table 12-1. Interrupt Sources and Vector Addresses

Interrupt Source	Vector Address
Falling edge of CE pin	00 CH
INT0 pin	00 BH
INT1 pin	00 AH
INT2 pin	009 H
INT3 pin	008 H
INT4 pin	007 H
Timer 0	006 H
Timer 1	005 H
Timer 2	004 H
Timer 3	003 H
Serial interface 0	002 H
Serial interface 1	001 H

12.3 Interrupt Stack Register

12.3.1 Configuration and function of interrupt stack register

Figure 12-17 shows the configuration of the interrupt stack register.
The interrupt stack register saves the contents of the following system registers (except the address register (AR)) when an interrupt is accepted.

- Window register (WR)
- Bank register (BANK)
- Index register (IX)
- General pointer (RP)
- Program status word (PSWORD)

When an interrupt is accepted and the contents of the above system registers are saved to the interrupt stack, the contents of the above system registers, except the window register, are reset to " 0 ".

The interrupt stack can save the contents of the above system registers at up to four levels.
Therefore, interrupts can be nested up to four levels.
The contents of the interrupt stack register are restored to the system registers when the interrupt return (RETI) instruction is executed.

The contents of the interrupt stack register are undefined at power-ON reset.
The previous contents are retained at CE reset and on execution of the clock stop instruction.

Figure 12-17. Configuration of Interrupt Stack Register

Interrupt stack pointer of system register				Interrupt stack register (INTSK)								
				Name	Window stack WRSK	Bank stack BANKSK	Index stack H IXHSK	Index stack M IXHSK	Index stack L IXHSK	Pointer stack H RPHSK	Pointer stack L RPLSK	Status stack PSWSK
Bit				Address	Bit							
b	b_{2}	b_{1}	bo									
0	S	S		OH	Undefined							
	S	S	S	1H			-	- ${ }^{\text {N }}$			-	
	P	P		2 H				1 N T	K 2			
				3 H				-	K $\begin{aligned} & 1 \\ & 1\end{aligned}$			
				4H	-			O N T	$\begin{array}{ll}\mathrm{K} & 4 \\ \vdots \\ \vdots\end{array}$,	
				5 H					fined			

12.3.2 Interrupt stack pointer of system register

The interrupt stack pointer of the system register detects the nesting level of interrupts. The interrupt stack pointer can be only read and cannot be written.

The configuration and function of the interrupt stack pointer are illustrated below.

$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \underline{\omega} \\ & \stackrel{\rightharpoonup}{\rightleftarrows} \end{aligned}$	Power-ON reset	$\begin{array}{l:l:l:l}0 & 1 & 0 & 1\end{array}$			
	WDT\&SP reset		1		1
	CE reset		1		1
Clock stop		, Retained			

12.3.3 Interrupt stack operation

Figure 12-8 shows the operation of the interrupt stack.
When nested interrupts exceeding four levels are accepted, since the contents saved first are discarded they therefore must be saved by the program.

Figure 12-18. Operation of Interrupt Stack (1/2)
(a) Where interrupt nesting level is 4 or less

Figure 12-18. Operation of Interrupt Stack (2/2)
(b) Where interrupt nesting level is 5 or more

Caution The system is reset when an interrupt of level 5 is accepted.
However, the ISPRES flag, which resets the non-maskable interrupt if the interrupt stack overflows or underflows, must be set to " 1 ". This flag is " 1 " after system reset, and can then be written only once.

12.4 Stack Pointer, Address Stack Registers, and Program Counter

The address stack registers save a return address when execution returns from an interrupt routine.
The stack pointer specifies the address of an address stack register.
When an interrupt is accepted, the value of the stack pointer is decremented by one, and the value of the program counter at that time is saved to an address stack register specified by the stack pointer.

Next, the interrupt routine is executed. When the interrupt return (RETI) instruction is executed after that, the contents of an address stack register specified by the stack pointer are restored to the program counter, and the value of the stack pointer is incremented by one.

For further information, also refer to 3. ADDRESS STACK (ASK).

12.5 Interrupt Enable Flip-Flop (INTE)

The interrupt enable flip-flop enables or disables the 12 types of maskable interrupts.
When this flip-flop is set, all the interrupts are enabled. When it is reset, all the interrupts are disabled.
This flip-flop is set or reset by dedicated instructions EI (to set) and DI (to reset).
The El instruction sets this flip-flop when the instruction next to El is executed, and the DI instruction resets the flip-flop while it is being executed.

When an interrupt is accepted, this flip-flop is automatically reset.
This flip-flop is also reset at power-ON reset, at a reset by the RESET pin, at a watchdog timer, overflow or underflow of the stack, and at CE reset. The flip-flop retains the previous status on execution of the clock stop instruction.

12.6 Accepting Interrupt

12.6.1 Accepting interrupt and priority

The following operations are performed before an interrupt is accepted.
(1) Each peripheral hardware unit outputs an interrupt request signal to the corresponding interrupt request block if a given interrupt condition (for example, input of the falling signal to the INT0 pin) is satisfied.
(2) When each interrupt request block accepts an interrupt request signal from the corresponding peripheral hardware unit, it sets the corresponding interrupt request flag (for example, IRQ0 flag if it is the INT0 pin that has issued the interrupt request) to " 1 ".
(3) The interrupt enable flag corresponding to each interrupt request flag (for example, IPO flag if the interrupt request flag is IRQ0) is set to " 1 " when each interrupt request flag is set to " 1 ", and each interrupt request block outputs "1".
(4) The signal output by the interrupt request block is ORed with the output of the interrupt enable flip-flop, and an interrupt accept signal is output.
This interrupt enable flip-flop is set to " 1 " by the El instruction, and reset to " 0 " by the DI instruction. If " 1 " is output by each interrupt request processing block while the interrupt enable flip-flop is set to " 1 ", the interrupt is accepted.

As shown in Figure 12-1, the output of the interrupt enable flip-flop is input to each interrupt request block via an AND circuit when an interrupt is accepted.

The signal input to each interrupt request block causes the interrupt request flag corresponding to each interrupt request flag to be reset to " 0 " and the vector address corresponding to each interrupt to be output.

If the interrupt request block outputs " 1 " at this time, the interrupt accept signal is not transferred to the next stage. If two or more interrupt requests are issued at the same time, therefore, the interrupts are accepted according to the priority shown in Table 12-2.

Unless the interrupt request enable flag is set to " 1 ", the corresponding interrupt is not accepted.
Therefore, by resetting the interrupt enable flag to " 0 ", the interrupt with a high hardware priority can be disabled.

Table 12-2. Interrupt Priority

Interrupt Source	Priority
Falling edge of CE pin	1
INT0 pin	2
INT1 pin	3
INT2 pin	4
INT3 pin	5
INT4 pin	6
Timer 0	7
Timer 1	8
Timer 2	9
Timer 3	10
Serial interface 0	11
Serial interface 1	12

12.6.2 Timing chart when interrupt is accepted

The timing charts in Figure 12-19 illustrate the operations performed when an interrupt or interrupts are accepted.

Figure 12-19 (1) is the timing chart when one interrupt is accepted.
(a) in (1) is the timing chart where the interrupt request flag is set to " 1 " after all the others, and (b) is the timing chart where the interrupt enable flag is set to "1" after all the others.

In either case, the interrupt is accepted when the interrupt request flag, interrupt enable-flip flop, and interrupt enable flag all have been set to " 1 ".

If the flag or flip-flop that has been set last is set in the first instruction cycle of the "MOVT DBF, @AR" instruction or by an instruction that satisfies a given skip condition, the interrupt is accepted in the second instruction cycle of the "MOVT DBF, @AR" instruction or after the instruction that is skipped (this instruction is treated as NOP) has been executed.

The interrupt enable flip-flop is set in the instruction cycle next to that in which the El instruction is executed.
Therefore, the interrupt is accepted after the instruction next to the El instruction has been executed even when the interrupt request flag is set in the execution cycle of the El instruction.
(2) in Figure 12-19 is the timing chart where two or more interrupts are used.

When two or more interrupts are used, the interrupts are accepted according to the hardware priority if all the interrupt enable flags are set. However, the hardware priority can be changed by setting the interrupt enable flags by the program.
"Instruction cycle" shown in Figure 12-19 is a special cycle in which the interrupt request flag is reset, a vector address is specified, and the contents of the program counter are saved after an interrupt has been accepted. It takes $1.78 \mu \mathrm{~s}$, which is equivalent to one instruction execution time, to be completed.

For details, refer to 12.7 Operation after Interrupt Has Been Accepted.

Figure 12-19. Timing Charts When Interrupt Is Accepted (1/3)
(1) When one interrupt (e.g., rising of INTO pin) is used
(a) If there is no interrupt mask time by the interrupt flag (IP $\times \times \times$)
<1> If a normal instruction which is not "MOVT" or an instruction that satisfies a skip condition is executed when interrupt is accepted

<2> If "MOVT" or an instruction that satisfies a skip condition is executed when interrupt is accepted

Figure 12-19. Timing Charts When Interrupt Is Accepted (2/3)
(b) If interrupt is kept pending by the interrupt enable flag

(2) If two or more interrupts (e.g., INT0 pin and INT1 pin) are used
(a) Hardware priority

Figure 12-19. Timing Charts When Interrupt Is Accepted (3/3)
(b) Software priority

12.7 Operations after Interrupt Has Been Accepted

When an interrupt is accepted, the following operations are sequentially performed automatically.
(1) The interrupt enable flip-flop and the interrupt request flag corresponding to the accepted interrupt request are reset to " 0 ". As a result, the other interrupts are disabled.
(2) The contents of the stack pointer are decremented by one.
(3) The contents of the program counter are saved to an address stack register specified by the stack pointer. At this time, the contents of the program counter are the program memory address after the address at which the interrupt has been accepted.
For example, if a branch instruction is executed when the interrupt has been accepted, the contents of the program counter are the branch destination address. If a subroutine call instruction is executed, the contents of the program counter are the call destination address. If the skip condition of a skip instruction is satisfied, the next instruction is executed as NOP and then the interrupt is accepted. Consequently, the contents of the program counter are the address after that of the instruction that is skipped.
(4) The contents of the system registers (except the address register) are saved to the interrupt stack.
(5) The contents of the vector address generator corresponding to the interrupt that has been accepted are transferred to the program counter. In other words, execution branches to the interrupt routine.

The operations (1) through (5) above require the time of one special instruction cycle (1.78 $\mu \mathrm{s}$) in which normal instruction execution is not performed.

This instruction cycle is called an "interrupt cycle".
In other words, the time of one instruction cycle ($1.78 \mu \mathrm{~s}$) is required after an interrupt has been accepted until execution branches to the corresponding vector address.

12.8 Returning from Interrupt Routine

The interrupt return (RETI) instruction is used to return from an interrupt routine to the processing during which an interrupt was accepted.

When the RETI instruction is executed, the following operations are sequentially performed automatically.
(1) The contents of an address stack register specified by the stack pointer are restored to the program counter.
(2) The contents of the interrupt stack are restored to the system registers.
(3) The contents of the stack pointer are incremented by one.

The operations (1) through (3) above require one instruction cycle (1.78 $\mu \mathrm{s}$) in which the RETI instruction is executed.

The only difference between the RETI instruction and the RET and RETSK instructions, which are subroutine return instructions, is the restoration of the bank register and index register in step (2) above.

12.9 External Interrupts (CE and INTO through INT4 pins)

12.9.1 Outline of external interrupts

Figure 19-20 outlines the external interrupts.
As shown in the figure, external interrupt requests are issued at the rising or falling edges of signals input to the INT0 through INT4 pins, and at the falling edge of the CE pin.

Whether an interrupt request is issued at the rising or falling edge of an INT pin is independently specified by the program.

The INT0 through INT4 and CE pins are Schmitt trigger input pins to prevent malfunctioning due to noise. These pins do not accept a pulse input of less than 100 ns.

Figure 12-20. Outline of External Interrupts

12.9.2 Edge detection block

The edge detection block specifies the valid edge (rising or falling edge) of an input signal that issues the interrupt request of INT0 to INT4 pins, by using an interrupt edge selection register.

Figure 12-21 shows the configuration and function of the interrupt edge selection register.

Figure 12-21. Configuration of Interrupt Edge Selection Register (1/2)

+	Power-ON reset	0	0	0	0
	WDT\&SP reset	0	0	0	0
	CE reset	Retained			
Clock stop		Retained			

Caution The external input delays about 100 ns .

Figure 12-21. Configuration of Interrupt Edge Selection Register (2/2)

Name	Flag symbol			Address	Read/Write		
	b_{3}	$\mathrm{~b}_{2}$	$\mathrm{~b}_{1}$	$\mathrm{~b}_{0}$			
Interrupt edge selection 2	0	I	I	I	1 FH	R/W	
		E	E	E			
			G	G	G		
		G	G	G			
		2	1	0			

	Selects input edge to issue interrupt request (INTO pin)
0	Rising edge
1	Falling edge

Fixed to "0"

	Power-ON reset	0	0	0	0
	WDT\&SP reset		0	0	0
	CE reset	Retained			
Clock stop		Retained			

Caution The external input is delayed about 100 ns .

Note that an interrupt request signal may be issued at the time when the interrupt request issuance edge is switched by the interrupt edge selection flags (IEG0 through IEG4).

As indicated in the table 12-3, for example, if the IEG0 flag is set to "1" (falling edge), the high level is input from the INTO pin and the IEGO flag is reset to " 0 ", the edge detection circuit judges that the rising edge is input and an interrupt request is issued.

Table 12-3. Issuance of Interrupt Request by Changing IEG Flag

Changes in IEG0 through IEG4 Flags	Status of INT0 through INT4 Pins	Issuance of Interrupt Request	Status of Interrupt Request Flag
$\begin{gathered} 1 \rightarrow 0 \\ \text { (Falling) }(\text { Rising }) \end{gathered}$	Low level	Not issued	Retains previous status
	High level	Issued	Set to "1"
$\begin{gathered} 0 \rightarrow 1 \\ \text { (Rising) } \quad \text { (Falling) } \end{gathered}$	Low level	Issued	Set to "1"
	High level	Not issued	Retains previous status

12.9.3 Interrupt control block

The signal levels that are input to the INT0 through INT4 pins can be detected by using the INT0 through INT4 flags.

Because these flags are reset independently of interrupts, when the interrupt function is not used the INT0 through INT2 pins can be used as a 3-bit input port, and P1A2/INT3 and P1A3/INT4 pins can be used as a 2bit general-purpose input port.

If the interrupts are not enabled, these ports can be used as general-purpose port pins whose rising or falling edge can be detected by reading the corresponding interrupt request flags.

At this time, however, the interrupt request flags are not automatically reset and must be reset by the program.
For further information, also refer to 12.2.1 Configuration and function of interrupt request flag (IRQ $\times \times \times$).

12.10 Internal Interrupts

The following six internal interrupts are available.

- Timer 0
- Timer 1
- Timer 2
- Timer 3
- Serial interface 0
- Serial interface 1

12.10.1 Timer 0, timer 1, timer 2, and timer 3 interrupts

Interrupt requests are issued at fixed intervals.
For details, refer to 13. TIMER.

12.10.2 Serial interface 0 and serial interface 1 interrupts

Interrupt requests can be issued at the end of a serial output or serial input operation.
For details, refer to 16. SERIAL INTERFACE.

13. TIMERS

Timers are used to manage the program execution time.

13.1 Outline of Timers

Figure 13-1 outlines the timers.
The following five timers are available.

- Basic timer 0
- Timer 0
- Timer 1
- Timer 2
- Timer 3

Basic timer 0 detects the status of a flip-flop that is set at fixed time intervals in software.
Timers 0 through 3 are modulo timers and can use interrupts.
Basic timer 0 can also be used to detect a power failure. Timer 3 is multiplexed with the D/A converter. The clock of each timer is created by dividing the system clock (4.5 MHz).

Figure 13-1. Outline of Timers (1/2)
(1) Basic timer 0

(2) Timer 0

(3) Timer 1

Figure 13-1. Outline of Timers (2/2)
(4) Timer 2

(5) Timer 3

13.2 Basic Timer 0

13.2.1 Outline of basic timer 0

Figure 13-2 outlines basic timer 0.
Basic timer 0 is used as a timer by detecting in software the BTMOCY flag that is set at fixed intervals (100, 50,20 , or 10 ms).

If the BTMOCY flag is read first after power-ON reset, " 0 " is always read. After that, the flag is set to " 1 " at fixed intervals.

If the CE pin goes high, CE reset is effected in synchronization with the timing at which the BTMOCY flag is set next.

Therefore, a power failure can be detected by reading the content of the BTMOCY flag at system reset (powerON reset or CE reset).

For the details of power failure detection, refer to 21. RESET.

Figure 13-2. Outline of Basic Timer 0

Remarks 1. BTMOCK1 and BTM0CK0 (bits 1 and 0 of basic timer 0 clock selection register: refer to Figure 13-3) set the time intervals at which the BTMOCY flag is set.
2. BTMOCY (bit 0 of basic timer 0 carry register: refer to Figure 13-4) detects the status of the flip-flop.

13.2.2 Clock selection block

The clock selection block divides the system clock (4.5 MHz) and sets the time interval at which the BTMOCY flag is to be set, by using the BTM0CK0 and BTM0CK1 flags.

Figure 13-3 shows the configuration of the basic timer 0 clock selection register.

Figure 13-3. Configuration of Basic Timer 0 Clock Selection Register

13.2.3 Flip-flop and BTMOCY flag

The flip-flop is set at fixed intervals and its status is detected by the BTMOCY flag of the basic timer 0 carry register.

When the BTMOCY flag is read, it is reset to " 0 " (Read \& Reset).
The BTMOCY flag is " 0 " at power-ON reset, and is " 1 " at CE reset and on execution of the clock stop instruction. Therefore, this flag can be used to detect a power failure.

The BTMOCY flag is not set after power application until an instruction that reads it is executed. Once the read instruction has been executed, the flag is set at fixed intervals.

Figure 13-4 shows the configuration of the basic timer 0 carry register.

Figure 13-4. Configuration of Basic Timer 0 Carry Register

芉	Power-ON reset	0 0 0 0			
	WDT\&SP reset				R
	CE reset				1
	ck stop				R

R: Retained

13.2.4 Example of using basic timer 0

An example of a program using basic timer 0 is shown below.
This program executes processing A every 1 second.

Example

```
            CLR2 BTM0CK1, BTM0CK0 ; Sets BTM0CY flag setting pulse to 10 Hz (100 ms)
            MOV M1, #0
LOOP:
    SKT1 BTM0CY ; Branches to NEXT if BTMOCY flag is "0"
    BR NEXT
    ADD M1,#1 ; Adds 1 to M1
    SKE M1, #0AH ; Executes processing A if M1 is "10" (1 second has elapsed)
    BR NEXT
    MOV M1, #0
        Processing A
```

NEXT:

Processing B ; Executes processing B and branches to LOOP
BR LOOP

13.2.5 Errors of basic timer 0

Errors of basic timer 0 include an error due to the detection time of the BTMOCY flag, and an error that occurs when the time interval at which the BTMOCY flag is to be set is changed.
The following paragraphs (1) and (2) describe each error.

(1) Error due to detection time of BTMOCY flag

The time to detect the BTMOCY flag must be shorter than the time at which the BTMOCY flag is set (refer to 13.2.6 Notes on using basic timer 0).
Where the time interval at which the BTMOCY flag is detected is tснеск and the time interval at which the flag is set is tset ($100,50,20$, or 10 ms), tснеск and tset must relate as follows.
tCHECK $<$ tSET

At this time, the error of the timer when the BTMOCY flag is detected is as follows, as shown in Figure 13-5.

$$
0 \text { < Error < tset }
$$

Figure 13-5. Error of Basic Timer 0 due to Detection Time of BTMOCY Flag

As shown in Figure 13-5, the timer is updated because BTMOCY flag is " 1 " when it is detected in step <2>.
When the flag is detected next in step $<3>$, it is " 0 ". Therefore, the timer is not updated until the flag is detected again in <4>.
This means that the timer is extended by the time of tснескз.

(2) Error when time interval to set BTMOCY flag is changed

The BTM0CK1 and BTM0CK0 flags set the time of the BTMOCY flag.
As described in 13.2.2, four types of timer time-setting pulses can be selected: $10 \mathrm{~Hz}, 20 \mathrm{~Hz}, 50 \mathrm{~Hz}$, and 100 Hz .
At this time, these four pulses operate independently. If the timer time-setting pulse is changed by using the BTM0CK1 and BTM0CK0 flags, an error occurs as described in the example below.

Example

```
<1>
    INTIFLG NOT BTMOCK1, NOT BTM0CK0 ; Sets BTM0CY flag setting pulse to 10 Hz
                                    (100 ms)
            Processing A
; <2>
    INITFLG BTM0CK1, NOT BTM0CK0 ; Sets BTM0CY flag setting pulse to 50 Hz
                                    (20 ms)
            Processing A
            ; <3>
        INITFLG NOT BTMOCK1, NOT BTMOCK0 ; Sets BTMOCY flag setting pulse to 10 Hz
                    (100 ms)
```

At this time, the BTMOCY flag setting pulse is changed as shown in Figure 13-6.

Figure 13-6. Changing BTMOCY Flag Setting Pulse

As shown in Figure 13-6, if the BTMOCY flag setting time is changed and the new pulse falls, the BTMOCY flag retains the previous status (<2> in the figure). If the new pulse rises, however, the BTMOCY flag is set to "1" (<3> in the figure).
Although changing the pulse setting between $10 \mathrm{~Hz}(100 \mathrm{~ms})$ and $50 \mathrm{~Hz}(20 \mathrm{~ms})$ is described in this example, the same applies to changing the pulse in respect to $20 \mathrm{~Hz}(50 \mathrm{~ms})$ and $100 \mathrm{~Hz}(10 \mathrm{~ms})$.

Therefore, as shown in Figure 13-7, the error of the time until the BTMOCY flag is first set after the BTMOCY flag setting time has been changed is as follows:

```
-tset < Error < tcheck
    tset : new setting time of BTMOCY flag
    tснеск: time to detect BTMOCY flag
```

Phase differences are provided among the internal pules of $10,20,50$, and 100 Hz . Because these phase differences are shorter than the newly set pulse time, they are included in the above error.

Figure 13-7. Timer Error When BTMOCY Flag Setting Time Is Changed from A to B

13.2.6 Cautions on using basic timer 0

(1) BTMOCY flag detection time interval

Keep the time to detect the BTMOCY flag shorter than the time at which the BTMOCY flag is set.
This is because, if the time of processing B is longer than the time interval at which the BTMOCY flag is set as shown in Figure 13-8, setting of the BTMOCY flag is overlooked.

Figure 13-8. BTMOCY Flag Detection and BTMOCY Flag

Because execution time of processing B takes too long after detection of BTMOCY flag that has been set to " 1 " in $<2>$, BTMOCY flag that is set to " 1 " in $<3>$ cannot be detected.
(2) Timer updating processing time and BTMOCY flag detection time interval

As described in (1) above, time interval tsET at which the BTMOCY flag is detected must be shorter than the time for which to set the BTMOCY flag.
At this time, even if the time interval at which the BTMOCY flag is detected is short, if the updating processing time of the timer is long the processing of the timer may not be executed normally at CE reset. Therefore, the following condition must be satisfied.
tcheck + ttimer $<$ tset
tснеск: time to detect BTMOCY flag
ttimer: timer updating processing time
tset : time to set BTMOCY flag

An example is given below.

Example Example of timer updating processing and BTMOCY flag detection time interval

START:
CLR2 BTM0CK1, BTM0CK0 ; Sets BTM0CY flag setting pulse to 10 Hz (100 ms) BTIMER:
; <1>
SKT1 BTMOCY ; Updates timer if BTMOCY flag is "1"
BR AAA

Timer updating
BR BTIMER
AAA:

Processing A

BR BTIMER

The timing chart of the above program is shown below.

(3) Compensating basic timer 0 carry at CE reset

Next, an example of compensating the timer at CE reset is described below.
As shown in the example below, the timer must be compensated at CE reset "if the BTMOCY flag is used for power failure detection and if the BTMOCY flag is used for a watch timer".
The BTMOCY flag is reset (to 0) first on power application (power-ON reset), and is disabled from being set until it is read once by the "PEEK" instruction.
If the CE pin goes high, CE reset is effected in synchronization with the rising edge of the BTMOCY flag setting pulse. At this time, the BTMOCY flag is set (to 1) and the timer is started.
By detecting the status of the BTMOCY flag at system reset (power-ON reset or CE reset), therefore, it can be identified whether a power-ON reset or CE reset has been effected (power failure detection). That is, power-ON reset has been effected if the flag is " 0 ", and CE reset has been effected if it is " 1 ".

At this time, the watch timer must continue operating even if CE reset has been effected.
However, because the BTMOCY flag is reset to 0 when it is read to detect a power failure, the set status (1) of the BTMOCY flag is overlooked once. If the delay function of CE reset is used, the value set to the CE reset timer carry counter (control register address 06 H) is overlooked.

Consequently, the watch timer must be updated if CE reset is identified by means of power failure detection.
For the details of power failure detection, refer to 21. RESET.

Example Example of compensating timer at CE reset (to detect power failure and update watch timer using BTMOCY flag)

START: ; Program address 0000H

Processing A		; Embedded macro ; Tests BTMOCY flag
; <1>		
SKT1	BTMOCY	
BR	INITIAL	; if " 0 ", branches to INITIAL (power failure detection)
BACKUP:		
100-ms watch updating		; Compensates watch timer because of backup (CE reset) ; Initial value " 1 " is stored as CE reset timer carry ; counter value
LOOP:		
<3>		
	Processing B	: While performing processing B ,
SKF1	BTMOCY	; tests BTMOCY flag and updates watch timer
BR	BACKUP	
	LOOP	
INITIAL:		
CLR2 BTM0CK1, BTM0CK0		
		; Embedded macro
		; Because power failure (power-ON reset) occurs, ; sets setting time of BTMOCY flag to 100 ms , and
		; executes processing C
Processing C		
BR	LOOP	

Figure $13-9$ shows the timing chart of the above program.

Figure 13-9. Timing Chart

As shown in Figure 13-9, the program is started from address 0000 H because the internal $10-\mathrm{Hz}$ pulse rises when supply voltage $V_{D D}$ is first applied.
When the BTMOCY flag is detected at point A, it is judged that the BTMOCY flag is reset (to 0) and that a power failure (power-ON reset) has occurred because the power has just been applied.
Therefore, "processing C" is executed, and the BTMOCY flag setting pulse is set to 100 ms .
Because the content of the BTMOCY flag is read once at point A, the BTMOCY flag will be set to 1 every 100 ms .
Next, even if the CE pin goes low at point B and high at point C, the program counts up the watch timer while executing "processing B ", unless the clock stop instruction is executed.
At point C, because the CE pin goes high, CE reset is effected at point D at which the BTMOCY flag setting pulse rises next time, and the program is started from address 0000 H .
When the BTMOCY flag is detected at point E at this time, it is set to 1 . Therefore, this is judged to be a back up (CE reset).
As is evident from the above figure, unless the watch is updated by 100 ms at point E, the watch is delayed by 100 ms each time CE reset is effected.
If processing A takes longer than 100 ms when a power failure is detected at point E, the setting of the BTMOCY flag is overlooked two times. Therefore, processing A must be completed within 100 ms .
The above description also applies when the BTMOCY flag setting pulse is set to 50,20 , or 10 ms . Therefore, the BTMOCY flag must be detected for power failure detection within the BTMOCY flag setting time after the program has been started from address 0000 H .
(4) If BTMOCY flag is detected at the same time as CE reset

As described in (3) above, CE reset is effected as soon as the BTMOCY flag is set to 1.
If the instruction that reads the BTMOCY flag happens to be executed at the same time as CE reset at this time, the BTMOCY flag reading instruction takes precedence.
Therefore, if the next setting the BTMOCY flag (rising of BTMOCY flag setting pulse) after the CE pin has gone high coincides with execution of the BTMOCY flag reading instruction, CE reset is effected at "the next timing at which the BTMOCY flag is set".
This operation is illustrated in Figure 13-10.

Figure 13-10. Operation When CE Reset Coincides with BTMOCY Flag Reading Instruction

Consequently, if the BTMOCY flag detection time interval coincides with the BTMOCY flag setting time in a program that cyclically detects the BTMOCY flag, CE reset is never effected.
Therefore, the following point must be noted.
Because one instruction cycle is $1.78 \mu \mathrm{~s}(1 / 562.5 \mathrm{kHz})$, a program that detects the BTMOCY flag once, say, every 1125 instructions, reads the BTMOCY flag every $1.78 \mu \mathrm{~s} \times 1125=2 \mathrm{~ms}$.
Because the timer time setting pulse is 100 ms at this time, if setting and detection of the BTMOCY flag coincide once, CE reset is never effected.

Therefore, do not create a cyclic program that satisfies the following condition.

$$
\frac{\text { tset } \times 1125}{\mathrm{X}}=\mathrm{n}(\mathrm{n}: \text { natural number })
$$

tset: B TMOCY flag setting time
X : Cycle X step of instruction that reads BTMOCY flag

An example of a program that satisfies the above condition is shown below. Do not create such a program.

Example

```
    Processing A
    CLR2 BTM0CK1, BTM0CK0 ; Embedded macro
                            ; Sets BTMOCY flag setting pulse to 100 ms
LOOP:
        ; <1>
        SKT1 BTM0CY ; Embedded macro
        BR BBB
AAA:
        1121 steps
        BR LOOP
BBB:
        1 1 2 1 \text { steps}
        BR LOOP
```

Because the BTMOCY flag reading instruction in <1> is repeatedly executed every 1125 instruction in this example, CE reset is not effected if the BTMOCY flag happens to be set at the timing of instruction in <1>.

13.3 Timer 0

13.3.1 Outline of timer 0

Figure $13-11$ shows the outline of timer 0 .
The timer 0 is used as timer (modulo mode) by comparing the count value with the previously set value after the basic clock ($100 \mathrm{kHz}, 10 \mathrm{kHz}, 2 \mathrm{kHz}$, and 1 kHz) has counted by the 8 -bit counter.

The pulse width of the signal input from the TMOG pin can be measured (external gate counter).

Figure 13-11. Outlines Timer 0

Remarks 1. TM0CK1 and TM0CK0 (bits 1 and 0 of timer 0 counter clock selection register: refer to Figure 13-13) set a basic clock frequency.
2. TMOMD (bit 0 of timer 0 mode selection register: refer to Figure 13-14) selects the modulo counter and gate counter.
3. TMOGOEG (bit 1 of timer 0 mode selection register: refer to Figure 13-14) sets the open edge of an external gate.
4. TMOGCEG (bit 2 of timer 0 mode selection register: refer to Figure 13-14) sets the close edge of an external gate.
5. TMOOVF (bit 3 of timer 0 mode selection register: refer to Figure 13-14) detects an overflow of timer 0 counter.
6. TMORES (bit 2 of timer 0 counter clock selection register: refer to Figure 13-13) resets timer 0 counter.

13.3.2 Clock selection, start/stop control, and gate control blocks

Figure 13-12 shows the configuration of these blocks.
The clock selection block selects a basic clock to operate timer 0 counter.
Four types of basic clocks can be selected by using the TM0CK1 and TM0CK0 flags.
Figure 13-13 shows the configuration and function of each flag.
The start/stop block controls the TMOMD flag and open/close signal from the gate control block, and starts or stops the basic clock to be input to timer 0 counter by the TMOEN flag.

The gate control block sets the opening or closing conditions of the gate.
It sets whether the gate is opened or closed by a rising or falling of the input signal, by using the TMOGOEG and TMOGCEG flags. This block also issues an interrupt request when the closing condition of the gate is detected.

Figure 13-14 shows the configuration and function of each flag.

Figure 13-12. Configuration of Clock Selection, Start/Stop Control, and Gate Control Blocks

Figure 13-13. Configuration of Timer 0 Counter Clock Selection Register

	Power-ON reset	0	0	0		0
	WDT\&SP reset	0	0	0		0
	CE reset	Retained				
Clock stop		0	0	0		0

Caution When the TMORES flag is read, 0 is always read.

13.3.3 Count block

The count block counts the basic clock with an 8 -bit timer 0 counter, reads the count value, and issues an interrupt request if the value of the timer 0 modulo register coincides with its value.

Timer 0 counter can be reset by the TMORES flag.
The TMOOVF flag can detect an overflow of the counter. When an overflow occurs, an interrupt request can be issued.

The value of the timer 0 counter can be read via data buffer.
The value of the timer 0 modulo register can be written or read via data buffer.
Figure 13-14 shows the configuration of the timer 0 mode selection register.
Figure $13-15$ shows the configuration of the timer 0 counter.
Figure 13-16 shows the configuration of the timer 0 modulo register.

Figure 13-14. Configuration of Timer 0 Mode Selection Register

	Power-ON reset	0	0	0	0
	WDT\&SP reset	0	0	0	0
	CE reset	Retained			
Clock stop		0	0	0	0

Figure 13-15. Configuration of Timer 0 Counter

$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{\otimes} \\ & \stackrel{\omega}{2} \\ & \stackrel{\rightharpoonup}{4} \end{aligned}\right.$	Power-ON reset	0	0	0	0	0	0	0
	WDT\&SP reset	0	0	0	0	0	0	0
	CE reset	Retained						
Clock stop		0		00	0	0	0	0

Figure 13-16. Configuration of Timer 0 Modulo Register

13.3.4 Example of using timer 0

(1) Modulo counter mode

The modulo counter mode is used for time management by generating timer 0 interrupt at fixed intervals.
An example of a program is shown below.
This program executes processing B every $500 \mu \mathrm{~s}$.

TMODATA	DAT	0032H	MODULO DATA $=50$
START:			
	BR	INITIAL	; Reset address
	; Interrupt vector address		
	NOP		; SIO1
	NOP		; SIOO
	NOP		; TM3
	NOP		; TM2
	NOP		; TM1
	BR	INT_TM0	; TMO
	NOP		; INT4
	NOP		; INT3
	NOP		; INT2
	NOP		; INT1
	NOP		; INT0
	NOP		; Down edge of CE
INITIAL:			
	INITFLG	NOT TMOEN, (Stop)	NOT TMOCK1, NOT TMOCKO (Basic clock $=10 \mu \mathrm{~s}$)
	CLR1	TMOMD	; Modulo mode
	MOV	DBF0, \#(TMOM	HR 0) AND OFH
	MOV	DBF1, \#(TM0M	SHR 4) AND 0FH
	PUT	TMOM, DBF	; Sets count data
	SET1 El	IPTM0	; Enables timer 0 interrupt
	SET1	TMOEN	; Starts timer 0
LOOP:			
	Processing A		
	BR	LOOP	
INT_TMO:			
	Processing B		; Timer 0 interrupt service
	El		
	RETI		; Return

(2) Gate counter mode

The gate counter mode is used to count the width of a pulse input to the TMOG pin.
An example of a program is shown below.
In this program example, the width of the pulse input to the TMOG pin is counted from the falling edge to the falling edge.
If the pulse width is 800 to $1200 \mu \mathrm{~s}$, processing C is executed; otherwise, processing B is executed. If the pulse width is 2560μ s or more, processing D is executed

TM0800	DAT	0050 H	; Count data $=80$
TM01200	DAT	0078 H	; Count data $=120$
START:			
	BR	INITIAL	; Reset address
	$;$ Interrupt vector address		
	NOP		SIO1
	NOP		SIO0
	NOP		TM3
	NOP		TM2
	NOP		TM1
	BR	INT_TMO	TM0
	NOP		INT4
	NOP		INT3
	NOP		INT2
	NOP		INT1
	NOP		INT0
	NOP		Down edge of CE

INITIAL:
INITFLG NOT TM0EN, TMORES, NOT TMOCK1, NOT TM0CK0
; (Stop) , (Reset), (Basic clock = $10 \mu \mathrm{~s}$)

INITFLG TMOGCEG , TMOGOEG , TMOMD
; (Falling close), (Falling open), (Gate counter)
SET1 TMOEN ; START
SET1 IPTM0 ; Enables timer 0 interrupt
EI
LOOP:

Processing A

BR LOOP
INT_TM0:

PUT	DBFSTK, DBF	; Saves data buffer
GET	DBF, TMOC	
INITFLG	TMOEN, TMORES	
SKT1	TMOOVF	; Detects overflow status (2560 μ s or more?)
BR	AAA	
Processing D		

BR El_RETI

AAA:

SUB	DBF0, \#TM0800 AND 0FH
SUBC	DBF1, \#TM0800 SHR4 AND 0FH
SKF1	CY $\quad ; 800 \mu$ or more?
BR	BBB \quad
SUB	DBF0, \#TM01200 AND 0FH

SUBC	DBF1, \#TM01200 SHR4 AND 0FH	
SKT1	CY	$; 1200 \mu$ or more?
BR	BBB	

Processing C

```
BR EI RETI
```

BBB:

Processing B

EI_RETI:

GET DBF, DBFSTK	; Restores data buffer
EI	; Return
RETI	

13.3.5 Error of timer 0

Timer 0 has an error of up to 1 basic clock in the following cases.

(1) On starting/stopping counter

The counter is started or stopped by ANDing the open/close condition of the gate and TMOEN flag setting condition.

Therefore, an error of 0 to +1 clocks occurs when the gate is opened or the TMOEN flag is set, and an error of -1 to 0 clocks occurs when the gate is closed or the flag is reset.
In all, an error of ± 1 count occurs.
(2) On resetting counter operation

An error of 0 to +1 clocks occurs when the counter is reset.
(3) On selecting basic clock during counter operation

An error of 0 to +1 clocks of the newly selected clock occurs.

13.3.6 Cautions on using timer 0

Timer 0 interrupt may occur simultaneously with the other timer interrupts and CE reset. If it is necessary to update the timer at CE reset, do not use timer 0, use basic timer 0 instead

13.4 Timer 1

13.4.1 Outline of timer 1

Figure 13-17 outlines timer 1.
Timer 1 counts the basic clock ($100,10,2$, or 1 kHz) with an 8 -bit counter, and compares the count value with a value set in advance.

Figure 13-17. Outline of Timer 1

Remarks 1. TM1CK1 and TM1CK0 (bits 1 and 0 of timer 1 counter clock selection register: refer to Figure 13-18) set the basic clock frequency.
2. TM1EN (bit 3 of timer 1 counter clock selection register: refer to Figure 13-18) starts or stops timer 1.
3. TM1RES (bit 2 of timer 1 counter clock selection register: refer to Figure 13-18) resets timer 1 counter.

13.4.2 Clock selection and start/stop control blocks

The clock selection block selects a basic clock to operate timer 1 counter.
Four types of basic clocks can be selected by using the TM1CK1 and TM1CK0 flags.
The start/stop block starts or stops the basic clock input to timer 1 by using the TM1EN flag.
Figure 13-18 shows the configuration and function of each flag.

13.4.3 Count block

The count block counts the basic clock with timer 1 counter, reads the count value, and issues an interrupt request when its count value coincides with the value of the timer 1 modulo register.

The timer 1 counter can be reset by the TM1RES flag.
The timer 1 counter is automatically reset when its value coincides with the value of the timer 1 modulo register.

The value of the timer 1 counter can be read via data buffer.
Data can be written to the value of the timer 1 modulo register via data buffer.
Figure $13-18$ shows the configuration of timer 1 counter clock selection register.
Figure 13-19 shows the configuration of the timer 1 counter.
Figure $13-20$ shows the configuration of the timer 1 modulo register.

Figure 13-18. Configuration of Timer 1 Counter Clock Selection Register

	Power-On reset	$\begin{array}{l:l:l}0 & 0 & 0\end{array}$			
	WDT\&SP reset	0	0	0	0
	CE reset	Retained			
Clock stop		$\begin{array}{l:l:l:l}0 & 0 & 0 & 0\end{array}$			

Caution When the TM1RES flag is read, 0 is always read.

Figure 13-19. Configuration of Timer 1 Counter

$\begin{aligned} & \stackrel{\rightharpoonup}{\otimes} \\ & \stackrel{\otimes}{\otimes} \\ & \stackrel{\rightharpoonup}{\rightleftarrows} \end{aligned}$	Power-ON reset	$0 \quad 0$	0	0	0	0	0
	WDT\&SP reset	0 0	0	0	0	0	0
	CE reset	Retained					
Clock stop		0 0 0 0 0 0 0 0					

Figure 13-20. Configuration of Timer 1 Modulo Register

	Power-ON reset	1		1	1		1		1	1	
	WDT\&SP reset	1		1	1		1		1	1	
	CE reset	Retained									
Clock stop		1		1			1			1	

13.4.4 Example of using timer 1

(1) Modulo timer

The modulo timer is used for time management by generating timer 1 interrupt at fixed intervals.
An example of a program is shown below.
This program executes processing B every $500 \mu \mathrm{~s}$.

TM1DATA	DAT	0032H	; Count data $=50$
START:			
	BR	INITIAL	; Reset address
	; Interrupt	vector address	
	NOP		; SIO1
	NOP		; SIOO
	NOP		; TM3
	NOP		; TM2
	BR	INT_TM1	; TM1
	NOP		; TMO
	NOP		; INT4
	NOP		; INT3
	NOP		; INT2
	NOP		; INT1
	NOP		; INT0
	NOP		; Down edge of CE
INITIAL:			
	INITFLG	NOT TM1EN, (Stop)	NOT TM1CK1, NOT TM1CK0 (Basic clock $=10 \mu \mathrm{~s}$)
	MOV	DBF0, \#TM1DATA	
	MOV	DBF1, \#TM1DATA SHR4 AND 0FH	
	PUT	TM1, DBFTM1EN	
	SET1		; START
	SET1	IPTM1	; Enables timer 1 interrupt
	EI		
LOOP:			
	Processing A		
	BR	LOOP	
INT_TM1:			
	PUT	DBFSTK, DBF	; Saves data buffer
	Processing B		
	$\begin{aligned} & \text { GET } \\ & \text { El } \end{aligned}$	DBF, DBFSTK	
	RETI		; Return

13.4.5 Error of timer 1

Timer 1 has an error of up to 1 basic clock in the following cases.
(1) On starting/stopping counter

The counter is started or stopped by setting the TM1EN flag.
Therefore, an error of 0 to +1 clocks occurs when the TM1EN flag is set, and an error of -1 to 0 clocks occurs when the flag is reset.
In all, an error of ± 1 count occurs.
(2) On resetting counter operation

An error of 0 to +1 clocks occurs when the counter is reset.
(3) On selecting basic clock during counter operation

An error of 0 to +1 clocks of the newly selected clock occurs.

13.4.6 Cautions on using timer 1

Timer 1 interrupt may occur simultaneously with the other timer interrupts and CE reset. If it is necessary to update the timer at CE reset, do not use timer 1, use basic timer 0 instead.

13.5 Timer 2

13.5.1 Outline of timer 2

Figure 13-21 outlines timer 2.
Timer 2 counts the basic clock ($100,10,2$, or 1 kHz) with an 8 -bit counter, and compares the count value with a value set in advance.

Figure 13-21. Outline of Timer 2

Remarks 1. TM2CK1 and TM2CK0 (bits 1 and 0 of timer 2 counter clock selection register: refer to Figure 13-22) set the basic clock frequency.
2. TM2EN (bit 3 of timer 2 counter clock selection register: refer to Figure 13-22) starts or stops timer 2.
3. TM2RES (bit 2 of timer 2 counter clock selection register: refer to Figure 13-22) resets timer 2 counter.

13.5.2 Clock selection and start/stop control blocks

The clock selection block selects a basic clock to operate timer 2 counter.
Four types of basic clocks can be selected by using the TM2CK1 and TM2CK0 flags.
The start/stop block starts or stops the basic clock input to timer 2 by using the TM2EN flag.
Figure 13-22 shows the configuration and function of each flag.

13.5.3 Count block

The count block counts the basic clock with timer 2 counter, reads the count value, and issues an interrupt request when its count value coincides with the value of the timer 2 modulo register.

The timer 2 counter can be reset by the TM2RES flag.
The timer 2 counter is automatically reset when its value coincides with the value of the timer 2 modulo register.

The value of the timer 2 counter can be read via data buffer.
Data can be written to the value of the timer 2 modulo register via data buffer.
Figure 13-22 shows the configuration of timer 2 counter clock selection register.
Figure $13-23$ shows the configuration of the timer 2 counter.
Figure 13-24 shows the configuration of the timer 2 modulo register.

Figure 13-22. Configuration of Timer 2 Counter Clock Selection Register

	Power-ON reset	0	0	0	0
	WDT\&SP reset	0	0	0	0
	CE reset	Retained			
Clock stop		0	0	0	0

Caution When the TM2RES flag is read, 0 is always read.

Figure 13-23. Configuration of Timer 2 Counter

$\begin{aligned} & \overleftarrow{\otimes} \\ & \stackrel{\rightharpoonup}{\omega} \\ & \stackrel{\rightharpoonup}{\longleftarrow} \end{aligned}$	Power-ON reset		0	0	0	0	0	0	
	WDT\&SP reset	0	0	0	0	0	0	0	
	CE reset	Retained							
Clock stop			0	0	0	0	0	0	

Figure 13-24. Configuration of Timer 2 Modulo Register

13.5.4 Example of using timer 2

(1) Modulo timer

The modulo timer is used for time management by generating a timer 2 interrupt at fixed intervals.
An example of a program is shown below.
This program executes processing B every 500μ s.

TM2DATA	DAT	0032H	Count data $=50$
START:			
	BR	INITIAL	; Reset address
	; Interrupt	vector address	
	NOP		; SIO1
	NOP		; SIOO
	NOP		; TM3
	BR	INT_TM2	; TM2
	NOP		; TM1
	NOP		; TMO
	NOP		; INT4
	NOP		; INT3
	NOP		; INT2
	NOP		; INT1
	NOP		; INT0
	NOP		; Down edge of CE
INITIAL:			
	INITFLG	(Stop) , (Reset) DBF0, \#TM2DATA	NOT TM2CK1, NOT TM2CK0 (Basic clock = $10 \mu \mathrm{~s}$)
	MOV		
	MOV	DBF1, \#TM2DATA SHR4 AND 0FH	
	PUT	TM2, DBF	
	SET1	TM2EN	; START
	$\begin{aligned} & \text { SET1 } \\ & \text { EI } \end{aligned}$	IPTM2	; Enables timer 2 interrupt
LOOP:			
	Processing A		
	BR	LOOP	
INT_TM2:			
	PUT	DBFSTK, DBF	; Saves data buffer
	INITFLG	TM2EN, TM2RES	; Resets and starts
	Processing B		
	$\begin{aligned} & \text { GET } \\ & \text { EI } \end{aligned}$	DBF, DBFSTK	
	RETI		; Return

END

13.5.5 Error of timer 2

Timer 2 has an error of up to 1 basic clock in the following cases.
(1) On starting/stopping counter

The counter is started or stopped by setting the TM2EN flag.
Therefore, an error of 0 to +1 clocks occurs when the TM2EN flag is set, and an error of -1 to 0 clocks occurs when the flag is reset
In all, an error of ± 1 count occurs.
(2) On resetting counter operation

An error of 0 to +1 clocks occurs when the counter is reset.
(3) On selecting basic clock during counter operation

An error of 0 to +1 clocks of the newly selected clock occurs.

13.5.6 Cautions on using timer 2

Timer 2 interrupt may occur simultaneously with the other timer interrupts and CE reset. If it is necessary to update the timer at CE reset, do not use timer 2, use basic timer 0 instead.

13.6 Timer 3

13.6.1 Outline of timer 3

Figure 13-25 outlines timer 3.
Timer 3 counts the basic clock (1.125 MHz or 112.5 kHz selectable) with an 8 -bit counter Note , and compares the count value with a value set in advance.

Because timer 3 is multiplexed with a D/A converter, all the three D/A converter pins are automatically set in the general-purpose port mode when timer 3 is used.

Note A 9-bit or 8-bit counter can be selected for the D/A converter, but the 8-bit counter is automatically selected when the timer function is selected.

Figure 13-25. Outline of Timer 3

Remarks 1. PWMCK (bit 0 of PWM clock selection register: refer to Figure 13-26) selects the output frequency of timer 3.
2. TM3SEL (bit 3 of timer 3 control register: refer to Figure 13-27) selects timer 3 or D/A converter.
3. TM3EN (bit 1 of timer 3 control register: refer to Figure 13-27) starts or stops counting by timer 3.
4. TM3RES (bit 0 of timer 3 control register: refer to Figure 13-27) controls resetting of timer 3 counter.

13.6.2 Clock selection block

The clock of timer 3 is selected by the PWMCK flag of the PWM clock selection register.
Figure 13-26 shows the configuration of the flag.

Figure 13-26. Configuration of PWM Clock Selection Register

$\begin{aligned} & \stackrel{\rightharpoonup}{\otimes} \\ & \stackrel{\omega}{0} \\ & \stackrel{\rightharpoonup}{\leftrightarrows} \end{aligned}$	Power-ON reset	0				0
	WDT\&SP reset		0			0
	CE reset		R			R
Clock stop		,	0	,		0

[^2]
13.6.3 Start/stop control block

The start/stop block starts or stops the basic clock to be input to timer 3 counter by using the TM3EN flag. To control timer 3, timer 3 must be selected by the TM3SEL flag.
Figure 13-27 shows the configuration of each flag.

Figure 13-27. Configuration of Timer 3 Control Register

$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{\oplus} \\ & \stackrel{\omega}{\omega} \\ & \stackrel{\rightharpoonup}{\rightleftarrows} \end{aligned}\right.$	Power-ON reset	0 0 0 0		
	WDT\&SP reset	0	0	
	CE reset	R		ain
Clock stop		0	0	

R:Retained

13.6.4 Count block

The count block counts the basic clock with timer 3 and issues an interrupt request when the count value of timer 3 coincides with the value of the timer 3 modulo register.

Timer 3 counter can be reset by the TM3RES flag.
Because the PWM data register 2 (PWMR2) and timer 3 modulo register (TM3M) are multiplexed, these registers cannot be used at the same time.

When timer 3 is used, the PWM data register 1 (PWMR1) and PWM data register 0 (PWMRO) can be used as 9-bit data latches (refer to 15. D/A CONVERTER (PWM mode)).

Figure 13-28. Configuration of Timer 3 Modulo Register

Note This register is multiplexed with the PWM data register.

13.6.5 Example of using timer 3

An example of a program using timer 3 (multiplexed with PWM) is given below.
This program executes processing B every $888 \mu \mathrm{~s}$.

END

13.6.6 Error of timer 3

Timer 3 has an error of up to 1 basic clock in the following cases.

(1) On starting/stopping counter

The counter is started or stopped by setting the TM3EN flag.
Therefore, an error of 0 to +1 clocks occurs when the TM3EN flag is set, and an error of -1 to 0 clocks occurs when the flag is reset
In all, an error of ± 1 count occurs.
(2) On resetting counter operation

An error of 0 to +1 clocks occurs when the counter is reset.
(3) On selecting basic clock during counter operation

An error of 0 to +1 clocks of the newly selected clock occurs.

13.6.7 Cautions on using timer 3

Timer 3 interrupt may occur simultaneously with the other timer interrupts and CE reset. If it is necessary to update the timer at CE reset, do not use timer 3, use basic timer 0 instead.

When timer 3 is used, the three output port pins multiplexed with the D/A converter pins, P1B2/PWM2 through P1B0/PWM0, are automatically set in the general-purpose output port mode

13.6.8 Status at reset

(1) At power-ON reset

The P1B2/PWM2 through P1B0/PWM0 pins are set in the general-purpose output port mode.
The output value is "low level".
The value of each PWM data register (including the timer 3 modulo register) is "1FFH".

(2) At WDT\&SP reset

The P1B2/PWM2 through P1B0/PWM0 pins are set in the general-purpose output port mode.
The output value is "low level".
The value of each PWM data register (including the timer 3 modulo register) is " 1 FFH ".
(3) On execution of clock stop instruction

The P1B2/PWM2 through P1B0/PWM0 pins are set in the general-purpose output port mode.
The output value is the "previous contents of the output latch".
The value of each PWM data register (including the timer 3 modulo register) is " 1 FFH ".

(4) At CE reset

The previous status is retained.
That is, if the D/A converter is being used, the PWM output is retained as is. If timer 3 is being used, counting continues.
While timer 3 is being used, the DI status is set (in which all interrupts are disabled).
(5) In halt status

The previous status is retained.
That is, if the D/A converter is being used, the PWM output is retained as is. If timer 3 is being used, counting continues.

14. A/D CONVERTER

14.1 Outline of A/D Converter

Figure 14-1 outlines the A/D converter.
The A/D converter converts an analog voltage input to the AD5 to AD0 pins into an 8-bit digital signal.
Two modes can be selected by using the ADCMD flag: software mode and hardware mode.
In the software mode, a voltage input to a pin is compared with an internal reference voltage, and the result of the comparison is detected by the ADCCMP flag. By judging this result in software and by sequentially selecting reference voltages, the A / D converter can be used as a successive approximation A / D converter.

In the hardware mode, reference voltages are automatically selected, and the input voltage is directly detected as 8 -bit digital data.

Figure 14-1. Outline of A/D Converter

Remarks 1. ADCCH 2 through ADCCH 0 (bits 2 through 0 of A / D converter channel selection register: refer to Figure 14-3) select pins used for the A / D converter.
2. ADCCMP (bit 0 of A / D converter mode selection register: refer to Figure 14-5) detects the result of comparison.
3. ADCSTT (bit 1 of A / D converter mode selection register: refer to Figure 14-5) detects the operating status.
4. ADCMD (bit 2 of A / D converter mode selection register: refer to Figure 14-5) selects software or hardware mode.

14.2 Input Selection Block

Figure 14-2 shows the configuration of the input selection block.
The input selection block selects a pin to be used by using the ADCCH2 through ADCCH0 flags. Only one pin can be used for the A/D converter. When one of the P0D0/AD0 through P0D3/AD3, P1C2/AD4, and P1C3/ AD5 pins is selected, the other five pins are forcibly set in the input port mode.

The P0D0/AD0 through P0D3/AD3 pins can be connected to a pull-down resistor if so specified by the P0DPL0 through P0DPLD3 flags. To use the P0D0/AD0 through P0D3/AD3 pins for the A/D converter, therefore, disconnect their pull-down resistors to correctly detect an external input analog voltage.

Figure 14-3 shows the configuration of the A/D converter channel selection register.

Figure 14-2. Configuration of Input Selection Block

Figure 14-3. Configuration of A/D Converter Channel Selection Register

$\begin{aligned} & \overleftarrow{\Phi} \\ & \mathscr{\#} \\ & \underset{\sim}{2} \\ & \stackrel{4}{4} \end{aligned}$	Power-ON reset	$\begin{array}{l:l:l:}0 & 0 & 0\end{array}$		
	WDT\&SP reset			0 0
	CE reset		Retained	
Clock stop		-	Retained	

14.3 Compare Voltage Generation and Compare Blocks

Figure 14-4 shows the configuration of the compare voltage generation block and compare block.
The compare voltage generation block switches a tap decoder according to the 8-bit data set to the A/D converter reference voltage setting register and generates 256 different of compare voltages Vadcref.

In other words, this block is an R-string D/A converter.
The supply voltage to this R -string D / A converter is the same as the supply voltage V_{DD} of the device.
The compare block compares voltage Vadcin input from a pin with compare voltage Vadcref.
Comparison can be made in two modes, software mode and hardware mode, which can be selected by the ADCMD flag.

In the software mode, a compare voltage is set to the A/D converter reference voltage setting register by software, and one set compare voltage is compared with the input voltage, and the result of the comparison is detected by the ADCCMP flag.

In the hardware mode, once comparison has been started, the hardware automatically changes the value of the A / D converter reference voltage setting register. On completion of the comparison, the value of the A / D converter reference voltage setting register is read and is loaded as an 8-bit data.

Figures $14-5$ and $14-6$ show the configuration of each flag and A / D converter reference voltage setting register.

Figure 14-4. Configuration of Compare Voltage Generation and Compare Blocks

Figure 14-5. Configuration of A/D Converter Mode Selection Register

$\begin{aligned} & \stackrel{\rightharpoonup}{\otimes} \\ & \stackrel{\omega}{2} \\ & \stackrel{4}{4} \end{aligned}$	Power-ON reser	0	0	0		
	WDT\&SP reser		0	0		0
	CE reser		R	0		0
	ck stop		R	0		R

R:Retained
Notes 1. A/D conversion under execution is stopped if " 0 " is written to this bit.
2. A/D operation is started in the hardware mode when " 1 " is written to this bit. In the software mode, operation is started as soon as data has been written (by the PUT instruction) to the A/D converter reference voltage setting register (ADCR).

Figure 14-6. Configuration of A/D Converter Reference Voltage Setting Register

Note " 0 " in the hardware mode.

14.4 Comparison Timing Chart

14.4.1 In software mode

Comparison is completed three instructions after data has been set (by the PUT instruction) to the A/D converter reference voltage setting register (ADCR).

Figure 14-7 shows the timing chart.

Figure 14-7. Timing Chart of Comparison by A/D Converter

Sample \& hold

ADCSTT fiag "0"

ADCCMP fiag

14.4.2 In hardware mode

When the ADCMD flag is set to " 1 ", A/D conversion is started. The ADCSTT flag is set to " 1 ", and comparison is completed after 17 instructions have been executed. At this time, the ADCSTT flag is reset to " 0 " after 15 instructions have been executed after the ADCMD flag was set to "1". This is because execution time of two instructions is required to judge the status of the ADCSTT flag. For details, also refer to $\mathbf{1 4 . 5}$ Using A/D Converter.

Figure $14-8$ shows the timing chart.

Figure 14-8. Timing Chart of Comparison by A/D Converter

Instruction cycle

14.5 Using A/D Converter

14.5.1 Software mode

The software mode is convenient for comparing one compare voltage.
An example of a program in this mode is shown below.

Example To compare input voltage Vadcin of AD0 pin with compare voltage Vadcref (127.5/256 Vdd), and branch to $A A A$ if $V_{\text {adcin }}$ < Vadcref, or to BBB if Vadcin > Vadcref

14.5.2 Hardware mode

Here is a program example:

Example To detect the value of analog input roltage $V_{A D C I N}$ of $A D 0$ pin.

```
    BANK15
    INITFLG NOT PODPLD3, NOT PODPLD2, NOT PODPLD1, PODPLD0 ; Disconnects pull-down resistor of POD0 pin
    BANKO
    INITFLG NOT ADCCH2, NOT ADCCH1, ADCCH0 ; Selects ADO pin for A/D converter
    SET1 ADCMD ; Sets hardware mode and starts conversion
    SKT1 ADCSTT ; Detects end of A/D conversion
    ; Embedded macro instruction
    ;PEEK WR, .MF. ADCSTT SHR4 AND 0FH
    SKT1 WR,#.DF.ADCSTT AND 0FH
    BR LOOP ; Conversion in progress
    GET DBF,ADCR
; Stores result of conversion to DBF
```

LOOP:

14.6 Cautions on Using A/D Converter

14.6.1 Cautions on selecting A/D converter pin

When one of the P0D0/AD0 through P0D3/AD3, P1C2/AD4, and P1C3/AD5 pins is selected, the other five pins are forcibly set in the input port mode. The POD0/AD0 through P0D3/AD3 pins can be connected to a pulldown resistor if so specified by the P0DPL0 through P0DPLD3 flags in bank 15. To use the P0D0/AD0 through P0D3/AD3 pins for the A/D converter, therefore, disconnect their pull-down resistors to correctly detect an external input analog voltage.

14.7 Status at Reset

14.7.1 At power-ON reset

All the P0D0/AD0 through P0D3/AD3, P1C2/AD4, and P1C3/AD5 pins are set in the general-purpose input port mode.

The P0D0 through P0D3 pins are connected with a pull-down resistor.

14.7.2 At WDT\&SP reset

All the P0D0/AD0 through P0D3/AD3, P1C2/AD4, and P1C3/AD5 pins are set in the general-purpose input port mode.

The P0D0 through P0D3 pins are connected with a pull-down resistor.

14.7.3 At CE reset

The status of the pin selected for the A/D converter is retained as is.
The previous status of the pull-down resistor of the P0D0 through P0D3 pins is retained.

14.7.4 On execution of clock stop instruction

The status of the pin selected for the A/D converter is retained as is.
The previous status of the pull-down resistor of the P0D0 through P0D3 pins is retained.

14.7.5 In halt status

The status of the pin selected for the A/D converter is retained as is.
The previous status of the pull-down resistor of the P0D0 through P0D3 pins is retained.

15. D/A CONVERTER (PWM mode)

15.1 Outline of D/A Converter

Figure 15-1 outlines the D/A converter.
The D/A converter outputs a signal whose duty factor is varied by means of PWM (Pulse Width Modulation). By connecting an external lowpass filter to the D/A converter, a digital signal can be converted into an analog signal.

Each pin of the D/A converter can output a variable-duty signal independently of the others.
Whether an 8 -bit counter or 9 -bit counter is used for the D/A converter can be specified by software.
When the 8 -bit counter is selected, two output frequencies, 4.4 kHz and 440 Hz can be selected, and the duty factor of the output signal can be varied in 256 steps.

When the 9-bit counter is selected, two output frequencies, 2.2 kHz and 220 Hz , can be selected, and the duty factor can be varied in 512 steps.

When the D/A converter is not used, it can be used as timer 3, which counts the basic clock (1.125 or 0.1125 MHz) with an 8-bit counter.

For the details of timer 3, refer to 13. TIMER 3.

Figure 15-1. Outline of D/A Converter

Remarks 1. PWM2SEL through PWM0SEL (bits 2 through 0 of $P W M /$ general-purpose port pin function selection register: refer to Figure 15-4) select a general-purpose output port of D/A converter.
2. PWMBIT (bit 2 of PWM clock selection register: refer to Figure 15-2) selects the number of bits (8 or 9 bits) of the PWM counter.
3. PWMCK (bit 0 of PWM clock selection register: refer to Figure 15-2) selects the output frequency of PWM timer.
4. TM3SEL (bit 3 of timer 3 control register: refer to Figure 15-5) selects timer 3 or D/A converter.
5. TM3RES (bit 0 of timer 3 control register: refer to Figure 15-5) controls resetting of timer 3 counter.

15.2 PWM Clock Selection Register

The PWM clock selection register specifies whether the PWM counter is used as an 8-bit counter or 9-bit counter when the D/A converter is used for PWM output.

Figure 15-2 shows the configuration of the PWM clock selection register.

Figure 15-2. Configuration of PWM Clock Selection Register

	Power-ON reset	0 0 0 0		
	WDT\&SP reset	0		0
	CE reset	R		R
Clock stop		, $\quad 0$,	0

R: Retained

15.3 PWM Output Selection Block

The output selection block specifies whether each output pin of the D/A converter is used for the D/A converter or as a general-purpose output port, by using the PWM2SEL through PWMOSEL flags of the PWM/general-purpose port pin function selection register.

Figure 15-3 shows the configuration of the output selection block, and Figure 15-4 shows the configuration of the PWM/general-purpose port pin function selection register.

Each pin can be changed between the D/A converter mode and general-purpose output port mode independently of the others.

Because each output pin is an N-ch open-drain output pin, an external pull-up resistor is necessary.
When the D/A converter is used as timer 3, the P1B2/PWM2 through P1B0/PWM0 pins are automatically set in the general-purpose output port mode, regardless of the values set to the PWM2SEL through PWMOSEL flags.

Figure 15-3. Configuration of Output Selection Block

Figure 15-4. Configuration of PWM/General-Purpose Port Pin Function Selection Register

$\begin{aligned} & \stackrel{\rightharpoonup}{\otimes} \\ & \stackrel{\omega}{む} \\ & \stackrel{\rightharpoonup}{\lessdot} \end{aligned}$	Power-ON reset	$\begin{array}{l:l:l:l}0 & 0 & 0\end{array}$			
	WDT\&SP reset		0	0	0
	CE reset	Retained			
Clock stop		0 0			

Figure 15-5. Configuration of Timer 3 Control Register

	Power-ON reset	0	0	0	0
	WDT\&SP reset	0		0	0
	CE reset	R	Retained		
Clock stop		0	,	0	0

R: Retained

15.4 Duty Setting Block

15.4.1 PWM duty with 8-bit counter selected

The duty setting block compares the value set to each PWM data register (PWMR2 to PWMR0) with the value of the basic clock counted by each 8-bit counter. If the value of the PWM data register is greater, the block outputs a high level. If the value of the PWM data register is less, it outputs a low level.

Where the value set to the PWM data register is " x ", therefore, the duty factor can be calculated by the following expression.

Duty: $D=\frac{x+0.25}{256} \times 100 \%$

Remark 0.25 is an offset, and a high level is output even where $x=0$.

Data is set to each PWM data register for each pin via data buffer (DBF). However, the same basic clock, PWM counter, and output frequency must be selected for each pin. This means that each pin cannot output a duty factor of a different cycle independently of the others.

Because the basic clock frequency is 1.125 or 0.1125 MHz , the frequency and cycle of the output signal can be calculated as follows.
(1) Where output frequency is $4.4 \mathbf{k H z}$ and basic clock frequency is 1.125 MHz

$$
\begin{aligned}
& \text { Frequency: } f=\frac{1.125 \mathrm{MHz}}{256}=4.3945 \mathrm{kHz} \\
& \text { Cycle: } \quad \mathrm{T}=\frac{256}{1.125 \mathrm{MHz}}=227.56 \mu \mathrm{~s}
\end{aligned}
$$

(2) Where output frequency is 440 Hz and basic clock frequency is 0.1125 MHz

$$
\begin{aligned}
& \text { Frequency: } f=\frac{0.1125 \mathrm{MHz}}{256}=439.45 \mathrm{~Hz} \\
& \text { Cycle: } \quad \mathrm{T}=\frac{256}{0.1125 \mathrm{MHz}}=2.2756 \mathrm{~ms}
\end{aligned}
$$

Because the duty setting register of the PWM data registers and timer 3 modulo register are the same register, they cannot be used at the same time.

When timer 3 is used, PWM data registers 1 and 0 can be used as 8 -bit data latches.

Figure 15-6. Configuration of PWM Data Registers (with 8-bit counter selected)

Note This register is multiplexed with timer 3 modulo register.

15.4.2 PWM duty with 9-bit counter selected

The duty setting block compares the value set to each PWM data register (PWMR2 to PWMR0) with the value of the basic clock counted by each 9-bit counter. If the value of the PWM data register is greater, the block outputs a high level. If the value of the PWM data register is less, it outputs a low level.

Where the value set to the PWM data register is " x ", therefore, the duty factor can be calculated by the following expression.

Duty: $D=\frac{x+0.25}{512} \times 100 \%$

Remark 0.25 is an offset, and a high level is output even where $x=0$.

Data is set to each PWM data register for each pin via data buffer (DBF). However, the same basic clock, PWM counter, and output frequency must be selected for each pin. This means that each pin cannot output a duty factor of a different cycle independently of the others.

Because the basic clock frequency is 1.125 or 0.1125 MHz , the frequency and cycle of the output signal can be calculated as follows.
(1) Where output frequency is $2.2 \mathbf{k H z}$ and basic clock frequency is 1.125 MHz

Frequency: $f=\frac{1.125 \mathrm{MHz}}{512}=2.197 \mathrm{kHz}$

Cycle: $\quad \mathrm{T}=\frac{512}{1.125 \mathrm{MHz}}=455.11 \mu \mathrm{~s}$
(2) Where output frequency is 220 Hz and basic clock frequency is 0.1125 MHz

$$
\begin{aligned}
& \text { Frequency: } f=\frac{0.1125 \mathrm{MHz}}{512}=219.73 \mathrm{~Hz} \\
& \text { Cycle: } \quad T=\frac{512}{0.1125 \mathrm{MHz}}=4.5511 \mathrm{~ms}
\end{aligned}
$$

Because the duty setting register of the PWM data registers and timer 3 modulo register are the same register, they cannot be used at the same time.

When timer 3 is used, PWM data registers 1 and 0 can be used as 8 -bit data latches.

Figure 15-7. Configuration of PWM Data Registers (with 9-bit counter selected)

Note This register is multiplexed with timer 3 modulo register.

15.5 Clock Generation Block

The clock generation block outputs a basic clock to set the duty factor of each output signal.
Two output frequencies, 1.125 MHz and 112.5 kHz , can be selected.

15.6 D/A Converter Output Wave

(1) shows the relationship between the duty factor and output wave.
(2) shows the output wave of each pin. Each output pin has a phase different from the others.
(1) Duty and output wave
(a) With 8-bit counter and 4.4 kHz selected

(b) With 8-bit counter and 440 Hz selected

(c) With 9-bit counter and 2.2 kHz selected

(d) With 9-bit counter and 220 Hz selected

(2) Each pin and output wave
(a) With 8-bit counter and 4.4 kHz selected

(b) With 8-bit counter and 440 Hz selected

(c) With 9-bit counter and 2.2 kHz selected

(d) With 9-bit counter and 220 Hz selected

15.7 Example of Using D/A Converter

An example of a program using the D/A converter is shown below.

Example This program increments the duty factor of the PWM1 pin every 1 second.

PWM1DATA DAT 0000 H

INITIAL:
INITFLG NOT PWM2SEL, NOT PWM1SEL, NOT PWM0SEL
; (General-purpose port), (General-purpose port), (General-purpose port)
INITFLG PWMBIT , NOT PWMCK
; (9-bit counter), (1.125 MHz)

LOOPO:
BANK1
CLR1 P1B1
BANKO
CLR1 TM3SEL ; Selects D/A converter

MOV DBF2, \#PWM1DATA SHR 8 AND 0FH
MOV DBF1, \#PWM1DATA SHR 4 AND 0FH
MOV DBF0, \#PWM1DATA AND 0FH
SET1 PWM1SEL ; Sets PWM1/P1B1 pin in PWM output port mode

LOOP1: ; Duty: 0.25/512 to 511.25/512 (PWM output)
PUT PWM1R, DBF
GET2 TM3RES, TM3EN ; Resets and starts counter

Waits for 1 second

GET	DBF, PWM1R
ADD	DBF0, \#1
ADDC	DBF1, \#0
ADDC	DBF2, \#1
SKGE	DBF2, \#2
BR	LOOP1

LOOP2: ; Port outputs high level
BANK1
SET1 P1B1
BANKO
CLR1 PWM1SEL ; Sets PWM1/P1B1 pin in general-purpose output port mode

Waits for 1 second

BR LOOPO

15.8 Status at Reset

15.8.1 At power-ON reset

The P1B0/PWM0 through P1B2/PWM2 pins are set in the general-purpose output port mode.
The output value is "low level".
The value of each PWM data register (including the timer 3 modulo register) is " 1 FFH ".

15.8.2 At WDT\&SP reset

The P1B0/PWM0 through P1B2/PWM2 pins are set in the general-purpose output port mode.
The output value is "low level".
The value of each PWM data register (including the timer 3 modulo register) is " 1 FFH ".

15.8.3 At CE reset

The P1B0/PWM2 through P1B2/PWM2 pins retain the previous status.
That is, if the D/A converter is being used, the PWM output is retained as is. If timer 3 is being used, counting continues.

15.8.4 On execution of clock stop instruction

The P1B0/PWM0 through P1B2/PWM2 pins are set in the general-purpose output port mode.
The output value is the "previous contents of the output latch".
The value of each PWM data register (including the timer 3 modulo register) is " 1 FFH ".

15.8.5 In halt status

The P1B0/PWM0 through P1B2/PWM2 pins retain the previous status.
That is, if the D/A converter is being used, the PWM output is retained as is. If timer 3 is being used, counting continues.

16. SERIAL INTERFACES

16.1 Outline of Serial Interfaces

Figure 16-1 outlines the serial interfaces.
Table 16-1 classifies the serial interfaces and shows their communication modes.
As shown in Figure 16-1, two serial interfaces, 0 (SIOO) and 1 (SIO1), are available.
Serial interfaces 0 and 1 can be used at the same time.
Serial interface 0 can be used in two modes: 2 -wire and 3 -wire modes. In the 2 -wire mode, two pins, SDA and SCL, are used. In the 3 -wire mode, three pins, $\overline{\text { SCKO }}, \mathrm{SOO}$, and SIO, are used.

In the 2-wire mode, two communication modes, $I^{2} \mathrm{C}$ bus and serial I/O modes, can be selected.
Serial interface 1 can be used only in 3-wire mode, and uses three pins, $\overline{\text { SCK1 }}$, SO1, and SI1. The communication mode is the serial I/O mode.

Figure 16-1. Outline of Serial Interfaces

Table 16-1. Classification and Communication Modes of Serial Interfaces

Channel	Number of Communication Lines	Communication Mode	Pins Used
Serial interface 0	2 lines (2-wire)	$1^{2} \mathrm{C}$ bus	POA3/SDA P0A2/SCL
		Serial I/O	
	3 lines (3-wire)	Serial I/O	P0A1/SCKO
			POAO/SOO
			P0B3/SIO
Serial interface 1	3 lines (3-wire)	Serial I/O	P0B2/SCK1
			P0B1/SO1
			P0B0/SI1

16.2 Serial Interface 0

16.2.1 Outline of serial interface 0

Figure 16-2 outlines the serial interface 0 .
Serial interface 0 can be used in 2 -wire $\mathrm{I}^{2} \mathrm{C}$ bus or serial I/O mode, or 3 -wire serial I/O mode.

Figure 16-2. Outline of Serial Interface 0

Remarks 1. SIOOCH and SB (bits 3 and 2 of serial I/OO mode selection register: refer to Figure 16-3) select the mode of serial I/OO.
2. SIOOMS (bit 1 of serial I/OO mode selection register: refer to Figure 16-3) select a master or slave.
3. SIOOTX (bit 0 of serial I/OO mode selection register: Figure 16-3) selects reception or transmission.
4. SIOOCK1 and SIOOCK0 (bits 1 and 0 of serial I/OO clock selection register: refer to Figure 16-4) select an internal shift clock frequency.
5. SIO0WRQ1 and SIO0WRQ0 (bits 1 and 0 of serial I/O0 wait control register: refer to Figure 16-7) set wait conditions for communication.
6. SIOONWT (bit 2 of serial I/OO wait control register: refer to Figure 16-7) starts communication.
7. SIO0SF9 and SIO0SF8 (bits 2 and 3 of serial I/O0 status detection register: refer to Figure 16-5) detect a clock counter.
8. SBSTT and SBBSY (bits 1 and 0 of serial I/O0 status detection register: refer to Figure 16-5) detect the start and stop conditions, and clock counter in the $\mathrm{I}^{2} \mathrm{C}$ bus mode.
9. SIOOIMD1 and SIOOIMD0 (bits 1 and 0 of serial I/OO interrupt mode selection register: refer to Figure 16-9) set interrupt timing.
10. SBACK (bit 3 of serial I/O0 wait control register: refer to Figure 16-7) reads or sets acknowledge data.
11. SIOOWSTT (bit 0 of serial I/OO wait status judge register: refer to Figure 16-8) detects serial communication status.

16.2.2 Clock I/O control block and data I/O control block

The clock I/O control block and data I/O control block control the communication mode (I2C bus or serial I/O mode), the number of pins used (2-wire or 3 -wire mode), and transmission or reception operation of serial interface 0 .

The 2 -wire or 3 -wire mode, and $I^{2} \mathrm{C}$ bus or serial I/O mode are selected by using the SIOOCH and SB flags.
The SIOOMS flag selects the internal clock (master) or external clock (slave) operation, and the SIOOTX flag selects reception ($R X$) or transmission (TX).

Each flag is allocated to the serial I/O0 mode selection register.
Figure 16-3 shows the configuration of the serial I/O0 mode selection register.
Table 16-2 shows the set status of each pin.
As shown in this table, flags that set the input or output mode of each pin must also be manipulated in addition to the control flags of the serial interface, in order to set each pin.

Figure 16-3. Configuration of Serial I/OO Mode Selection Register

	Power-ON reset	0	0	0	0
	WDT\&SP reset	0	0	0	0
	CE reset	0	0	0	0
Clock stop		0	0	0	0

Table 16-2. Status of Each Pin Set by Control Flag

16.2.3 Clock control block

The clock control block controls generation of a clock when the internal clock is used (master operation) and clock output timing.

The frequency fsc of the internal clock is set by the SIOOCK1 and SIOOCKO flags of the serial I/OO clock selection register.

Figure 16-4 shows the configuration of the serial I/OO clock selection register.
The shift clock output from the clock control block is valid only for the master operation (SIOOMS flag = 1).
For the clock generation timing, refer to the description of each communication mode.

Figure 16-4. Configuration of Serial I/OO Clock Selection Register

	Power-ON reset	0:0:0 0			
	WDT\&SP reset		0	0	0
	CE reset		0	0	0
Clock stop			0	0	

16.2.4 Clock counter and start/stop detection block

The clock counter is a wrap-around counter that counts the rising edges of the clock.
Because this counter directly reads the status of the clock pin, whether the clock is an internal clock or external clock cannot be identified.

The contents of the clock counter can be detected via the SIO0SF8 and SIO0SF9 flags of the serial I/O0 status detection register, but cannot be directly read by program.

The start/stop detection block detects the start and stop conditions when the $I^{2} \mathrm{C}$ bus mode is used.
The start and stop conditions are detected by the SBSTT and SBBSY flags of the serial I/O0 status detection register.

Figure 18-5 shows the configuration of the serial I/OO status detection register.
For the operation and timing chart of the clock counter, refer to the description of each communication mode.

Figure 16-5. Configuration of Serial I/OO Status Detection Register

16.2.5 Presettable shift register 0

Presettable shift register 0 is an 8 -bit shift register that writes serial out data and reads serial in data.
This register writes or reads data via data buffer.
It outputs the contents of the most significant bit (MSB) from the serial data I/O pin in synchronization with the falling edge of the shift clock (during transmission operation), and reads data to the least significant bit (LSB) in synchronization with the rising edge of the serial clock.

Figure $16-6$ shows the configuration of the presettable shift register 0 .

Figure 16-6. Configuration of Presettable Shift Register 0

Note Data may be destroyed if the PUT or GET instruction is executed during serial communication. For details, refer to 16.2.10 Causions on setting and reading data.

16.2.6 Wait control block and acknowledge control block

The wait control block keeps communication waiting or releases communication from the wait status.
The condition under which communication is kept waiting is set by the SIOOWRQ0 and 1 flags (bits 0 and 1 of serial I/O0 wait control register).

Serial communication is started when the SIOONWT flag (bit 2 of serial I/OO wait control register) is set (released from the wait status).

The communication status can be detected by the SIOONWT flag.
When "0" is written to the SIOONWT flag while communication is released from the wait status, the wait status is set. This is called forced wait status.

The acknowledge control block outputs and detects an acknowledge signal in the $\mathrm{I}^{2} \mathrm{C}$ bus mode.
An acknowledge signal is set and read by the SBACK flag (bit 3 of serial I/OO wait control register).
Figure 16-7 shows the configuration of the serial I/O0 wait control register.
Figure 16-8 shows the configuration of the serial I/OO wait status judge register.

Figure 16-7. Configuration of Serial I/OO Wait Control Register

Figure 16-8. Configuration of Serial I/OO Wait Status Judge Register

$\begin{aligned} & \stackrel{\rightharpoonup}{\otimes} \\ & \stackrel{\omega}{0} \\ & \stackrel{\rightharpoonup}{\leftrightarrows} \end{aligned}$	Power-ON reset	0	0		0
	WDT\&SP reset				0
	CE reset				0
	ck stop		\downarrow	\dagger	0

Caution If a slave outputs a wait request while the master is operating, " 0 " is detected on the SIOOWSTT flag. The SIOONWT flag retains the status of 1.

16.2.7 Interrupt control block

The interrupt control block sets a condition under which an interrupt request is issued by the serial I/O0 interrupt mode selection register.

When the interrupt request issuance condition is satisfied, the IRQSIOO flag is set.
Change the interrupt request issuance condition while communication is in the wait status. If it is changed after communication has been released from the wait status, an interrupt request may be issued as soon as the condition has been changed.

Figure 16-9 shows the configuration of the serial I/OO interrupt mode selection register.

Figure 16-9. Configuration of Serial I/OO Interrupt Mode Selection Register

	Power-ON reset	0	0	0		0
	WDT \& SP reset			0		0
	CE reset			0		0
	ck stop			0		0

Notes 1. An interrupt request is issued if this mode is set when the value of the clock counter is " 7 ".
2. An interrupt request is issued if this mode is set when the value of the clock counter is " 8 ".
3. An interrupt request is issued if this mode is set when the SBSTT flag = 1 and the value of the clock counter is " 7 ".
4. An interrupt request is issued if this mode is set after the stop condition has been issued.

16.2.8 $I^{2} \mathrm{C}$ bus mode

(1) Outline of $\mathrm{I}^{2} \mathrm{C}$ bus mode

In the $I^{2} C$ bus mode, communication is carried out with two pins, SCL and SDA.
The features of the $\mathrm{I}^{2} \mathrm{C}$ bus mode are as follows.

- Communication can be controlled under the start/stop conditions and by the acknowledge signal for the ninth clock.
- Communication can be kept waiting by externally fixing the clock to low level with an N-ch open-drain pin.

(2) Timing chart

Figure 16-10 shows the timing chart.

Figure 16-10. Timing Chart in $\mathrm{I}^{2} \mathrm{C}$ Bus Mode

<1> Initial status (general-purpose input port)
<2> Generates start condition by general-purpose I/O port
<3> Sets transmission status of master
<4> Releases wait
$<5>$ Wait timing when data wait status is set
<6> Wait timing when acknowledge wait status is set
$<7>$ Sets general-purpose I/O port (releases serial operation mode)
<8> Generates stop condition by general-purpose I/O port
<9> Issues interrupt request when value of clock counter first reaches 7 after detection of start condition
$<10>$ Issues interrupt request when value of clock counter reaches 7
$<11>$ Issues interrupt request when value of clock counter reaches 8
$<12>$ Issues interrupt request after stop condition is detected
(3) Operation of clock counter

The value of the clock counter is incremented from the initial value " 0 " each time the rising of the clock pin has been detected.
In the $\mathrm{I}^{2} \mathrm{C}$ bus mode, the value of the clock counter returns to " 0 " after it has reached " 9 ", and the clock counter continues counting.
In the serial I/O mode, the value of the clock counter returns to " 0 " after it has reached " 8 ", and the clock counter continues counting.
The clock counter is also reset in the following cases.

- At reset (power-ON reset, WDT\&SP reset, CE reset)
- On execution of clock stop instruction
- On detection of start condition
- If communication mode is changed from $\mathrm{I}^{2} \mathrm{C}$ bus mode to 2 -wire or 3 -wire serial I/O mode

(4) Wait operation and cautions

When the wait status is released, serial data is output (during transmission operation), and the wait status is kept released until a condition (wait condition) set by the SIOOWRQ0 and 1 flags is satisfied.
When the wait condition is satisfied, the shift clock pin is made low, and the operations of the clock counter and presettable shift register 0 are stopped.
If the forced wait status is specified while the wait status is released, the forced wait status is set at the falling of the clock next to the one at which "0" has been written to the SIOONWT flag.
Nothing is changed even if the wait status is released again after the wait status has been released once. If the forced wait status is set in the wait status, one pulse of the shift clock is output.
In the $I^{2} \mathrm{C}$ bus mode, do not set data wait conditions (SIOWRQ0 $=1$, WIOOWRQ1 $=0$) successively. This is because, if the data wait condition is set two times in succession and the wait status is released, the wait status is set as soon as the wait status has been released the second time.
While the device is operating as the master and if the level of the shift clock output pin is forcibly made low externally while the pin outputs a high level (this is called a wait request by slave), the master is placed in the wait status.
If this happens, the master resumes its operation when the wait request by the slave has been cleared.

(5) Interrupt request issuance timing

Interrupt request issuance timing can be selected by the SIOOIMDO and 1 flags.

(6) Acknowledge block and its operation

The acknowledge block operates only in the $I^{2} \mathrm{C}$ bus mode.
This block is used to output an acknowledge signal during a reception operation, or to detect an acknowledge signal during a transmission operation.
During reception, the content of the SBACK flag is output to the serial data pin at the falling edge of the shift clock when the value of the clock counter is " 8 ".
Once data has been set to the SBACK flag during reception, the value of the data is retained.
During transmission, the status of the serial data pin is read to the SBACK flag at the rising edge of the shift clock when the value of the clock counter reaches " 9 "
Figure 16-11 shows the acknowledge signal output and input operations.
During reception, set the acknowledge signal (setting of the SBACK flag) as soon as the wait status has been released (by setting the SIOONWT flag).

This is because, even if only the SBACK flag is set, the SIOONWT flag is also set because it is in the register at the same address. If the wait status is set at this time, the wait status is released and one pulse of the shift clock is output.

Figure 16-11. Acknowledge Output and Input Operations
(a) During reception

(b) During transmission

(7) Shift clock generation timing in $\mathrm{I}^{2} \mathrm{C}$ bus mode
(a) On releasing wait status from initial status

The initial status is the point where the master operation in the $I^{2} \mathrm{C}$ bus mode is selected. In the wait status, a low level is output to the shift clock pin.

Figure 16-12. Shift Clock Generation Timing in $I^{2} C$ Bus Mode (1/5)

(b) During wait operation
<1> Wait status under condition of SIOOWRQ0 and SIOOWRQ1 flags (normal operation)

Figure 16-12. Shift Clock Generation Timing in $I^{2} C$ Bus Mode (2/5)

<2> If forced wait status is set in wait status Nothing is affected.
<3> If forced wait status is set after wait status has been released
In this case, the wait status is set at the next falling edge of the clock after the one at which the forced wait status was set.
When the forced wait status was set, however, the clock counter and presettable shift register 0 stop operating.
If the forced wait status is set while the clock pin is low, the clock counter and presettable shift register 0 operate by 1 pulse. Because the internal clock counter and shift register do not operate at this time, communication may not be performed normally even if the wait status is released again.

Figure 16-12. Shift Clock Generation Timing in $I^{2} C$ Bus Mode (3/5)

<4> If wait status is released after wait status has been released Nothing is affected.
<5> If wait request is made by slave after wait status has been released
At this time, the clock is output 0 to $3.3 \mu \mathrm{~s}$ after the wait request by the slave has been cleared. The value of T in the figure below is as follows:

fsc	T
93.75 kHz	666 ns
375.00 kHz	222 ns
281.25 kHz	222 ns
46.875 kHz	666 ns

Figure 16-12. Shift Clock Generation Timing in $I^{2} C$ Bus Mode (4/5)

(c) During slave (external clock) operation

When the slave operation is specified the first time after application of supply voltage VDD, the SCK pin waits for input of an external clock and the output pin goes into a high-impedance state.
If the SCL pin is externally made low at this time, it continues outputting a low level until the wait status is released next time.

Figure 16-12. Shift Clock Generation Timing in $I^{2} C$ Bus Mode (5/5)

(8) Start and stop conditions, and operations of SBSTT and SBBSY flags

The start/stop condition recognition timing is shown in Figure 16-13.
The SBSTT and SBBSY flags operate only in the $I^{2} \mathrm{C}$ bus mode.
By detecting these flags, communication status of the other stations can be detected.
These flags operate regardless of whether the device operates as the master or slave, whether it performs reception or transmission, and whether communication is in the wait status or released from the wait status. These flags are " 0 " in the serial I/O mode.
For the operations of the SBSTT and SBBSY flags, refer to Figure 16-10 Timing Chart in $I^{2} C$ Bus Mode.

Figure 16-13. Start/Stop Condition Recognition Timing
(a) Start condition recognition timing

(b) Stop condition recognition timing

16.2.9 Serial I/O mode

(1) Outline of serial I/O mode

In the serial I/O mode, communication is carried out by using two pins, SCL and SDA, or three pins, $\overline{\text { SCKO }}$, SOO, and SIO.

(2) Timing chart

Figure 16-14 shows the timing chart in the serial I/O mode.

Figure 16-14. Timing Chart in Serial I/O Mode

<1> Initial status (general-purpose input port)
$<2>$ Sets transmission status of master
<3> Releases wait status
$<4>$ Wait timing when data wait status is set
<5> Releases wait status again
<6> Issues interrupt request when value of clock counter is 7
$<7>$ Issues interrupt request when value of clock counter is 8

(3) Operation of clock counter

The value of the clock counter is incremented from the initial value " 0 " each time the rising of the clock pin has been detected.
The value of the clock counter returns to " 0 " after it has reached " 8 ", and the clock counter continues counting. The clock counter is also reset in the following cases.

- At reset (power-ON reset, WDT\&SP reset, CE reset)
- On execution of clock stop instruction
- If data is written to serial I/O0 wait control register
- If communication mode is changed from 2-wire or 3-wire serial I/O mode to $I^{2} \mathrm{C}$ bus mode

(4) Wait operation and Cautions

When the wait status is released, serial data is output (during transmission operation) at the falling of the next clock, and the wait status is kept released until a condition (wait condition) set by the SIOOWRQ0 and 1 flags is satisfied.
When the wait condition is satisfied, the shift clock pin is made high, and the operations of the clock counter and presettable shift register 0 are stopped.
The value of the presettable shift register 0 cannot be read correctly if it is read while the wait status is released and while the shift clock pin is high.
Correct data cannot be written to the presettable shift register 0 while the wait status is released and while the shift clock pin is low.
If the forced wait status is specified while the wait status is released, the forced wait status is set as soon as " 0 " has been written to the SIOONWT flag.
The clock output wave is not affected even if the wait status is released again when it has been already released once. Note, however, that the clock counter is reset.
(5) Interrupt request issuance timing

Interrupt request issuance timing can be selected by the SIOOIMDO and 1 flags.
For details, refer to 16.2.7 Interrupt control block.

(6) Acknowledge block and its operation

The acknowledge block operates only in the $\mathrm{I}^{2} \mathrm{C}$ bus mode.

(7) Shift clock generation timing in serial I/O mode

(a) On releasing wait status from initial status

The initial status is the status when the internal clock operation in the serial I/O mode has been selected. In the wait status, a high level is output to the shift clock pin.

Figure 16-15. Shift Clock Generation Timing in Serial I/O Mode (1/4)

(b) When wait operation is performed
<1> If wait status is set under condition specified by SIOOWRQ0 and SIOOWRQ1 flags (normal operation)

Figure 16-15. Shift Clock Generation Timing in Serial I/O Mode (2/4)

<2> If forced wait is set in wait status

Figure 16-15. Shift Clock Generation Timing in Serial I/O Mode (3/4)

<3> If forced wait is set after wait status has been released

Figure 16-15. Shift Clock Generation Timing in Serial I/O Mode (4/4)

$a+b=1 / 2 f s c$

$a+b=1 / 2 f s c$
<4> If wait status is released when it has been already released once
The clock output waveform is not affected. However, note that the clock counter is reset.
(8) Operations of SBSTT and SBBSY flags

The SBSTT and SBBSY flags operate only in the $I^{2} \mathrm{C}$ bus mode.
These flags remain "0" in the serial I/O mode.

16.2.10 Cautions on setting and reading data

Data is set to the presettable shift register 0 by using the "PUT SIOOSFR, DBF" instruction.
To read the data of this register, the "GET DBF, SIOOSFR" instruction is used.
Set or read data of the register in the wait status. If the wait status is released, data may not be correctly set or read depending on the status of the shift clock pin.

The following table shows the data setting and reading timing, and points to be noted.

Table 16-3. Reading and Writing Data of Presettable Shift Register 0 and Cautions

Status on Execution of PUT/GET		Status of Shift Clock Pin	$I^{2} \mathrm{C}$ Bus Mode	Serial I/O Mode
Wait status	Read (GET)		Normal read	Normal read
	Write (PUT)	fixed to low - Serial I/O mode: fixed to high	Normal write Outputs contents of MSB when wait status is released next time (during transmission)	Normal write Outputs contents of MSB when wait status is released next time and shift clock pin goes low (during transmission)
Wait released status	Read (GET)	High level	Cannot be read normally Contents of SIOOSFR are lost	Cannot be read normally Contents of SIOOSFR are lost
		Low level	Normal read	Normal read
	Write (PUT)	High level	Normal write Outputs contents of MSB at falling of clock next to one at which PUT instruction has been executed. Clock counter is not reset	Normal write Outputs contents of MSB when PUT instruction is executed. Clock counter is not reset PUT SIOOSFR, DBF
		Low level	Cannot be read normally Contents of SIOOSFR are lost	Cannot be read normally Contents of SIOOSFR are lost

16.2.11 Operation of serial interface 0

Tables 16-4 through 16-6 outlines the operations in each communication mode.

Table 16-4. Outline of Operation in $I^{2} C$ Bus Mode

		$1^{2} \mathrm{C}$ Bus Mode			
		Slave operation (SIOOMS $=0$)		Master operation (SIOOMS = 1)	
		$\begin{gathered} \text { Reception } \\ (\text { SIOOTX }=0) \end{gathered}$	Transmission $(\text { SIOOTX = 1) }$	$\begin{gathered} \text { Reception } \\ (\text { SIOOTX }=0) \end{gathered}$	Transmission $(\mathrm{SIOOTX}=1)$
	SDA/P0A3	When POABIO3 $=0$ Floating Waits for input of external data When POABIO3 = 1 General-purpose output port Outputs content of output latch	Outputs contents of SIOOSFR at falling of external clock regardless of P0ABIO3	When POABIO3 = 0 Floating Waits for input of external data When POABIO3 = 1 General-purpose output port Outputs content of output latch	Outputs contents of SIOOSFR at falling of internal clock regardless of P0ABIO3
	SCL/P0A2	When P0ABIO2 = 0 Floating Waits for input of external data When POABIO2 = 1 General-purpose output port Outputs content of output latch		Outputs internal clock regardless of P0ABIO2	
Clock counter		Incremented at rising of SCL pin			
Operation of presettable shift register 0	Output	Not output	Shifted from MSB each time SCL falls and is output	Not output	Shifted from MSB each time SCL falls and is output
	Input	Shifted from LSB each time SCL rise and is input			
Wait operation	In wait status	SCL and SDA pins are floated	SCL pin is floated and SDA pin retains its status	SCL pin outputs low level and SDA pin is floated	SCL pin outputs low level and SDA pin retains its status
	Wait released	SCL pin is floated and waits for input of external clock. SDA pin is floated and waits for external data	SCL pin is floated and waits for input of external clock. SDA pin outputs data each time SCL pin falls	SCL pin outputs internal clock. SDA pin is floated and waits for external data	SCL pin outputs internal clock. SDA pin outputs data each time SCL pin falls
Acknowledge		ACK output at falling of 8th clock	ACK input at rising of 9 th clock	ACK output at falling of 8 th clock	ACK input at rising of 9 th clock

Table 16-5. Outline of Operation in 2-Wire Serial I/O Mode

		2-Wire Serial I/O Mode			
		Slave operation (SIOOMS $=0$)		Master operation (SIOOMS = 1)	
		Reception $(\text { SIOOTX = 0) }$	Transmission $(\text { SIOOTX = 1) }$	$\begin{gathered} \text { Reception } \\ (\text { SIOOTX = 0) } \end{gathered}$	Transmission $(\text { SIOOTX = 1) }$
Status of each pin	SDA/P0A3	When POABIO3 $=0$ Floating Waits for input of external data When POABIO3 = 1 General-purpose output port Outputs contents of output latch	Outputs contents of SIOOSFR at falling of external clock regardless of P0ABIO3	When POABIO3 $=0$ Floating Waits for input of external data When POABIO3 $=1$ General-purpose output port Outputs contents of output latch	Outputs contents of SIOOSFR at falling of internal clock regardless of P0ABIO3
	SCL/P0A2	When POABIO2 = 0 Floating Waits for input of exte When POABIO2 = 1 General-purpose outp Outputs contents of	rnal data ut port utput latch	Outputs internal clock r	regardless of P0ABIO2
Clock counter		Incremented at rising of SCL pin			
Operation of presettable shift register 0	Output	Not output	Shifted from MSB each time SCL falls and is output	Not output	Shifted from MSB each time SCL falls and is output
	Input	Shifted from LSB each time SCL rise and is input			
Wait operation	In wait status	SCL and SDA pins are floated	SCL pin is floated and SDA pin retains its status	SCL pin outputs high level and SDA pin is floated	SCL pin outputs high level and SDA pin retains its status
	Wait released	SCL pin is floated and waits for input of external clock. SDA pin is floated and waits for external data	SCL pin is floated and waits for input of external clock. SDA pin outputs data each time SCL pin falls	SCL pin outputs internal clock. SDA pin is floated and waits for external data	SCL pin outputs internal clock. SDA pin outputs data each time SCL pin falls

Table 16-6. Outline of Operation in 3-Wire Serial I/O Mode

Operation Mode Item		3-Wire Serial I/O Mode			
		Slave operation (SIOOMS = 0)		Master operation (SIOOMS = 1)	
		Reception $(\text { SIOOTX = 0) }$	Transmission $(\text { SIOOTX = 1) }$	$\begin{aligned} & \text { Reception } \\ & (\text { SIOOTX }=0) \end{aligned}$	Transmission $(\text { SIOOTX = 1) }$
Status of each pin	SCK0/P0A1	When P0ABIO1 $=0$ Floating Waits for input of external data When POABIO1 = 1 General-purpose output port Outputs contents of output latch		Outputs internal clock regardless of P0ABIO1	
	SOO/POAO	When POABIOO $=0$ General-purpose input port Floating When POABIOO $=1$ General-purpose output port Outputs contents of output latch	Outputs contents of SIOOSFR at falling edge of external clock regardless of POABIOO	When POABIOO $=0$ General-purpose input port Floating When POABIOO $=1$ General-purpose output port Outputs contents of output latch	Outputs contents of SIOOSFR at falling edge of internal clock regardless of POABIOO
	SIO/P0B3	When POBBIO3 $=0$ Floating Waits for input of external data When POBBIO3 = 1 General-purpose output port Outputs contents of output latch			
Clock counter		Incremented at rising of $\overline{\text { SCKO }}$ pin			
Operation of presettable shift register 0	Output	Not output	Shifted from MSB each time $\overline{\text { SCK0 }}$ falls and is output	Not output	Shifted from MSB each time $\overline{\text { SCK0 }}$ falls and is output
	Input	Shifted from LSB each time $\overline{\text { SCKO }}$ falls and is input			
Wait operation	In wait status	$\overline{\text { SCKO }}$ pin is floated. SOO pin as general- purpose port. SIO pin is floated	$\overline{\text { SCKO }}$ pin is floated. SCO pin retains its status. SIO pin is floated	$\overline{\text { SCKO }}$ pin outputs high level SOO pin as generalpurpose port. SIO pin is floated	$\overline{\text { SCKO }}$ pin outputs high level. SOO pin retains its status. SIO pin is floated
	Wait released	SCKO pin is floated and waits for input of external clock. SOO pin as generalpurpose port. SIO pin is floated and waits for input of external data	SCKO pin is floated and waits for input of external clock. SOO pin outputs data. SIO pin is floated and waits for input of external data	SCK0 pin is floated and waits for input of external clock. SOO pin as generalpurpose port. SIO pin is floated and waits for input of external data	SCK0 pin is floated and waits for input of external clock. SOO pin outputs data. SIO pin is floated and waits for input of external data

16.2.12 Status of serial interface 0 at reset

(1) At power-ON reset

Each pin is set in the general-purpose input port mode.
The contents of presettable shift register 0 are undefined.

(2) At WDT\&SP reset

Each pin is set in the general-purpose input port mode.
The contents of presettable shift register 0 are undefined.
(3) On execution of clock stop instruction

Each pin is set in the general-purpose I/O port mode and remains in the previous input or output mode.
The contents of presettable shift register 0 are undefined.

(4) At CE reset

Each pin is set in the general-purpose I/O port mode and remains in the previous input or output mode. The contents of presettable shift register 0 are undefined.

(5) In halt status

Each pin retains its set status.
Output of the internal clock is stopped in the status where the HALT instruction is executed.
When an external clock is used, the operation continues even if the HALT instruction is executed.
Presettable shift register 0 retains the previous value.

16.3 Serial Interface 1

16.3.1 Outline of serial interface 1

Figure 16-16 outlines the serial interface 1.
Serial interface 1 is used in the 3 -wire serial I/O mode.

Figure 16-16. Outline of Serial Interface 1

Remarks 1. SIO1CK1 and SIO1CK0 (bits 1 and 0 of serial I/O1 mode selection register: refer to Figure 16-17) select a shift clock.
2. SIO1TS (bit 3 of serial I/O1 mode selection register: refer to Figure 16-17) starts or stops communication operation.
3. $\mathrm{SIO1HIZ}$ (bit 2 of serial I/O1 mode selection register: refer to Figure 16-17) selects the function of the SO1/P0B1 pin.

16.3.2 Clock I/O control block and data I/O control block

The clock I/O control block and data I/O control block control the transmission or reception operation of serial interface 1 and selects a shift clock.

The internal clock (master) or external clock (slave) operation is selected by the SIO1CK0 and 1 flags.
The SIO1HIZ flag selects whether the SO1 pin is used as a serial data output pin.
The flags that control the clock I/O control block and data I/O control block are allocated to the serial I/O1 mode selection register.

Figure 16-17 shows the configuration and function of the serial I/O1 mode selection register.
Table 16-7 shows the set status of each pin.
As shown in this table, flags that set the input or output mode of each pin must also be manipulated in addition to the control flags of the serial interface, in order to set each pin.

Figure 16-17. Configuration of Serial I/O1 Mode Selection Register

$\begin{aligned} & \overleftarrow{む} \\ & \mathbb{0} \\ & \underset{\alpha}{2} \end{aligned}$	Power-ON reset	$\begin{array}{l:l:l:l}0 & 0 & 0 & 0\end{array}$			
	WDT\&SP reset	0	0	0	0
	CE reset	0	0	0	0
Clock stop		0	0	0	0

16.3.3 Clock counter

The clock counter is a wrap-around counter that counts the rising edges of the clock.
Because this counter directly reads the status of the clock pin, whether the clock is an internal clock or external clock cannot be identified.

The contents of the clock counter cannot be directly read by software.

Table 16-7. Status of Each Pin Set by Control Flag

16.3.4 Presettable shift register 1

Presettable shift register 1 is an 8 -bit shift register that writes serial out data and reads serial in data.
This register writes or reads data via data buffer.
It outputs the contents of the most significant bit (MSB) from the serial data I/O pin in synchronization with the falling edge of the shift clock (during transmission operation), and reads data to the least significant bit (LSB) in synchronization with the rising edge of the serial clock.

Figure 16-18 shows the configuration of the presettable shift register 1.

Figure 16-18. Configuration of Presettable Shift Register 1

Note Data may be destroyed if the PUT or GET instruction is executed during serial communication. For details, refer to 16.3.7 Cautions on setting and reading data.

16.3.5 Wait control block

The wait control block keeps communication waiting or releases communication from the wait status.
Serial communication is started when communication is released from the wait status by using the SIO1TS flag of the serial I/O1 mode selection register.

Communication is set in the wait status eight clocks after the wait status has been released and communication has been started.

The communication status can be detected by using the SIO1TS flag. To do so, detect the status of the SIO1TS flag after setting this flag to " 1 ".

If " 0 " is written to the SIO1TS flag when communication is released from the wait status, the wait status is set. This wait status is called forced wait status.

For the configuration of the serial I/O1 mode selection register, refer to Figure 16-17.

16.3.6 Operation of serial interface 1

(1) Timing chart

Figure $16-19$ shows the timing chart.

Figure 16-19. Timing Chart of Serial Interface 1

<1> Initial status (general-purpose input port)
<2> Sets transmission status of master/releases wait status
<3> Wait timing
<4> Releases wait status again
<5> Interrupt issuance timing

(2) Operation of clock counter

The value of the clock counter is incremented from the initial value " 0 " each time the rising of the clock pin has been detected.
The value of the clock counter returns to " 0 " after it has reached " 8 ", and the clock counter continues counting. The clock counter is also reset in the following cases.

- At reset (power-ON reset, WDT\&SP reset, CE reset)
- On execution of clock stop instruction
- If " 0 " is written to SIO1TS flag

(3) Wait operation and cautions

When the wait status is released, serial data is output (during transmission operation) at the falling of the next clock, and the wait status is released at the eighth clock.
After eight clocks have been output, the shift clock pin is made high, and the operations of the clock counter and presettable shift register 1 are stopped.
The value of the presettable shift register 1 cannot be read correctly if it is read while the wait status is released and while the shift clock pin is high.
Correct data cannot be written to the presettable shift register 1 while the wait status is released and while the shift clock pin is low.
If the forced wait status is specified while the wait status is released, the forced wait status is set as soon as "0" has been written to the SIO1TS flag, and the clock counter is reset.
(4) Interrupt request issuance timing

An interrupt request is issued at the rising of the shift clock when the value of the clock counter is " 8 ".
(5) Shift clock generation timing
(a) On releasing wait status from initial status

The initial status is the status when the P0B2/5CK1 pin is set in the output mode and the internal clock operation is selected.
In the wait status, a high level is output to the shift clock pin.
The wait status can be released and a clock can be selected at the same time.

Figure 16-20. Shift Clock Generation Timing of Serial Interface 1 (1/4)

Shift clock

(b) When wait operation is performed (normal operation)
<1> If wait status is set at the 8th clock (normal operation)

Figure 16-20. Shift Clock Generation Timing of Serial Interface 1 (2/4)

<2> If forced wait is set in wait status

Figure 16-20. Shift Clock Generation Timing of Serial Interface 1 (3/4)

<3> If forced wait is set after wait status has been released Note that the clock counter is reset.

Figure 16-20. Shift Clock Generation Timing of Serial Interface 1 (4/4)

$$
a+b=1 / 2 f s c
$$

$$
a+b=1 / 2 f s c
$$

<4> If wait status is released when it has been already released
The clock output waveform is not affected. The clock counter is not reset.

16.3.7 Cautions on setting and reading data

Data is set to the presettable shift register 1 by using the "PUT SIO1SFR, DBF" instruction.
To read the data of this register, the "GET DBF, SIO1SFR" instruction is used.
Set or read data of the register in the wait status. If the wait status is released, data may not be correctly set or read depending on the status of the shift clock pin.

The following table shows the data setting and reading timing, and points to be noted.

Table 16-8. Reading and Writing Data of Presettable Shift Register and Cautions

Status on Execution of PUT/GET		Status of Shift Clock Pin	Serial I/O Mode
Wait status	Read (GET) Write (PUT)	- External clock: floating - Internal clock: output latch (always high)	Normal write Normal write Outputs contents of MSB when wait status is released next time and shift clock pin falls (during transmission)
Wait released status	Read (GET)	High level	Cannot be read normally Contents of SIO1SFR are lost
		Low level	Normal write
	Write (PUT)	High level	Normal write Outputs contents of MSB at which PUT instruction has been executed. Clock counter is not reset
		Low level	Cannot be read normally Contents of SIO1SFR are lost

16.3.8 Operation mode and operation of each part

Tables 16-9 outlines the operations of the 3 -wire serial I/O mode.

Table 16-9. Outline of Operation of Serial Interface 1

		3-Wire Serial I/O Mode			
		Slave operation$(\text { SIO1CK1 }=\text { SIO1CK0 }=0)$		Master operation$(\text { SIO1CK1 }=\text { SIO1CK0 }=\text { other than } 0)$	
Status of each pin	P0B2/SCK1	During wait $(S I O 1 T S=0)$	Wait released $(\mathrm{SIO1TS}=1)$	During wait $(\mathrm{SIO1TS}=0)$	Wait released (SIO1TS = 1)
		When POBBIO2 $=0$ Floating General-purpose input port When $\mathrm{POBBIO}=1$ General-purpose output port Outputs contents of output latch	When POBBIO2 $=0$ Floating Waits for input of external clock When $\operatorname{POBBIO}=1$ General-purpose output port Outputs contents of output latch	When POBBIO2 $=0$ Floating General-purpose input port When POBBIO2 = 1 General-purpose output port Outputs high level	When POBBIO2 $=0$ Floating General-purpose input port When $\operatorname{POBBIO2}=1$ Outputs internal clock
	P0B1/SO1	$\mathrm{SIO1HIZ}=0$	$\mathrm{SIO} 1 \mathrm{HIZ}=1$	$\mathrm{SIO} 1 \mathrm{HIZ}=0$	$\mathrm{SIO} 1 \mathrm{HIZ}=1$
		When P0BBIO1 = 0 Floating General-purpose input port When P0BBIO1 = 1 General-purpose output port Outputs contents of output latch	When P0BBIO1 = 0 Floating General-purpose input port When P0BBIO1 = 1 Outputs data	When P0BBIO1 = 0 Floating General-purpose input port When POBBIO1 = $\mathbf{1}$ General-purpose output port Outputs contents of output latch	When P0BBIO1 $=0$ Floating General-purpose input port When P0BBIO1 = 1 Outputs data
	P0B0/SI1	When POBBIOO $=0$ Floating Waits for input of serial data When POBBIOO = $\mathbf{1}$ General-purpose output port Outputs contents of output latch			
Clock counter		Incremented at rising of $\overline{\text { SCK1 }}$ pin			
Operation of presettable shift register 1	Output	$\mathrm{SIO} 1 \mathrm{HIZ}=0$ Not output $\text { SIO1HIZ = } 1$ Shifted from MSB each time SCK1 pin falls and is output			
	Input	Shifted from LSB each time SCK1 pin rises and is input. SI1 pin outputs contents of output latch when POBBIOO $=1$			

16.3.9 Status of serial interface 1 at reset

(1) At power-ON reset

Each pin is set in the general-purpose input port mode.
The contents of presettable shift register 1 are undefined.

(2) At WDT\&SP reset

Each pin is set in the general-purpose input port mode.
The contents of presettable shift register 1 are undefined.
(3) On execution of clock stop instruction

Each pin is set in the general-purpose I/O port mode and remains in the previous input or output mode.
The contents of presettable shift register 1 are undefined.

(4) At CE reset

Each pin is set in the general-purpose I/O port mode and remains in the previous input or output mode. The contents of presettable shift register 1 are undefined.

(5) In halt status

Each pin retains its set status.
Output of the internal clock is stopped in the status where the HALT instruction is executed.
When an external clock is used, the operation continues even if the HALT instruction is executed.
Presettable shift register 1 retains the previous contents.

17. PLL FREQUENCY SYNTHESIZER

The PLL (Phase Locked Loop) frequency synthesizer is used to lock a frequency in the MF (Medium Frequency), HF (High Frequency), and VHF (Very High Frequency) to a constant frequency by means of phase difference comparison.

17.1 Outline of PLL Frequency Synthesizer

Figure 17-1 outlines the PLL frequency synthesizer. A PLL frequency synthesizer can be configured by connecting an external lowpass filter (LPF) and voltage controlled oscillator (VCO).

The PLL frequency synthesizer divides a signal input from the VCOH or VCOL pin by using a programmable divider and outputs a phase difference between this signal and a reference frequency from the EOO and EO1 pins.

The PLL frequency synthesizer operates only while the CE pin is high. It is disabled when the CE pin is low. For the details of the disabled status of the PLL frequency synthesizer, refer to 17.5 PLL Disabled Status.

Figure 17-1. Outline of PLL Frequency Synthesizer

Note External circuit

Remarks 1. PLLMD1 and PLLMD0 (bits 1 and 0 of PLL mode selection register: refer to Figure 17-3) selects a division mode of the PLL frequency synthesizer.
2. PLLSCNF (bit 3 of PLL mode selection register: refer to Figure 17-3) selects the least significant bit of the swallow counter.
3. PLLRFCK3 through PLLRFCK0 (bits 3 through 0 of PLL reference frequency selection register: refer to Figure 17-6) selects a reference frequency fr of the PLL frequency synthesizer.
4. PLLUL (bit 0 of PLL unlock FF register: refer to Figure 17-9) detects the PLL unlock FF status.

17.2 Input Selection Block and Programmable Divider

17.2.1 Configuration and function of input selection block and programmable divider

Figure 17-2 shows the configuration of the input selection block and programmable divider.
The input selection block selects an input pin and division mode of the PLL frequency synthesizer.
The VCOH or VCOL pin can be selected as the input pin.
The voltage on the selected pin is at the intermediate level (approx. $1 / 2 \mathrm{VDD}$). The pin not selected is internally pulled down.

Because these pins are connected to an internal AC amplifier, cut the DC component of the input signal by connecting a capacitor in series to the pin.

Direct division mode and pulse swallow mode can be selected as division modes.
The programmable divider divides the frequency of the input signal according to the value set to the swallow counter and programmable counter.

The pin and division mode to be used are selected by the PLL mode selection register.
Figure 17-3 shows the configuration of the PLL mode selection register.
The value of the programmable divider is set by using the PLL data register via data buffer.

Figure 17-2. Configuration of Input Selection Block and Programmable Divider

Note PLLSCNF flag

Figure 17-3. Configuration of PLL Mode Selection Register

	Power-ON reset	U $0: 000$			
	WDT\&SP reset	U		0	0
	CE reset 1	R		0	0
	ck stop	R		0	0

U: Undefined R: Retained

17.2.2 Outline of each division mode

(1) Direct division mode (MF)

In this mode, the VCOL pin is used.
The VCOH pin is pulled down.
In this mode, only the programmable counter is used for frequency division.
(2) Pulse swallow mode (HF)

In this mode, the VCOL pin is used.
The VCOH pin is pulled down.
In this mode, the swallow counter and programmable counter are used for frequency division.
(3) Pulse swallow mode (VHF)

In this mode, the VCOH pin is used.
The VCOL pin is pulled down.
In this mode, the swallow counter and programmable counter are used for frequency division.

(4) VCOL and VCOH pin disabled

In this mode, only the VCOL and VCOH pins are internally pulled down, but the other blocks operate.

17.2.3 Programmable divider and PLL data register

The programmable divider consists of a 5-bit swallow counter and a 12-bit programmable counter. Each counter is a 17-bit binary down counter.

The programmable counter is allocated to the high-order 12 bits of the PLL data register, and the swallow counter is allocated to the low-order 4 bits. Data are set to these counters via data buffer.

The least significant bit of the swallow counter sets data to the PLLSCNF flag of the control register.
The value by which the input signal frequency is to be divided is called " N value".
For how to set a division value (N value) in each division mode, refer to 17.6 Using PLL Frequency Synthesizer.

(1) PLL data register and data buffer

Figure 17-4 shows the relationships between the PLL data register and data buffer.
In the direct division mode, the high-order 12 bits of the PLL data register are valid, and all 17 bits of the register are valid in the pulse swallow mode.
In the direct division mode, all 12 bits are used as a programmable counter.
In the pulse swallow mode, the high-order 12 bits are used as a programmable counter, and the low-order 5 bits are used as a swallow counter.
(2) Relationship between division value N of programmable divider and divided output frequency The relationship between the value " N " set to the PLL data register and the signal frequency "fn" divided and output by the programmable divider is as shown below.
For details, refer to 17.6 Using PLL Frequency Synthesizer.
(a) Direct division mode (MF)
$f i N=\frac{f i N}{N} \quad N: 12$ bits
(b) Pulse swallow mode (HF, VHF)

$$
f i N=\frac{f i N}{N} \quad N: 17 \text { bits }
$$

Figure 17-4. Setting Division Value (N Value) of PLL Frequency Synthesizer

Note The value of PLLSCNF flag is transferred when a write (PUT) instruction is executed to the PLL data register (PLLR). Therefore, data must be set to the PLLSCNF flag before executing the write instruction to the PLL data register.

17.3 Reference Frequency Generator

Figure 17-5 shows the configuration of the reference frequency generator.
The reference frequency generator generates the reference frequency "fr" of the PLL frequency synthesizer by dividing the 4.5 MHz output of a crystal oscillator.

Thirteen frequencies can be selected as reference frequency fr: $1,1.25,2.5,3,5,6.25,9,10,12.5,18,20,25$, and 50 kHz .

The reference frequency fr is selected by the PLL reference frequency selection register.
Figure 17-6 shows the configuration and function of the PLL reference frequency selection registerion.

Figure 17-5. Configuration of Reference Frequency Generator

Figure 17-6. Configuration of PLL Reference Frequency Selection Register

$\begin{aligned} & \stackrel{\rightharpoonup}{\otimes} \\ & 0 \\ & \stackrel{0}{\varangle} \\ & \stackrel{2}{2} \end{aligned}$	Power-ON reset	1	1	1		1
	WDT\&SP reset	1	1	1		1
	CE reset	1	1	1		1
Clock stop		1	1	1		1

Remark When the PLL frequency synthesizer is disabled by the PLL reference frequency selection register, the VCOH and VCOL pins are internally pulled down. The EO1 and EO0 pins are floated.

17.4 Phase Comparator (ϕ-DET), Charge Pump, and Unlock FF

17.4.1 Configuration of phase comparator, charge pump, and unlock FF

Figure 17-7 shows the configuration of the phase comparator, charge pump, and unlock FF.
The phase comparator compares the phase of the divided frequency " fN " output by the programmable divider with the phase of the reference frequency "fr" output by the reference frequency generator, and outputs an up (UP) or down $(\overline{\mathrm{DW}})$ request signal.

The charge pump outputs the output of the phase comparator from an error out pin (EO1 and EOO pins).
The unlock FF detects the unlock status of the PLL frequency synthesizer.
17.4.2 through 17.4.4 describe the operations of the phase comparator, charge pump, and unlock FF.

Figure 17-7. Configuration of Phase Comparator, Charge Pump, and Unlock FF

17.4.2 Function of phase comparator

As shown in Figure 17-7, the phase comparator compares the phases of the divided frequency "fn" output by the programmable divider and the reference frequency "fr", and outputs an up or down request signal.

If the divided frequency f_{N} is lower than reference frequency $f r$, the up request signal is output. If f_{N} is higher than $f r$, the down request signal is output.

Figure 17-8 shows the relationship between reference frequency fr, divided frequency f_{N}, up request signal, and down request signal.

When the PLL frequency synthesizer is disabled, neither the up request nor the down request signal is output. The up and down request signals are input to the charge pump and unlock FF, respectively.

Figure 17-8. Relationship between $\mathrm{fr}, \mathrm{f}_{\mathrm{N}}, \overline{\mathrm{UP}}$, and $\overline{\mathrm{DW}}$
(a) If fN lags behind fr

(b) If f leads fr

(c) If $f \mathrm{f}$ and fr are in phase

(d) If f_{N} is lower than fr

17.4.3 Charge pump

As shown in Figure 17-7, the charge pump outputs the up request and down request signals output by the phase comparator, from the error out pins (EO1 and EO0 pins).

Therefore, the relationship between the output of the error out pins, divided frequency f_{N} and reference frequency fr is as follows:

Where reference frequency $\mathrm{fr}>$ divided frequency fN_{N} : Low-level output
Where reference frequency fr < divided frequency f_{N} : High-level output
Where reference frequency $\mathrm{fr}=$ divided frequency f_{N} : Floating

17.4.4 Unlock FF

As shown in Figure 17-7, the unlock FF detects the unlock status of the PLL frequency synthesizer from the up request and down request signals of the phase comparator.

Because either the up request or down request signal is low in the unlock status, the unlock status is detected by this low-level signal.

In the unlock status, the unlock FF is set to 1.
The unlock FF is set in the cycle of the reference frequency fr selected at that time. When the contents of the PLL unlock FF register are read (by the PEEK instruction), the unlock FF is reset (Read \& Reset).

Therefore, the unlock FF must be detected in a cycle longer than cycle $1 / \mathrm{fr}$ of the reference frequency fr.
The status of the unlock FF is detected by the PLL unlock FF register. Figure 17-9 shows the configuration of the PLL unlock FF register.

Because this register is a read-only register, its contents can be read to the window register by the "PEEK" instruction.

Because the unlock FF is set in a cycle of the reference frequency fr, the contents of the PLL unlock FF register are read to the window register in a cycle longer than cycle $1 / \mathrm{fr}$ of the reference frequency.

The delay time of the up and down request signals of the phase comparator are fixed to 0.8 to $1.0 \mu \mathrm{~s}$.

Figure 17-9. Configuration of PLL Unlock FF Register

	Power-ON reset	$\begin{array}{l:l:l:l}0 & 0 & 0 & U\end{array}$				
	WDT\&SP reset					U
	CE reset					R
Clock stop			\downarrow			R

U: Undefined R: Retained

17.5 PLL Disabled Status

The PLL frequency synthesizer stops (is disabled) while the CE pin is low.
Likewise, it also stops when PLL disabled status is selected by the PLL reference frequency register (RF address 11H).

Table 17-1 shows the operation of each block in the PLL disabled status.
When the VCOL and VCOH pins are disabled by the PLL mode selection register, only the VCOL and VCOH pins are internally pulled down, and the other blocks operate.

Because the PLL frequency selection register and PLL mode selection register are not initialized at CE reset (hold the previous status), these registers return to the previous status when the CE pin has gone low, the PLL frequency synthesizer has been disabled, and then CE pin has gone high.

To disable the PLL frequency synthesizer at CE reset, initialize these registers in software.
At power-ON reset, the PLL frequency synthesizer is disabled.

Table 17-1. Operation of Each Block under Each PLL Disable Condition

Condition Each Block	CE Pin = Low Level (PLL disabled)	CE Pin = High Level	
		PLL reference frequency selection register = 1111B (PLL disabled)	PLL mode selection register = 0000B (VCOH and VCOL disabled)
	Internally pulled down	Internally pulled down	Internally pulled down
Programmable divider	Division stopped	Division stopped	Operates
Reference frequency generator	Output stopped	Output stopped	Operates
Phase comparator	Output stopped	Output stopped	Operates
Charge pump	Error out pins are floated	Error out pins are floated	Operates. However, usually outputs low level because no signal is input

17.6 Using PLL Frequency Synthesizer

To control the PLL frequency synthesizer, the following data is necessary.
(1) Division mode : Direct division (MF), pulse swallow (HF, VHF)
(2) Pins used : VCOL and VCOH pins
(3) Reference frequency: fr
(4) Division value : N
17.6.1 through 17.6.3 below describe how to set PLL data in each division mode (MF, HF, and VHF).

17.6.1 Direct division mode (MF)

(1) Selecting division mode

Select the direct division mode by using the PLL mode selection register.
(2) Pins used

The VCOL pin is enabled to operate when the direct division mode is selected.

(3) Selecting reference frequency fr

Select the reference frequency by using the PLL reference frequency selection register.

(4) Calculation of division value N

Calculate N as follows:
$N=\frac{f v c o l}{f r}$
fvcol : Input frequency of VCOL pin
fr : Reference frequency
(5) Example of setting PLL data

How to set data to receive broadcasting in the following MW band is described below.

```
Reception frequency : 1422 kHz (MW band)
Reference frequency : 9 kHz
Intermediate frequency : +450 kHz
Division value N is calculated as follows:
```

$\begin{aligned} \mathrm{N}=\frac{\mathrm{fvcoL}}{\mathrm{fr}}=\frac{1422+450}{9} & =208 \text { (decimal) } \\ & =0 \mathrm{DOH} \text { (hexadecimal) }\end{aligned}$
Set data to the PLL data register, PLL mode selection register, and PLL reference frequency selection register as follows:

Notes 1. PLLSCNF flag
2. don't care

17.6.2 Pulse swallow mode (HF)

(1) Selecting division mode

Select the pulse swallow mode by using the PLL mode selection register.
(2) Pins used

The VCOL pin is enabled to operate when the pulse swallow mode is selected.
(3) Selecting reference frequency fr

Select the reference frequency by using the PLL reference frequency selection register.
(4) Calculation of division value N

Calculate N as follows:
$N=\frac{f v c o l}{f r}$

> fvcol: Input frequency of VCOL pin
> $\mathrm{fr} \quad:$ Reference frequency
(5) Example of setting PLL data

How to set data to receive broadcasting in the following SW band is described below.
Reception frequency : 25.50 MHz (SW band)
Reference frequency : 5 kHz
Intermediate frequency: +450 kHz
Division value N is calculated as follows:
$N=\frac{f v c o l}{f r}=\frac{25500+450}{5}=5190$ (decimal)

$$
=1446 \mathrm{H} \text { (hexadecimal) }
$$

Set data to the PLL data register, PLL mode selection register, and PLL reference frequency selection register as follows:

Caution The division value \mathbf{N} is 17 bits long when the pulse swallow mode is selected, and the least significant bit of the swallow counter is the bit 3 of the PLL mode selection register (PLLSCNF). To set " 1446 H " as the division value N , the value to be actually set to the PLL data register is "0A23H".

Note PLLSCNF flag

17.6.3 Pulse swallow mode (VHF)

(1) Selecting division mode

Select the pulse swallow mode by using the PLL mode selection register.
(2) Pins used

The VCOH pin is enabled to operate when the pulse swallow mode is selected.
(3) Selecting reference frequency fr

Select the reference frequency by using the PLL reference frequency selection register.
(4) Calculation of division value N

Calculate N as follows:
$\mathrm{N}=\frac{\mathrm{fvcoH}}{\mathrm{fr}}$

> fvcou: Input frequency of VCOH pin
> $\mathrm{fr} \quad:$ Reference frequency

(5) Example of setting PLL data

How to set data to receive broadcasting in the following FM band is described below.
Reception frequency : 98.15 MHz (FM band)
Reference frequency : 50 kHz
Intermediate frequency : +10.7 MHz
Division value N is calculated as follows:
$\begin{aligned} \mathrm{N}=\frac{\mathrm{fvcoh}}{\mathrm{fr}}=\frac{98.15+10.7}{0.050} & =2177 \text { (decimal) } \\ & =0881 \mathrm{H} \text { (hexadecimal) }\end{aligned}$
Set data to the PLL data register, PLL mode selection register, and PLL reference frequency selection register as follows:

Caution The division value \mathbf{N} is 17 bits long when the pulse swallow mode is selected, and the least significant bit of the swallow counter is the bit 3 of the PLL mode selection register (PLLSCNF). To set " 0881 H " as the division value N , the value to be actually set to the PLL data register is " 0440 H ".

Note PLLSCNF flag

Note that data must be set to the PLLSCNF flag before a write (PUT) instruction is executed to the PLL data register (PLLR).

Example

SET1	PLLSCNF
MOV	DBF0, \#0
MOV	DBF1, \#4
MOV	DBF2, \#4
PUT	PLLR, DBF

17.7 Status at Reset

17.7.1 At power-ON reset

The PLL frequency synthesizer is disabled because the PLL reference frequency selection register is initialized to 1111 B .

17.7.2 At WDT\&SP reset

The PLL frequency synthesizer is disabled because the PLL reference frequency selection register is initialized to 1111 B .

17.7.3 On execution of clock stop instruction

The PLL frequency synthesizer is disabled because the PLL reference frequency selection register is initialized to 1111 B .

17.7.4 At CE reset

The PLL frequency synthesizer is disabled because the PLL reference frequency selection register is initialized to 1111B.

17.7.5 In halt status

The set status is retained if the CE pin is high.

18. FREQUENCY COUNTER

18.1 Outline of Frequency Counter

Figure 18-1 outlines the frequency counter.
The frequency counter has an IF counter function to count the intermediate frequency (IF) of an external input signal and an external gate counter (FCG: Frequency Counter for external Gate signal) to detect the pulse width of an external input signal.

The IF counter function counts the frequency input to the P1C0/FMIFC or P1C1/AMIFC pin at fixed intervals (1 $\mathrm{ms}, 4 \mathrm{~ms}, 8 \mathrm{~ms}$, or open) by using a 16 -bit counter.

The external gate counter function counts the frequency of the internal clock ($1 \mathrm{kHz}, 100 \mathrm{kHz}, 900 \mathrm{kHz}$) from the rising to the falling of the signal input to the P2A1/FCG1 or P2A0/FCG0 pin.

The IF counter and external gate counter functions cannot be used at the same time.

Figure 18-1. Outline of Frequency Counter

Remarks 1. FCGCH1 and FCGCH0 (bits 1 and 0 of FCG channel selection register: refer to Figure 18-4) select the pin used for the external gate counter function.
2. IFCMD1 and IFCMD0 (bits 3 and 2 of IF counter mode selection register: refer to Figure 18-3) select the IF counter or external gate counter function.
3. IFCCK1 and IFCCK0 (bits 1 and 0 of IF counter mode selection register: refer to Figure 18-3) select the gate time of the IF counter function and the reference frequency of the external gate counter function.
4. IFCSTRT (bit 1 of IF counter control register: refer to Figure 18-6) control starting of the IF counter and external gate counter functions.
5. IFCGOSTT (bit 0 of IF counter gate status detection register: refer to Figure 18-7) detects opening/ closing the gate of the IF counter function.
6. IFCRES (bit 0 of IF counter control register: refer to Figure 18-6) reset the count value of the IF counter.

18.2 Input/Output Selection Block and Gate Time Control Block

Figure 18-2 shows the configuration of the input/output selection block and gate time control block.
The input/output selection block consists of an IF counter input selection block and FCG I/O selection block.
The IF counter input selection block selects whether the frequency counter is used as an IF counter or an external gate counter, by using the IF counter mode register. When the frequency counter is used as the IF counter, either P1C0/FMIFC or P1C1/AMIFC pin and a count mode are selected. The pin not used for the IF counter is used as a general-purpose input port pin.

The FCG I/O selection block selects the P2A1/FCG1 or P2A0/FCG0 pin by using the FCG channel selection register, when the frequency counter is used as the external gate counter. The pin not used is used as a generalpurpose I/O port pin.

When using the frequency counter as the external gate counter, the pin to be used must be set in the input mode by using the port 2A bit I/O selection register. This is because the pin is set in the general-purpose output port mode if it is set in the output mode even if the external gate counter function is selected by the IF counter mode selection register and FCG channel selection register.

The gate time control block selects gate time by using the IF counter mode selection register when the frequency counter is used as the IF counter, or a count frequency when the frequency counter is used as the external gate counter.

Figure 18-3 shows the configuration of the IF counter mode selection register.
Figure 18-4 shows the configuration of the FCG channel selection register.

Figure 18-2. Configuration of I/O Selection Block and Gate Time Control Block

Figure 18-3. Configuration of IF Counter Mode Selection Register

	Power-ON reset	0	0	0	0
	WDT\&SP reset	0	0	0	0
	CE reset	0	0	0	0
Clock stop		0	0	0	0

Caution The IF counter and external gate counter functions cannot be used at the same time.

Figure 18-4. Configuration of FCG Channel Selection Register

	Power-ON reset	0 0		0	
	WDT\&SP reset				
	CE reset				
Clock stop					

18.3 Start/Stop Control Block and IF Counter

18.3.1 Configuration of start/stop control block and IF counter

Figure 18-5 shows the configuration of the start/stop control block and IF counter.
The start/stop control block starts the frequency counter or detects the end of counting.
The counter is started by the IF counter control register.
The end of counting is detected by the IF counter gate status detection register. When the external gate counter function is used, however, the end of counting cannot be detected by the IF counter gate status detection register.

Figure 18-6 shows the configuration of the IF counter control register.
Figure 18-7 shows the configuration of the IF counter gate status detection register.
18.3.2 and 18.3.3 describe the gate operation when the IF counter function is selected and that when the external gate counter function is selected.

The IF counter is a 16-bit binary counter that counts up the input frequency when the IF counter function or external gate counter function is selected.

When the IF counter function is selected, the frequency input to a selected pin is counted while the gate is opened by an internal gate signal. The frequency count is counted without alteration in the AMIF count mode. In the FMIF counter mode, however, the frequency input to the pin is halved and counted.

When the external gate counter function is selected, the internal frequency is counted while the gate is opened by the signal input to the pin.

When the IF counter counts up to FFFFH, it remains at FFFFH until reset.
The count value is read by the IF counter data register (IFC) via data buffer.
The count value is reset by the IF counter control register.
Figure 18-8 shows the configuration of the IF counter data register.

Figure 18-5. Configuration of Start/Stop Control Block and IF Counter

Figure 18-6. Configuration of IF Counter Control Register

	Power-ON reset	0 O		0	0
	WDT\&SP reset			0	
	CE reset			0	
	ck stop				

Figure 18-7. Configuration of IF Counter Gate Status Detection Register

\#¢¢¢¢	Power-ON reset		0 0 0		
	WDT\&SP reset				0
	CE reset				0
Clock stop			,	,	0

Cautions 1. Do not read the contents of the IF counter data register (IFC) to the data buffer while the IFCGOSTT flag is set to 1 .
2. The gate of the external gate counter cannot be opened or closed by the IFCGOSTT flag. Use the IFCSTRT flag to open or close the gate.

18.3.2 Operation of gate when IF counter function is selected

(1) When gate time of 1,4 , or 8 ms is selected

The gate is opened for 1,4 , or 8 ms from the rising of the internal $1-\mathrm{kHz}$ signal after the IFCSTRT flag has been set to 1 , as illustrated below.
While this gate is open, the frequency input from a selected pin is counted by a 16-bit counter.
When the gate is closed, the IFCG flag is cleared to 0 .
The IFCGOSTT flag is automatically set to 1 when the IFCSTRT flag is set.

(2) When gate is open

If opening of the gate is selected by the IFCCK1 and IFCCK0 flags, the gate is opened as soon as its opening has been selected, as illustrated below.
If the counter is started by using the IFCSTRT flag while the gate is open, the gate is closed after undefined time.
To open the gate, therefore, do not set the IFCSTRT flag to 1 .
However, the counter can be reset by the IFCRES flag.

The gate is opened or closed in the following two ways when opening the gate is selected as the gate time.
(a) Resetting the gate to other than open by using IFCCK1 and IFCCK0 flags

(b) Unselect pin used by using IFCMD1 and IFCMD0 flags

In this way, the gate remains open, and counting is stopped by disabling input from the pin.

18.3.3 Gate operation when external gate counter function is selected

The gate is opened from the rising to the next rising of the signal input to a selected pin after the IFCSTRT flag has been set to 1 , as illustrated below.

While the gate is open, the internal frequency ($1 \mathrm{kHz}, 100 \mathrm{kHz}, 900 \mathrm{kHz}$) is counted by a 16 -bit counter.
The IFCGOSTT flag is set to 1 from the rising to the next rising of the external signal after the IFCSTRT flag has been set.

In other words, the opening or closing of the gate cannot be detected by the IFCG flag when the external gate counter function is selected.

If reset and started while gate is open

18.3.4 Function and operation of 16 -bit counter

The 16 -bit counter counts up the frequency input within selected gate time.
The 16 -bit counter can be reset by writing " 1 " to the IFCRES flag of the IF counter control register.
Once the 16-bit counter has counted up to FFFFH, it remains at FFFFH until it is reset.
The following paragraphs (1) and (2) describe the operations when the IF counter function is selected and when the external gate counter function is selected.

The value of the IF counter data register is read via data buffer.
Figure 18-8 shows the configuration and function of the IF counter data register.

(1) When IF counter is selected

The frequency input to the P1C0/FMIFC or P1C1/AMIFC pin is counted while the gate is open. Note, however, that the frequency input to the P1C0/FMIFC is divided by two and counted.
The relationship between count value " x (decimal)" and input frequencies (ffmifc and famifc) is shown below.

- FMIFC

$$
\mathrm{ffmifc}=\frac{\mathrm{x}}{\operatorname{tgate}} \times 2(\mathrm{kHz}) \quad \text { tgate: gate time }(1 \mathrm{~ms}, 4 \mathrm{~ms}, 8 \mathrm{~ms})
$$

- AMIFC

$$
\mathrm{f}_{\text {AMIFC }}=\frac{\mathrm{x}}{\text { tgate }}(\mathrm{kHz}) \quad \text { tgate: gate time }(1 \mathrm{~ms}, 4 \mathrm{~ms}, 8 \mathrm{~ms})
$$

(2) When external gate counter (FCG) is selected

The internal frequency is counted while the gate is opened by the signal input to the P2A1/FCG1 or P2A0/ FCG0 pin.
The relationship between the count value "x (decimal)" and the gate width tgate of the input signal is shown below.

$$
\text { tGATE }=\frac{x}{\mathrm{fr}}(\mathrm{~ms}) \quad \text { fr: internal frequency }(1,100,900 \mathrm{kHz})
$$

Figure 18-8. Configuration of IF Counter Data Register

Once the IF counter data register has counted up to FFFFH, it remains at FFFFH until the counter is reset.

18.4 Using IF Counter

The following sections 18.4.1 through 18.4.3 describe how to use the hardware of the IF counter, a program example, and count error.

18.4.1 Using hardware of IF counter

Figure 18-9 shows the block diagram when the P1C0/FMIFC and P1C1/AMIFC pins.
As shown in the figure, the IF counter uses an input pin with an AC amplifier, the DC component of the input signal must be cut with a capacitor.

When the P1C0/FMIFC or P1C1/AMIFC pin is selected for the IF counter function, switch SW turns ON, and the voltage level on each pin reaches about $1 / 2 \mathrm{~V}$ d.

If the voltage has not risen to a sufficient intermediate level at this time, the IF counter does not operate normally because the AC amplifier is not in the normal operating range.

Therefore, make sure that a sufficient wait time elapses after each pin has been specified to be used for the IF counter until counting is started.

Figure 18-9. IF Count Function Block Diagram of Each Pin

18.4.2 Program example of IF counter

A program example of the IF counter is shown below.
As shown in this example, make sure that a wait time elapses after an instruction that selects the P1C0/FMIFC or P1C1/AMIFC pin for the IF counter function has been executed until counting is started.

This is because, as described in 18.4.1, the internal AC amplifier does not operate normally immediately after a pin has been selected for the IF counter.

Example To count the frequency input to the P1C0/FMIFC pin (FMIF count mode) (gate time: 8 ms)

INITFLG IFCMD1, NOT IFCMD0, IFCCK1, NOT IFCCK0
; Selects FMIFC pin (FMIF count mode), and sets gate time to 8 ms

Wait		; Internal AC amplifier stabilization time
SET1	IFCRES	; Resets counter
SET1	IFCSTRT	; Starts counting
LOOP:		
SKT1	IFCG0STT	; Detects opening or closing of gate
BR	READ	; Branches to READ: if gate is closed
Processing A		
BR	LOOP	; Do not read data of IF counter with this processing A
READ:		
GET	DBF, IFC	; Reads value of IF counter data register to data buffer

18.4.3 Error of IF counter

The errors of the IF counter include a gate time error and a count error. The following paragraphs (1) and (2) describe each of these errors.

(1) Gate time error

The gate time of the IF counter is created by dividing the $4.5-\mathrm{MHz}$ clock. Therefore, if the system clock is shifted from 4.5 MHz by " +x " ppm, the gate time is shifted by " -x " ppm.

(2) Count error

The IF counter counts frequency by the rising edge of the input signal.
If a high level is input to the pin when the gate is open, therefore, one excess pulse is counted.
If the gate is closed, however, a count error due to the status of the pin does not occur.
Therefore, the count error is " $+1,-0$ ".

18.5 Using External Gate Counter

18.5.1 Program example of external gate counter

A program example of the external gate counter is shown below.
Example To use the P2A0/FCGO pin as external gate input pin
INITFLG NOT IFCMD1, NOT IFCMDO, IFCCK1, NOT IFCCK0
; Selects external gate counter function and sets gate time to 8 ms
INITFLG NOT FCGCH1, FCGCH0 ; Selects FCG0 pin as external gate input pin
SET1 IFCRES ; Resets counter
SET1 IFCSTRT ; Starts counting
LOOP:
SKF1 IFCGOSTT ; Detects opening or closing of gate
BR READ ; Branches to READ: if gate is closed

Processing A	; Do not read data of IF counter with this processing A	
BR		
READ:		
GET		

18.5.2 Error of external gate counter

The errors of the external gate counter include an internal frequency error and a count error. The following paragraphs (1) and (2) describe each of these errors.

(1) Internal frequency error

The internal frequency of the external gate counter is created by dividing the $4.5-\mathrm{MHz}$ clock. Therefore, if the system clock is shifted from 4.5 MHz by " +x " ppm, the gate time is shifted by "-x" ppm.

(2) Count error

The external gate counter counts the frequency by the rising edge of the internal frequency.
If the internal frequency is low when the gate is opened (when the signal input to the pin rises), one excess pulse is counted.
If the gate is closed (when the signal rises next time), the excess pulse is not counted due to the count level of the internal frequency.
Therefore, the count error is " $+1,-0$ ".

18.6 Status at Reset

18.6.1 At power-ON reset

The P1C0/FMIFC, P1C1/AMIFC, P2A0/FCG0, and P2A1/FCG1 pins are set in the general-purpose input port mode.

18.6.2 At WDT\&SP reset

The P1C0/FMIFC, P1C1/AMIFC, P2A0/FCG0, and P2A1/FCG1 pins are set in the general-purpose input port mode.

18.6.3 On execution of clock stop instruction

The P1C0/FMIFC and P1C1/AMIFC pins are set in the general-purpose input port mode.
The P2A0/FCG0 and P2A1/FCG1 pins are set in the general-purpose I/O port mode, and retain the previous input or output status.

18.6.4 At CE reset

The P1C0/FMIFC and P1C1/AMIFC pins are set in the general-purpose input port mode.
The P2A0/FCG0 and P2A1/FCG1 pins are set in the general-purpose I/O port mode, and retain the previous input or output status.

18.6.5 In halt status

The P1C0/FMIFC, P1C1/AMIFC, P2A0/FCG0, and P2A1/FCG1 pins retain the status immediately before the halt mode is set.

19. BEEP

19.1 Outline of BEEP

Figure 19-1 outlines BEEP.
BEEP outputs a clock of $1,3,4$, or 6.7 kHz from the P1D0/BEEPO pin, and a clock of $4 \mathrm{kHz}, 3 \mathrm{kHz}, 200 \mathrm{~Hz}$, or 67 Hz from the P1D1/BEEP1 pin.

The duty factor of the BEEP output is 50%.

Figure 19-1. Outline of BEEP

Remarks 1. BEEP0CK1 and BEEP0CK0 (bits 1 and 0 of BEEP clock selection register: refer to Figure 19-4) select the output frequency of BEEPO.
2. BEEP1CK1 and BEEP1CK0 (bits 3 and 2 of BEEP clock selection register: refer to Figure 19-4) select the output frequency of BEEP1.
3. BEEP1SEL and BEEP0SEL (bits 1 and 0 of BEEP/general-purpose port pin function selection register: refer to Figure 19-3) select general-purpose I/O port and BEEP.
4. P1DBIO1 and P1DBIO0 (bits 1 and 0 of port 1D bit I/O selection register: refer to Figure 19-2) select the input or output mode of the port.

19.2 I/O Selection Block and Output Selection Block

The I/O selection block selects the input or output mode of the P1D0/BEEP0 and P1D1/BEEP1 pins by using the port 1D bit I/O selection register. Set the pin to be used as a BEEP pin in the output mode.

The output selection block sets the P1D0/BEEP0 and P1D1/BEEP1 pins in the general-purpose output port mode or BEEP output mode by using the BEEP/general-purpose port pin function selection register.

Figure 19-2 shows the configuration of the port 1D bit I/O selection register.
Figure 19-3 shows the configuration of the BEEP/general-purpose port pin function selection registerion.

Figure 19-2. Configuration of Port 1D Bit I/O Selection Register

	Power-ON reset		0	0
	WDT\&SP reset		0	0
	CE reset	Retained		
Clock stop		Retained		

Figure 19-3. Configuration of BEEP/General-Purpose Port Pin Function Selection Register

$\begin{aligned} & \underset{\mathbb{0}}{\mathscr{0}} \\ & \hline \end{aligned}$	Power-ON reset	$\begin{array}{l:l:l:l}0 & 0 & 0 & 0\end{array}$			
	WDT\&SP reset	!		0	0
	CE reset	!		0	0
	k stop			0	0

19.3 Clock Selection Block and Clock Generation Block

The clock selection block selects the output frequency of BEEP1 and BEEPO by using the BEEP clock selection register.

The clock generation block generates the clock to be output to BEEPO and BEEP1.
The clock frequency generated is $1 \mathrm{kHz}, 3 \mathrm{kHz}, 4 \mathrm{kHz}, 6.7 \mathrm{kHz}, 67 \mathrm{~Hz}$, or 200 Hz .

Figure 19-4. Configuration of BEEP Clock Selection Register

$\begin{aligned} & \overleftarrow{\otimes} \\ & \text { 凶̀ } \\ & \stackrel{4}{4} \end{aligned}$	Power-ON reset	0	0	0	0
	WDT\&SP reset	0	0	0	0
	CE reset	0	0	0	0
Clock stop		0	0	0	

19.4 Output Waveform of BEEP

The duty factor of the BEEP output waveform is 50%.

Example

$f=200 \mathrm{~Hz}$

f: output frequency of BEEP

19.5 Status at Reset

19.5.1 At power-ON reset

The P1D0/BEEP0 and P1D1/BEEP1 pins are set in the general-purpose input port mode.

19.5.2 At WDT\&SP reset

The P1D0/BEEP0 and P1D1/BEEP1 pins are set in the general-purpose input port mode.

19.5.3 On execution of clock stop instruction

The P1D0/BEEP0 and P1D1/BEEP1 pins are set in the general-purpose I/O port mode, and retain the previous input or output status.

19.5.4 At CE reset

The P1D0/BEEP0 and P1D1/BEEP1 pins are set in the general-purpose I/O port mode, and retain the previous input or output status.

19.5.5 In halt status

The previous status is retained.

20. STANDBY

The standby function is used to reduce the current consumption of the device while the device is backed up.

20.1 Outline of Standby Function

Figure 20-1 outlines the standby block.
The standby function reduces the current consumption of the device by partly or totally stopping the device operation.

The following three types of standby functions are available for selection as the application requires.

- Halt function
- Clock stop function
- Device operation control function by CE pin

The halt function reduces the current consumption of the device by stopping the CPU operation by using a dedicated instruction "HALT h".

The clock stop function reduces the current consumption of the device by stopping the oscillation of the oscillation circuit by using a dedicated instruction "STOP s".

The CE pin can be said to be one of the standby functions because it can be used to control the operation of the PLL frequency synthesizer and to reset the device.

Figure 20-1. Outline of Standby Block

20.2 Halt Function

20.2.1 Outline of halt function

The halt function stops the operating clock of the CPU by executing the "HALT h" instruction.
When this instruction is executed, the program is stopped until the halt status is later released. Therefore, the current consumption of the device in the halt status is reduced by the operating current of the CPU.

The halt status is released by using basic timer 0 carry FF, interrupt, or port input (POD).
The release condition is specified by operand "h" of the "HALT h" instruction.

20.2.2 Halt status

In the halt status, all the operations of the CPU are stopped. In other words, execution of the program is stopped at the "HALT h" instruction. However, the peripheral hardware units continue the operation specified before execution of the "HALT h" instruction.

For the operation of each peripheral hardware unit, refer to 20.4 Device Operation in Halt and Clock Stop Status.

20.2.3 Halt release condition

Figure 20-2 shows the halt release condition.
The halt release condition is specified by 4-bit data specified by operand "h" of the "HALT h" instruction.
The halt status is released when the condition specified by " 1 " in operand " h ".
When the halt status is released, program execution is started from the instruction after the "HALT h" instruction. If the halt status is released by an interrupt, the operation to be performed after the halt status has been released differs depending on whether the interrupts are enabled (EI status) or disabled (DI status) when an interrupt source (IRQxxx =1) is issued with the interrupt (IPxxx =1) enabled.

If two or more releasing conditions are specified, the halt status is released when one of the specified condition is satisfied.

If 0000 B is set as halt release condition " h ", no releasing condition is set. If the device is reset (by means of powerON reset, WDT\&SP reset, or CE reset) at this time, the halt status is released.

Figure 20-2. Halt Release Condition

20.2.4 Releasing halt by input port (POD)

The halt releasing condition using an input port is specified by the "HALT 0001B" instruction.
When the halt releasing condition using an input port is specified, the halt status is released if a high level is input to one of the P0D0 through P0D3 pins.

The POD0 through POD3 pins are multiplexed with the A/D converter input pins AD0 through AD3, and the halt status is not released when these pins are used as A / D converter input pins.

An example is given below.

- To use as key matrix

The P0D0 through POD3 pins are general-purpose input port pins which can be set in the input or output mode in 1-bit units and can be connected to an internal pull-down resistor. If connection of the internal pull-down resistor is specified by software, an external resistor can be eliminated as shown in this example (the internalpull down resistor is connected at power-ON reset).

The "HALT 0001B" instruction is executed after the general-purpose output ports for key source signal are made high. Note that if an alternate switch is used as shown by switch A in the above figure, the halt status is released immediately because a high level is input to the PODO/AD0 pin while switch A is closed.

20.2.5 Releasing halt status by basic timer 0 carry FF

Releasing the halt status by using the basic timer 0 carry FF is specified by the "HALT 0010B" instruction.
When releasing the halt status by the basic timer 0 carry FF is specified, the halt status is released as soon as the basic timer 0 carry FF has been set to 1 .

The basic timer 0 carry FF corresponds to the BTMOCY flag on a one-to-one basis and is set at fixed time intervals ($100,50,20$, or 10 ms). Therefore, the halt status can be released at fixed time intervals.

Example To release halt status every 100 ms to execute processing A

HLTTMR	DAT	0010B	Symbol definition
	INITFLG	NOT BTM0CK1, NOT BTM0CK0	; Sets time interval of basic timer 0 to 100 ms
LOOP:			
	HALT	HLTTMR	; Specifies setting of basic timer 0 carry FF as halt releasing condition
	SKT1	BTMOCY	; Embedded macro
	BR	LOOP	; Branches to LOOP if BTM0CY flag is not set
	Proces	ing A	; Executes processing A if carry occurs
	BR	LOOP	

20.2.6 Releasing halt status by interrupt

Releasing the halt status by an interrupt is specified by the "HALT 1000B" instruction.
When releasing the halt status by an interrupt is specified, the halt status is released as soon as the interrupt has been accepted.

Many interrupt sources are available as described in 12. INTERRUPTS. Which interrupt source is used to release the halt status must be specified in advance in software.

To accept an interrupt, each interrupt request must be issued from each interrupt source and each interrupt must be enabled (by setting the corresponding interrupt enable flag).

Therefore, the interrupt is not accepted even if the interrupt request is issued, and the halt status is not released.
When the halt status is released by accepting an interrupt, the program flow branches to the vector address of the interrupt.

When the RETI instruction is executed after interrupt servicing, the program flow is restored to the instruction after the HALT instruction.

If all the interrupts are disabled (DI status), the halt status is released by enabling an interrupt (IPxxx =1) and issuing an interrupt source (IRQxxx = 1), and the flow of the program goes to the instruction after the HALT instruction.

Example Releasing halt status by timer 0 and INTO pin interrupts

In this example, the halt status is released and processing B is executed when timer 0 interrupt is accepted. And processing A is executed when INTO pin interrupt is accepted.
Each time the halt status has been released, processing C is executed.

HLTINT	DAT	1000B	; Symbol definition
START:			; Address 0000H
	BR	MAIN	
;*** Interrupt vector address ***			
NOP			; SI01
NOP			; SIOO
NOP			; TIMER3
NOP			; TIMER2
NOP			; TIMER1
	BR	INTTM0	; Branches to timer 0 interrupt processing
NOP			; INT4
NOP			; INT3
NOP			; INT2
NOP			; INT1
NOP			; Branches to INT0 interrupt processing
			; CE DOWN EDGE
INTO:			; INT0 pin interrupt vector address (000BH)
Processing A			; INT0 pin interrupt processing
El			
	RETI		
INTMMO:			
Processing B			; Timer 0 interrupt processing
El			
RETI			
MAIN:			
	INITFLG	NOT TMOCK1, TM0CK0	; Sets timer 0 count clock to $100 \mu \mathrm{~s}$
	MOV	DBF1, \#0	
	MOV	DBFO, \#OAH	
	PUT	TMOM, DBF	; Sets time interval of timer 0 interrupt to 1 ms
	SET2	TMORES, TMOEN	; Resets and starts timer 0
	SET2	IPTM0, IPO	; Enables INTO and timer 0 interrupts
LOOP:			
Processing C			; Main routine processing
El			; Enables all interrupts
;<1>			; Specifies releasing halt status by interrupt
	BR	LOOP	

If the INT0 pin interrupt request and timer 0 interrupt request are issued simultaneously in the halt status, processing A for the INT0 pin, which has the higher hardware priority, is executed.
After execution of processing A and when "RETI" is executed, the program branches to the "BR LOOP" instruction of $\langle 1\rangle$. However, the "BR LOOP" instruction is not executed, and timer 0 interrupt is immediately accepted.
When the "RETI" instruction is executed after processing B of timer 0 interrupt has been executed, the "BR LOOP" instruction is executed.

Caution To reset the interrupt request flag (IRQxxx) once before the halt instruction is executed, insert a NOP instruction (or one or more other instructions) between the HALT instruction and the instruction that resets the interrupt request flag (IRQxxx) as shown below. If a NOP instruction (or one or more other instructions) is not inserted, the interrupt request flag is not reset, and therefore, the halt status is released immediately.

Example

$:$; IRQxxx is set at certain timing
$:$	
CLR1	IRQxxx
NOP	; Resets IRQxxx flag once
	; Resets IRQxxx flag at this timing
HALT Unless this period is missing, the IRQxxx flag is not reset,	
	$1000 B$

20.2.7 If two or more releasing conditions are specified at same time

If two or more halt releasing conditions are specified at same time, the halt status is released when one of the conditions is satisfied.

The following program example shows how the releasing conditions are identified if two or more conditions are satisfied at the same time.

Example

	HLTINT	DAT	1000B
	HLTBTM	DAT	0010B
	HLTPOD	DAT	0001B
	POD	MEM	0.73 H
START:			
	BR	MAIN	

;*** Interrupt vector address ***

NOP	$;$ SI01
NOP	$;$ SI00
NOP	TIMER3
NOP	$;$ TIMER2
NOP	$;$ TIMER1
NOP	$;$ TIMER0
NOP	INT4
NOP	$;$ INT3
NOP	; INT2
NOP	INT1
BR	INTO
NOP	

INTO:
Processing A ; INTO pin interrupt processing

El
RETI
BTMOUP:
; Timer carry FF processing
Processing B
RET
PODP:
Processing C
; POD input processing

RET
MAIN:
INITFLG NOT BTM0CK1, NOT BTM0CK0
; Selects 100 ms as clock of basic timer 0
SET1 IP0 ; Enables INT0 pin interrupt
El
LOOP:
HALT HLTINT OR HLTBTM OR HLTPOC
; Selects interrupt, timer carry FF, and POD input as halt releasing conditions
SKF1 BTMOCY ; Detects BTMOCY flag
CALL BTMOUP ; Timer carry FF processing if flag is set to 1
SKF POD,1111B ; Detects POD input
CALL PODP ; Port input processing if POD is high
BR LOOP

In the above example, three halt status releasing conditions, INT0 pin interrupt, 100-ms basic timer 0 carry FF, and port OD input, are specified.

To identify which condition has released the halt status, a vector address (interrupt), BTMOCY flag (timer carry FF), and port register (port input) are detected.

To use two or more releasing conditions, the following two points must be noted.

- When the halt status is released, all the specified releasing conditions must be detected.
- The releasing condition with the higher priority must be detected first.

20.3 Clock Stop Function

20.3.1 Outline of clock stop function

The clock stop function stops the oscillation circuit of a $4.5-\mathrm{MHz}$ crystal resonator by executing the "STOP s" instruction (clock stop status).

Therefore, the current consumption of the device is reduced to $30 \mu \mathrm{~A}$ MAX.

20.3.2 Clock stop status

In the clock stop status, all the device operations of the CPU and peripheral hardware units are stopped because the generation circuit of the crystal resonator is stopped.

For the operations of the CPU and peripheral hardware units, refer to 20.4 Device Operation in Halt and Clock

Stop Status.

In the clock stop status, the power failure detection circuit does not operate even if the supply voltage VDD of the device is raised to 2.2 V . Therefore, the data memory can be backed up at a low voltage. For the power failure detection circuit, refer to 21. RESET.

20.3.3 Releasing clock stop status

Figure 20-3 shows the stop status releasing conditions.
The stop status releasing condition is specified by 4-bit data specified by operand "s" of the "STOP s" instruction.
The stop status is released when the condition specified by " 1 " in operand " s " is satisfied.
When the stop status has been released, a halt period which is half the time (tset/2) specified by the basic timer 0 clock selection register as oscillation circuit stabilization wait time has elapsed, and the program execution is started from the instruction next to the "STOP s" instruction. If releasing the stop status by an interrupt is specified, however, the program operation after the stop status has been released differs depending on whether the interrupt is enabled (El status) or disabled (DI status) when an interrupt source is issued (IRQxxx =1) with the interrupt enabled (IPxxx $=1$).

If all the interrupts are enabled (El status), the stop status is released when the interrupt is enabled (IPxxx = 1) and the interrupt source is issued (IRQxxx = 1), and the program flow returns to the instruction next to the STOP instruction.

If all the interrupts are disabled (DI status), the stop status is released when the interrupt is enabled (IPxxx = 1) and the interrupt resource is issued (IRQxxx = 1), and the program flow returns to the instruction next to the STOP instruction.

If two or more releasing conditions are specified at one time, and if one of the conditions is satisfied, the stop status is released.

If 0000 B is specified as stop releasing condition "s", no releasing condition is satisfied. If the device is reset at this time (by means of power-ON reset, or CE reset), the stop status is released.

Figure 20-3. Stop Releasing Conditions

The "STOP s" instruction is executed as a "NOP" instruction when the CE pin rises and when the CE reset counter operates.

The operating status of the CE reset counter can be detected by the CECNTSTT flag (for the CE reset counter, refer to 21. RESET).

20.3.4 Releasing clock stop status by high level input of port OD

Figure 20-4 illustrates how the clock stop status is released by the high level input to port 0D.

Figure 20-4. Releasing Clock Stop Status By High Level Input of Port OD

tset: basic timer 0 setting time

20.3.5 Cautions on releasing clock stop status

For the cautions on releasing the clock stop status, refer to (2) Releasing from clock stop status in 21.4.4 Cautions on raising supply voltage Vdd.

20.4 Device Operation in Halt and Clock Stop Status

Table 20-1 shows the operations of the CPU and peripheral hardware units in the halt and clock stop status. In the halt status, all the peripheral hardware units continue the normal operation until instruction execution is stopped.

In the clock stop status, all the peripheral hardware units stop operation.
The control registers that control the operations of the peripheral hardware units operate normally (not initialized) in the halt status, but are initialized to specified values when the clock stop instruction is executed.

In other words, all peripheral hardware continues the operation specified by the control register in the halt status, and the operation is determined by the initialized value of the control register in the clock stop status.

For the values of the control registers in the clock stop status, refer to 8. REGISTER FILE (RF).

Table 20-1. Device Operation in Halt and Clock Stop Status

Peripheral Hardware	Status	
	Halt	Clock stop
Program counter	Stops at address of HALT instruction	Stops at address of STOP instruction
System register	Retained	Retained
Peripheral register	Retained	Partly initializedNote 1
Control register	Retained	Partly initializedNote 1
Timer	Normal operation	Operation stops
PLL frequency synthesizer	Normal operationNote 2	Operation stops
A/D converter	Normal operation	Stops operation and used as general- purpose output port
D/A converter	Normal operation	Stops operation and used as general- purpose I/O port
Serial interface	Stops operation when internal clock (master is selected and continues operation when external clock (slave) is selected	
Frequency counter	Normal operation	Stops operation and used as general- purpose input port
General-purpose I/O port	Normal operation	Stops operation and used as general- purpose I/O port
General-purpose input port	Normal operation	Retained
Input port		

Notes 1. For the value to which these registers are initialized, refer to 5. SYSTEM REGISTER (SYSREG) and

8. REGISTER FILE (RF).

2. The PLL frequency synthesizer is automatically disabled by the low level input to the CE pin.

20.5 Cautions on Processing of Each Pin in Halt and Clock Stop Status

The halt status is used to reduce the current consumption when, say, only the watch is used.
The clock stop function is used to reduce the current consumption of the device to only use the data memory. Therefore, the current consumption must be reduced as much as possible in the halt status or clock stop status. At this time, the current consumption significantly varies depending on the status of each pin, and the points shown in Table 20-2 must be noted.

Table 20-2. Status of Each Pin in Halt and Clock Stop Status and Cautions (1/2)

Table 20-2. Status of Each Pin in Halt and Clock Stop Status and Cautions (2/2)

Pin Function	Pin Symbol	Status of Each Pin and Cautions on Processing	
		Halt status	Clock stop status
External interrupt	INT4-INT0	Current consumption increases due to noise if pin is floated	
PLL frequency synthesizer	VCOL VCOH EOO EO1	Current consumption increases during PLL operation. When PLL is disabled, pin is in following status: VCOH, VCOL: internally pulled down EO1, EO0 : floated PLL is automatically disabled if CE pin goes low	PLL is disabled $\mathrm{VCOH}, \mathrm{VCOL}$: internally pulled down EO1, EO0 : floated
Crystal oscillation circuit	XIN Xout	Current consumption changes due to oscillation waveform of crystal oscillation circuit. The higher oscillation amplitude, the lower current consumption. Oscillation amplitude must be evaluated because it is influenced by crystal resonator or load capacitor used	Xis pin is internally pulled down, and Xout pin outputs high level

20.6 Device Operation Control Function of CE Pin

The CE pin controls the following functions by the input level and rising edge of the signal input from an external source.

- PLL frequency synthesizer
- Interrupt by falling edge of CE pin
- Resetting of device

20.6.1 Controlling operation of PLL frequency synthesizer

The PLL frequency synthesizer can operate only when the CE pin is high.
It is automatically disabled when the CE pin is low.
When the synthesizer is disabled, the VCOH and VCOL pins are internally pulled down, and the EO0 and EO1 pins are floated. For details, refer to 17.5 PLL Disabled Status.

The PLL frequency synthesizer can be disabled in software even when the CE pin is high.

20.6.2 Controlling interrupt by falling edge input of CE pin

An interrupt can be generated by the falling edge of the CE pin. For details, refer to 12. INTERRUPTS.

20.6.3 Resetting device

The device can be reset (CE reset) by raising the CE pin.
The device can also be reset as follows:

- Power-ON reset on application of supply voltage VDD
- Watchdog timer reset for software hang-up detection and stack overflow/underflow reset
- Reset by $\overline{\mathrm{RESET}}$ pin

For details, refer to 21. RESET.

20.6.4 Signal input to CE pin

The CE pin does not accept a low level or high level of less than 167μ s to prevent malfunctioning due to noise.
The level of the signal input to the CE pin can be detected by the CE pin status detection flag of the CE pin interrupt request register (RF address 3FH).

Figure 20-5 shows the relationship between the input signal and CE flag.

Figure 20-5. Relationship between Input Signal of CE Pin and CE Flag

Note Unless the PLL mode selection register and PLL reference frequency selection register are rewritten by software, the PLL disabled status is retained.

20.6.5 Configuration and function of CE pin interrupt request register

The CE pin interrupt request register detects the input signal level of the CE pin.
Figure 20-6 shows the configuration of the CE pin interrupt request register.

Figure 20-6. Configuration of CE Pin Interrupt Request Register

	Power-ON reset	U O : 0 : 0			
	WDT\&SP reset	U	0		
	CE reset	U	0		
Clock stop		U	0		

U: Undefined R: Retained
Note IRQCE is a R/W flag.

21. RESET

21.1 Outline of Reset

The reset function is used to initialize the device.
The μ PD17709 can be reset in the following ways:

- CE reset
- Power-ON reset
- Reset by RESET pin
- WDT\&SP reset

Figure 21-1. Configuration of Reset Block

21.2 CE Reset

CE reset is effected by raising the CE pin.
When the CE pin goes high, the next rising edge of the basic timer 0 carry FF setting pulse is counted. When the count value coincides with the value set to the CE reset timer carry counter register (1 to 15 counts), the reset signal is generated.

When CE reset is effected, the program counter, stack, system registers, and some of the control registers are initialized to the initial values, and program execution is started from address 0000 H . For the initial value of each register, refer to the description of each register.

Figure 21-2. Configuration of CE Reset Timer Carry Counter Register

$\begin{aligned} & \stackrel{\rightharpoonup}{\otimes} \\ & \underline{\omega} \\ & \stackrel{\rightharpoonup}{\leftrightarrows} \end{aligned}$	Power-ON reset	0 0 0 1		
	WDT\&SP reset	Retained		
	CE reset	Retained		
Clock stop		0	0	

The operation of CE reset differs depending on whether the clock stop instruction is used or not.
This difference is described in 21.2.1 and 21.2.2 below.
21.2.3 describes the points to be noted when CE reset is effected.

21.2.1 CE reset without clock stop (STOP s) instruction

Figure 21-2 shows the operation.
When the CE pin has gone high, the CE reset timer carry counter starts counting at the rising edge of the basic timer 0 carry FF setting pulse.

Figure 21-3. CE Reset Operation without Clock Stop Instruction (1/2)
(a) Normal operation

- When " N " is set to CE reset timer carry counter

- When " 1 " is set to CE reset timer carry counter

Figure 21-3. CE Reset Operation without Clock Stop Instruction (2/2)
(b) If status of CE pin changes while CE counter operates

At this time, the CE reset timer carry counter status is not affected.

21.2.2 CE reset with clock stop (STOP s) instruction used

Figure 21-4 shows the operation.
When the clock stop instruction is used, the clock stop signal is output when the "STOP s" instruction is executed, and oscillation is stopped and the device operation is stopped.

When the CE pin goes high, the clock stop status is released, and oscillation is started (high level input of POD or INT pin interrupt can also be used as the clock stop status releasing conditions. For details, refer to 20. STANDBY).

If the basic timer 0 carry FF setting pulse goes high after the CE pin has gone high, the halt status is released, and program execution is started from address 0 (CE reset).

As the set time (tset) of the basic timer 0 carry FF setting pulse, the value immediately before the clock stop instruction is executed is retained.

Because the set value of the CE reset timer carry counter is initialized to 1, CE reset is effected tsET/2 after the CE pin has gone high.

Figure 21-4. CE Reset Operation with Clock Stop Instruction

21.2.3 Cautions on CE reset

Because CE reset is effected regardless of the instruction under execution, the following points (1) and (2) must be noted.

(1) Time to execute timer processing such as watch

When creating a watch program by using the basic timer 0 carry, the processing time of the program must be kept to within a specific time.
For details, refer to 13.2.6 Cautions on using basic timer 0 .
(2) Processing of data and flags used in program

Exercise care in rewriting the data and flags whose contents must not be changed even when CE reset is effected, such as security code.
An example is shown below.

Example 1.

R1	MEM	0.01 H	; 1st digit of key input data of security code
R2	MEM	0.02 H	; 2nd digit of key input data of security code
R3	MEM	0.03 H	; 1st digit data when security code is changed
R4	MEM	0.04 H	; 2nd digit data when security code is changed
M1	MEM	0.11 H	; 1st digit of current security code
M2	MEM	0.12 H	; 2nd digit of current security code

START:

Key input processing	
R1 \leftarrow contents of key A	; Security code input wait mode
R2 \leftarrow contents of key B	; Substitutes contents of pressed key to R1 and R2

SET2 CMP, Z ; <1> ; Compares security code and input data

SUB R1, M1
SUB R2, M2
SKT1 Z
BR ERROR ; Input data differs from security code
MAIN:
Key input processing
R3 \leftarrow contents of key C ; Security code rewriting mode
R4 \leftarrow contents of key D ; Substitutes contents of pressed key to R3 and R4
ST M1, R3 ; <2> ; Rewrites security code
ST M2,R4 ; <3>
BR MAIN
ERROR:
Must not operate

Suppose the security code is " 12 H " in the program in Example 1. The contents of data memory addresses M1 and M 2 are " 1 H " and " 2 H ", respectively.

If CE reset is effected, the contents of key input and security code " 12 H " are compared in $<1\rangle$. If the two are the same, the normal processing is performed.

If the security code is changed in the main processing, the new code is written to M1 and M2 in <2> and <3>.
Suppose the security code is changed to " 34 H ". Then " 3 H " and " 4 H " are written to M1 and M2 in <2> and <3>.
If CE reset is effected as soon as $<2>$ has been executed, program execution is started from address 0000 H , without $<3>$ being executed.

Consequently, the security code is set to " 32 H ", making it impossible to clear the security system.
In this case, create the program shown in Example 2.

Example 2.

R1	MEM	0.01 H	; 1st digit of key input data of security code
R2	MEM	0.02 H	; 2nd digit of key input data of security code
R3	MEM	0.03 H	; 1st digit data when security code is changed
R4	MEM	0.04 H	; 2nd digit data when security code is changed
M1	MEM	0.11 H	; 1st digit of current security code
M2	MEM	0.12 H	; 2nd digit of current security code
CHANGE	FLG	0.13 H .0	" "1" while security code is changed

START:

Key input processing

R1 \leftarrow contents of key A
; Security code input wait mode
R2 \leftarrow contents of key B ; Substitutes contents of pressed key to R1 and R2

SKT1 CHANGE ; <4> ; If CHANGE flag is "1"
BR SECURITY_CHK
ST M1, R3 ; Rewrites M1 and M2
ST M2,R4
CLR1 CHANGE
SECURITY_CHK:
SET2 CMP, Z ; <1>; Compares security code and input data
SUB R1, M1
SUB R2, M2
SKT1 Z
BR ERROR ; Input data differs from security code
MAIN:

Key input processing	
R3 \leftarrow contents of key C	
R4 \leftarrow contents of key D	; Security code rewriting mode
	Substitutes contents of pressed key to R3 and R4

SET1 CHANGE ; <5>; Until security code is changed,
; Sets CHANGE flag to "1"
ST M1, R3 ; <2>; Rewrites security code
ST M2,R4 ; <3>
CLR1 CHANGE ; If security code has been changed,
; Sets CHANGE flag to "0"
BR MAIN
ERROR:
Must not operate

The program in Example 2 sets the CHANGE flag to " 1 " in $<5>$ before the security code is rewritten in $<2>$ and $<3>$.

Therefore, even if CE reset is effected before $<3>$ is executed, the security code is rewritten in $<4>$.

21.3 Power-ON Reset

Power-ON reset is effected by raising the supply voltage VDD of the device from a specific level (called a powerON clear voltage).

If supply voltage VDD is lower than the power-ON clear voltage, a power-ON clear signal (POC) is output from the voltage detection circuit shown in Figure 21-1.

When the power-ON clear signal is input to the reset control circuit, the crystal oscillation circuit is stopped and consequently, the device operation is stopped.

At this time, the program counter, stack, system registers, and control registers are initialized (for the initial value, refer to the description of each register).

If supply voltage VDD exceeds the power-ON clear voltage, the power-ON clear signal is deasserted, crystal oscillation is started, and the device waits for release of the halt status by the basic timer 0 carry which has been initialized to 100 ms . Program execution is started from address 0 at the rising edge of the basic timer 0 carry FF setting signal 50 ms after the supply voltage has exceeded the power-ON clear voltage.

Normally, the power-ON clear voltage is 3.5 V , but it is 2.2 V in the clock stop status.
The operations of power-ON reset are described in 21.3.1 and 21.3.2.
The operation when supply voltage $V_{D D}$ is raised from 0 V is described in 21.3.3.

Caution Although it is stated that the normal power-ON clear voltage is 3.5 V (MAX.) and that in the clock stop status is 2.2 V (MAX.), the actual power-ON clear voltage does not exceed these maximum values.

Figure 21-5. Operation of Power-ON Reset

21.3.1 Power-ON reset during normal operation

Figure 21-6 (a) shows the operation.
As shown, the power-ON clear signal is output and the device operation is stopped if the supply voltage Vdd drops below 3.5 V , regardless of the input level of the CE pin.

If VDD rises beyond 3.5 V again, program execution starts from address 0000 H after a halt of 50 ms .
Normal operation means operation without the clock stop instruction, and includes the halt status set by the halt instruction.

21.3.2 Power-ON reset in clock stop status

Figure 21-6 (b) shows the operation.
As shown, the power-ON clear signal is output and the device operation is stopped when supply voltage VDD drops below 2.2 V .

However, it does not appear that device operation has changed because the device is in the clock stop status.
If $V_{D D}$ rises beyond 3.5 V , program execution starts from address 0000 H after a halt of 50 ms .

21.3.3 Power-ON reset when supply voltage Vdd rises from 0 V

Figure 21-6 (c) shows the operation.
As shown, the power-ON clear signal is output until supply voltage V D rises from 0 V to 3.5 V .
When Vod exceeds the power-ON clear voltage, the crystal oscillation circuit starts operating, and program execution starts from address 0000 H after a half of 50 ms .

Figure 21-6. Power-ON Reset and Supply Voltage VdD
(a) Normal operation (including halt status)

(b) In clock stop status

(c) If supply voltage Vdo rises from 0 V

Power-ON clear released Program starts from address 0 Oscillation starts

21.4 Relationship between CE Reset and Power-ON Reset

On the first application of supply voltage Vod, power-ON reset and CE reset are performed at the same time.
The reset operations at this time are described in 21.4.1 through 21.4.3.
21.4.4 describes the points to be noted when raising supply voltage Vdd.

21.4.1 If Vdd pin and CE pin go high at the same time

Figure 21-7 (a) shows the operation.
At this time, the program starts from address 0000 H because of power-ON reset.

21.4.2 If CE pin rises in forced halt status set by power-ON reset

Figure 21-7 (b) shows the operation.
At this time, the program starts from address 0000 H because of power-ON reset, in the same manner as 21.4.1.

21.4.3 If CE pin rises after power-ON reset

Figure 21-7 (c) shows the operation.
At this time, the program starts from address 0000 H because of power-ON reset, and the program starts from address 0000 H again at the rising edge of the next basic timer 0 carry FF setting signal because of CE reset.

Figure 21-7. Relationship between Power-ON Reset and CE Reset
(a) When Vdd and CE pin rise at the same time

(b) If CE pin rises in halt status

(c) If CE pin rises after power-ON reset

21.4.4 Cautions on raising supply voltage VdD

The following points (1) and (2) must be noted when raising supply voltage VDD.

(1) To raise supply voltage VdD from level lower than power-ON clear voltage

Supply voltage VDD must be raised once to a level higher than 3.5 V .
Figure 21-8 illustrates this.
As shown in the figure, if a voltage less than 3.5 V is applied on application of V_{DD} in a program that backs up $V_{D D}$ at 2.2 V by using the clock stop instruction, the power-ON clear signal remains output, and the program is not executed.
At this time, the output ports of the device output undefined values, increasing the current consumption in some cases.
Consequently, the backup time when the device is backed up by batteries is substantially shortened.

Figure 21-8. Cautions on Raising Vdd

(2) Releasing from clock stop status

If the device is released from the backup status when supply voltage $V_{D D}$ is backed up at 2.2 V by using the clock stop status, VDD must be raised to 3.5 V or more within tset/ 2 after the clock stop status has been released by INT pin interrupt or high level input to port 0D.
As shown in Figure 21-9, the device is released from the clock stop status by means of CE reset. However, because the power-ON clear voltage is changed to 3.5 V tsET/2 after the clock stop status has been released, power-ON reset is effected unless V do is 3.5 V or higher.
The same applies when Vod is raised.

Figure 21-9. Releasing from Clock Stop Status

tset: basic timer 0 setting time

21.5 Reset by $\overline{\text { RESET Pin }}$

The device is reset by the $\overline{\text { RESET }}$ pin in the following cases:

- To reset the device at voltage higher than power-ON clear voltage
- External reset input in case of software hang-up

Caution If the device is reset by the $\overline{\text { RESET }}$ pin during program execution, the data in the data memory may be corrupted.
Therefore, be careful when resetting with the $\overline{\operatorname{RESET}}$ pin.

The reset operation is the same as that performed at power-ON reset.
When a low level is input to the $\overline{\text { RESET }}$ pin, an internal reset signal is generated, the crystal oscillation circuit is stopped, and the device stops operation.

At this point, the program counter, stack, system registers, and control registers are initialized (for the initial value, refer to the description of each register).

When the RESET pin is raised next time, the crystal oscillation is started, and the device waits to be released from the halt wait status by the basic timer 0 carry which has been initialized to a $100-\mathrm{ms}$ cycle. The program starts from address 0 at the rising edge of the basic timer 0 carry FF setting signal 50 ms after a high level has been input to the RESET pin.

Because the μ PD17709 has a power-ON reset function, connect the $\overline{\text { RESET }}$ pin to Vdo via resistor if the $\overline{\text { RESET }}$ pin is not used for the above application.

Figure 21-10. Reset Operation by RESET Pin

21.6 WDT\&SP Reset

WDT\&SP reset includes the following:

- Watchdog timer reset
- Stack pointer overflow/underflow reset

Figure 21-11. Outline of WDT\&SP Reset

21.6.1 Watchdog timer reset

The watchdog timer is a circuit that generates a reset signal when the execution sequence of the program is abnormal (hung-up).

Hanging-up means that the program jumps to an unexpected routine due to external noise, entering a specific infinite loop and causing the system to be deadlocked. By using the watchdog timer, the program can be restored from this hang-up status because a reset signal is generated from the watchdog timer at fixed time intervals and program execution is started from address 0 .

The watchdog timer does not function in the clock stop mode and halt mode.
Resetting by the watchdog timer initializes all the registers except the stack overflow selection register, watchdog timer counter reset register, basic timer 0 carry register, and CE reset timer carry counter.

The watchdog timer reset is detected by the WDTCY flag (R\&Reset).

21.6.2 Watchdog timer setting flags

These flags can be set only once after power-ON reset on power application or reset by the $\overline{\text { RESET }}$ pin. The WDTCK0 and WDTCK1 flags select an interval at which the reset signal is output.
The reference time can be selected to the following three conditions:

- 655356 instructions
- 131072 instructions
- Watchdog timer not set

On power application, 131072 instructions are selected.
If the reset signal generation interval is specified to be 131072 instructions, the watchdog timer FF must be reset at intervals not exceeding 131072 instructions. The valid reset period is from 1 to 131071 instructions.

If the reset signal generation interval is 65536 instructions, the watchdog timer FF must be reset at intervals not exceeding 65536 instrutions. The valid reset period is from 1 to 65535 instructions.

Figure 21-12. Configuration of Watchdog Timer Clock Selection Register

$\begin{aligned} & \stackrel{\rightharpoonup}{\otimes} \\ & \stackrel{\omega}{0} \\ & \stackrel{\rightharpoonup}{\rightleftarrows} \end{aligned}$	Power-ON reset	0		1
	WDT\&SP reset			Retained
	CE reset			Retained
Clock stop				Retained

Note Can be written only once.

The WDTRES flag is used to reset the watchdog timer counter.
When this flag is set to 1 , the watchdog timer counter is automatically reset.
If the WDTRES flag is set to 1 once within a reference time in which the WDTCK0 and WDTCK1 flags are set, the reset signal is not output by the watchdog timer.

Figure 21-13. Configuration of Watchdog Timer Counter Reset Register

$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \mathscr{0} \\ & \underset{\text { U}}{4} \end{aligned}$	Power-ON reset	U 0 O 0 O: 0			
	WDT\&SP reset	U			
	CE reset	U	,		
Clock stop		U			

U: Undefined

21.6.3 Stack pointer overflow/underflow reset

A reset signal is generated if the address or interrupt stack overflows or underflows.
Stack pointer overflow/underflow reset can be used to detect a program hang-up in the same manner as watchdog timer reset.

The reset signal is generated under the following conditions:

- Interrupt due to overflow or underflow of interrupt stack (4 levels)
- Interrupt due to overflow or underflow of address stack (15 levels)

Reset by stack pointer overflow or underflow initializes all the registers, except the stack overflow selection register, watchdog timer counter reset register, basic timer 0 carry register, and CE reset timer carry counter.

Generation of stack pointer overflow or underflow reset is detected by the WDTCY flag (R\&Reset).

21.6.4 Stack pointer setting flag

The stack overflow/underflow reset selection register can be set only once after power-ON reset on power application or reset by the RESET pin. This register specifies whether reset by address stack overflow or underflow and reset by interrupt stack overflow or underflow are enabled or disabled.

Figure 21-14. Configuration of Stack Overflow/Underflow Reset Selection Register

Name	Flag symbol				Address	Read/Write	
	b_{3}	b_{2}	b_{1}	b_{0}			
Stack overflow/underflow reset selection	0	0	I S P R E S	$\begin{gathered} A \\ S \\ P \\ R \\ E \\ S \end{gathered}$	05H	R/W ${ }^{\text {Note }}$	
Selects address stack overflow/underflow reset							
				0	Disables reset		
				1	Enables reset		
					Selects interrupt stack overflow/underflow reset		
				0	Disables reset		
				1	Enables reset		
					Fixed to "0"		

$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{\otimes} \\ & 0 \\ & \stackrel{0}{2} \\ & \stackrel{4}{2} \end{aligned}\right.$	Power-ON reset	0 0 1 1		
	WDT\&SP reset			Retained
	CE reset			Retained
	ck stop			Retained

Note Can be written only once.

Figure 21-15. Configuration of WDT\&SP Reset Selection Register

	Power-ON reset	$\begin{array}{l:l:l:l}0 & 0 & 0 & 0\end{array}$				
	WDT\&SP reset			!		1
	CE reset					R
	k stop					R

R: Retained

21.7 Power Failure Detection

Power failure detection is used to identify whether the device has been reset by application of supply voltage VDD, RESET pin, or CE pin.

Because the contents of the data memory and output ports are "undefined" on power application, these contents are initialized by using power failure detection.

Power failure detection can be performed in two ways: by detecting the BTMOCY flag and the contents of the data memory (RAM judgment).
21.7.1 and 21.7.2 describe the power failure detection circuit and power failure detection by using the BTMOCY flag.
21.7.3 and 21.7.4 describe power failure detection by RAM judgment method.

Figure 21-16. Power Failure Detection Flowchart

21.7.1 Power failure detection circuit

The power failure detection circuit consists of a voltage detection circuit, and basic timer 0 carry disable flip-flop that is set by the output (power-ON clear signal) of the voltage detection circuit, and timer carry, as shown in Figure 21-1.

The basic timer 0 carry disable FF is set to 1 by the power-ON clear signal, and is reset to 0 when an instruction that reads the BTMOCY flag is executed.

When the basic timer 0 carry disable FF is set to 1 , the BTMOCY flag is not set to 1 .
If the power-ON clear signal is output (at power-ON reset), the program starts with the BTMOCY flag reset. After that, the BTMOCY flag is disabled from being set until an instruction that reads the flag is executed.

Once the instruction that reads this flag has been executed, the BTMOCY flag is set each time the basic timer 0 carry FF setting pulse rises. Therefore, by detecting the content of the BTMOCY flag when the device is reset, whether the device has been reset by power-ON reset (power failure) or CE reset (not power failure) can be identified. That is, the device has been reset by power-ON reset if the BTMOCY flag has been reset to 0 . It has been reset by CE reset if the flag has been set to 1 .

Because the voltage at which a power failure can be detected is the same as that at which power-ON reset is executed, $\mathrm{V}_{\mathrm{DD}}=3.5 \mathrm{~V}$ during crystal oscillation and $\mathrm{V} D \mathrm{D}=2.2 \mathrm{~V}$ in the clock stop status.

The operation of the BTMOCY flag is the same regardless of whether the device has been reset by the RESET pin or by power-ON reset.

21.7.2 Cautions on detecting power failure by BTMOCY flag

The following points must be noted when counting the watch timer by using the BTMOCY flag.

(1) Updating watch

When creating a watch program using the timer carry, the watch must be updated after a power failure has been detected.
This is because the BTMOCY flag is reset to 0 because it is read after a power failure has been detected. As a result, counting of the watch is overlooked once.

(2) Watch updating processing time

Updating the watch must be completed before the next basic timer 0 carry FF setting pulse rises.
This is because CE reset is executed before the watch updating processing has been completed if the CE pin goes high during watch updating processing.
For the details of (1) and (2), refer to (3) Compensating basic timer 0 carry at CE reset in 13.2.6.
The following points must be noted when performing processing in case of a power failure.

(3) Timing to detect power failure

When counting the watch by using the BTMOCY flag, the BTMOCY flag must be read to detect a power failure before the next basic timer 0 carry FF setting pulse rises after the program has been started from address 0000 H .
This is because, if the basic timer 0 carry FF setting time is set to, say, 10 ms , and if the power failure is detected 11 ms after the program has been started, the BTMOCY flag is overlooked once.

For further information, refer to (3) Compensating basic timer 0 carry at CE reset in 13.2.6.
Power failure detection and initial processing must be performed within the time in which the basic timer 0 carry
FF is set, as shown in the example below.
This is because, if the CE pin rises and CE reset is executed during power failure processing or initial processing, the processing is stopped in midway, causing a problem.
To update the basic timer 0 carry FF setting time in the initial processing, the instruction that changes the setting time must be executed at the end of the initial processing.
This is because, if the basic timer 0 carry FF setting time is changed before the initial processing, the initial processing may not be executed to the end because CE reset may be executed.

Example

START: $;<1>$; Program address 0000H
Processing at reset	
; <2>	
SKT1 BTM0CY	; Power failure detection
BR INITIAL	
BACKUP:	
; <3>	
Watch updating	
BR MAIN	
INITIAL:	
; <4>	
Initial processing	
; <5>	
INITFLG BTM0CK1, BTM0CK0	; Embedded macro
	; Sets basic timer 0 carry FF ; Sets time to 10 ms

MAIN:

Operation example (if CE reset timer counter is set to " 1 ")

CE reset may be executed immediately depending on when the basic timer 0 carry FF setting time is changed.
Therefore, if $<5>$ is executed before $<4>$, power failure processing <4> may not be executed to the end.

21.7.3 Power failure detection by RAM judgment method

By the RAM judgment method, a power failure is detected by judging whether the contents of the data memory at a specific address are a specific value when the device has been reset.

An example of a program that detects a power failure by RAM judgment method is shown below.
By the RAM judgment method, a power failure is detected by comparing an "undefined" value and a "specific" value because the contents of the data memory are "undefined" on application of supply voltage VDD.

Therefore, a power failure may be judged by mistake by this method as described in 21.7.4 Cautions on power failure detection by RAM judgment method.

Example Program example of power failure detection by RAM judgment method

M012	MEM	0.12 H	
M034	MEM	0.34 H	
M056	MEM	0.56 H	
M107	MEM	1.07 H	
M128	MEM	1.28 H	
M16F	MEM	1.6 FH	
DATA0	DAT	1010 B	
DATA1	DAT	0101 B	
DATA2	DAT	0110 B	
DATA3	DAT	1001B	
DATA4	DAT	1100 B	
DATA5	DAT	0011B	
			; If M012 = DATA0, and
START:			M034 = DATA1, and
	SET2	CMP, Z	
	SUB	M012, \#DATA0	MATA2, and
	SUB	M034, \#DATA1	M107 = DATA3, and
	SUB	M056, \#DATA2	M128 = DATA4, and
	BANK1		
	SUB	M107, \#DATA3	M16F = DATA5,
	SUB	M128, \#DATA4	

; INITIAL:
Initial processing

MOV	M012, \#DATA0
MOV	M034, \#DATA1
MOV	M056, \#DATA2
BANK1	
MOV	M107, \#DATA3
MOV	M128, \#DATA4
MOV	M16F, \#DATA5
BR	MAIN

BACKUP:

```
Backup processing
```

MAIN:
Main processing

21.7.4 Cautions on power failure detection by RAM judgment method

Because the values of the data memory on application of supply voltage VDD are basically "undefined", the following points (1) and (2) must be noted.

(1) Data to be compared

Where the number of bits of the data memory to be compared by the RAM judgment method is " n bits", the probability that the value of the data memory happens to coincide the value to be compared on application of $V_{D D}$ is $(1 / 2)^{n}$.
In other words, a power failure detected by the RAM judgment method may be judged as backup at a probability of $(1 / 2)^{n}$.
To minimize this probability, compare as many bits as possible.
Because the contents of the data memory on application of Vod are likely to be the same value such as "0000B" and " 1111 B ", it is recommended that the data to be compared consist of a combination of " 0 "s and " 1 "s, such as "1010B" and "0110B".

(2) Cautions on program

If $V_{D D}$ rises from a level at which the contents of the data memory are destroyed as shown in Figure 21-17, even if the value of the data memory to be compared is normal, the other parts of the data memory may be destroyed.
If a power failure detection is performed by the RAM judgment method at this time, it is judged to be a backup. Therefore, the program must be designed so that a hang-up does not occur even if the contents of the data memory are destroyed.

Figure 21-17. Vdd and Destruction of Data Memory Contents

Values of data memory addresses not used for RAM judgment may be destroyed.
(3) Cautions on using $\overline{\text { RESET }}$ pin

Caution If the device is reset by the $\overline{\operatorname{RESET}}$ pin during program execution, the data in the data memory may be corrupted.
 Therefore, be careful when resetting with the $\overline{\text { RESET }}$ pin.

22. INSTRUCTION SET

22.1 Outline of Instruction Set

$\mathrm{b}_{14} \mathrm{~b}_{11} \quad \mathrm{~b}_{15}$		0		1	
BIN	HEX				
0000	0	ADD	r,m	ADD	m,\#n4
0001	1	SUB	r,m	SUB	m, \#n4
0010	2	ADDC	r,m	ADDC	m,\#n4
0011	3	SUBC	r,m	SUBC	m,\#n4
0100	4	AND	r,m	AND	m,\#n4
0101	5	XOR	r,m	XOR	m, \#n4
0110	6	OR	r,m	OR	m,\#n4
0111	7	INC INC RORC MOVT PUSH POP GET PUT PEEK POKE BR CALL SYSCAL RET RETSK RETI EI DI STOP HALT NOP	AR IX r DBF,@AR AR AR DBF,p p,DBF WR,rf rf,WR @AR @AR entry		
1000	8	LD	r,m	ST	m,r
1001	9	SKE	m,\#n4	SKGE	m, \#n4
1010	A	MOV	@r,m	MOV	m,@r
1011	B	SKNE	m,\#n4	SKLT	m,\#n4
1100	C	BR	addr (page 0)	CALL	addr (page 0)
1101	D	BR	addr (page 1)	MOV	m,\#n4
1110	E	BR	addr (page 2)	SKT	m,\#n4
1111	F	BR	addr (page 3)	SKF	m,\#n

22.2 Legend

AR	Address register
ASR	Address stack register indicated by stack pointer
addr	Program memory address (low-order 11 bits)
BANK	Bank register
CMP	Compare flag
CY	Carry flag
DBF	Data buffer
entry	Program memory address (bits 10 through 8, bits 3 through 0)
entry	Program memory address (bits 10 through 8)
entryL	Program memory address (bits 3 through 0)
h	Halt release condition
INTEF	Interrupt enable flag
INTR	Register automatically saved to stack when interrupt occurs
INTSK	: Interrupt stack register
IX	Index register
MP	Data memory row address pointer
MPE	Memory pointer enable flag
m	Data memory address indicated by mr, mc
mR	Data memory row address (high-order)
mc	Data memory column address (low-order)
n	Bit position (4 bits)
n4	Immediate data (4 bits)
PAGE	Page (bits 12 and 11 of program counter)
PC	Program counter
P	Peripheral address
рн	Peripheral address (high-order 3 bits)
pL	: Peripheral address (low-order 4 bits)
r	General register column address
rf	: Register file address
rfR	Register file row address (high-order 3 bits)
rfc	: Register file column address (low-order 4 bits)
SGR	: Segment register (bit 13 of program counter)
SP	Stack pointer
s	: Stop release condition
WR	: Window register
(x)	: Contents addressed by x

22.3 Instruction List

Instructions	Mnemonic	Operand	Operation	Instruction Code			
				Op code		Operan	
Add	ADD	r,m	$(\mathrm{r}) \leftarrow(\mathrm{r})+(\mathrm{m})$	00000	mR	mc	r
		m,\#n4	$(\mathrm{m}) \leftarrow(\mathrm{m})+\mathrm{n} 4$	10000	mR	mc	n4
	ADDC	r,m	$(\mathrm{r}) \leftarrow(\mathrm{r})+(\mathrm{m})+\mathrm{CY}$	00010	mR	mc	r
		m,\#n4	$(m) \leftarrow(m)+n 4+C Y$	10010	mR	mc	n4
	INC	AR	$A R \leftarrow A R+1$	00111	000	1001	0000
		IX	$\mathrm{IX} \leftarrow \mathrm{IX}+1$	00111	000	1000	0000
Subtract	SUB	r,m	$(r) \leftarrow(\mathrm{r})-(\mathrm{m})$	00001	$\mathrm{mR}^{\text {R }}$	mc	r
		m,\#n4	$(m) \leftarrow(m)-\mathrm{n} 4$	10001	mR_{R}	mc	n4
	SUBC	r,m	$(r) \leftarrow(\mathrm{r})-(\mathrm{m})-\mathrm{CY}$	00011	mR_{R}	mc	r
		m,\#n4	$(m) \leftarrow(m)-\mathrm{n} 4-\mathrm{CY}$	10011	mR	mc	n4
Logical operation	OR	r,m	$(\mathrm{r}) \leftarrow(\mathrm{r}) \vee(\mathrm{m})$	00110	mR_{R}	mc	r
		m,\#n4	$(\mathrm{m}) \leftarrow(\mathrm{m}) \vee \mathrm{n} 4$	10110	mR	mc	n4
	AND	r,m	$(\mathrm{r}) \leftarrow(\mathrm{r}) \wedge(\mathrm{m})$	00100	mR	mc	r
		m,\#n4	$(\mathrm{m}) \leftarrow(\mathrm{m}) \wedge \mathrm{n} 4$	10100	mR	mc	n4
	XOR	r,m	$(r) \leftarrow(\mathrm{r}) \forall(\mathrm{m})$	00101	mR_{R}	mc	r
		m,\#n4	$(\mathrm{m}) \leftarrow(\mathrm{m}) \forall \mathrm{n} 4$	10101	mR	mc	n4
Judge	SKT	m,\#n	CMP $\leftarrow 0$, if $(m) \wedge n=n$, then skip	11110	mR_{R}	mc	n
	SKF	m,\#n	CMP $\leftarrow 0$, if $(m) \wedge n=0$, then skip	11111	mR	mc	n
Compare	SKE	m,\#n4	$(m)-n 4$, skip if zero	01001	mR	mc	n4
	SKNE	m,\#n4	(m) - n4, skip if not zero	01011	$\mathrm{mR}^{\text {R }}$	mc	n4
	SKGE	m,\#n4	(m) - n4, skip if not borrow	11001	mR	mc	n4
	SKLT	m,\#n4	$(\mathrm{m})-\mathrm{n} 4$, skip if borrow	11011	mR	mc	n4
Rotate	RORC	r	$\left.\longrightarrow \mathrm{CY} \leftarrow(\mathrm{r}) \mathrm{b}_{3} \leftarrow(\mathrm{r}) \mathrm{b}_{2} \leftarrow(\mathrm{r}) \mathrm{b}_{1} \leftarrow(\mathrm{r}) \mathrm{b}_{0}\right]$	00111	000	0111	r
Transfer	LD	r,m	$(\mathrm{r}) \leftarrow(\mathrm{m})$	01000	mR	mc	r
	ST	m,r	$(\mathrm{m}) \leftarrow(\mathrm{r})$	11000	mR	mc	r
	MOV	@r,m	$\begin{aligned} & \text { if MPE }=1:(\text { MP, }(r)) \leftarrow(m) \\ & \text { if MPE }=0:\left(\text { BANK, } m_{R},(r)\right) \leftarrow(m) \end{aligned}$	01010	mR	mc	r
		m, @r	$\begin{aligned} & \text { if MPE }=1:(m) \leftarrow(M P,(r)) \\ & \text { if MPE }=0:(m) \leftarrow\left(\text { BANK, } m_{R},(r)\right) \end{aligned}$	11010	mR	mc	r
		m,\#n4	$(\mathrm{m}) \leftarrow \mathrm{n} 4$	11101	m_{R}	mc	n4
	MOVT	DBF,@AR	$\begin{aligned} & \mathrm{SP} \leftarrow \mathrm{SP}-1, \mathrm{ASR} \leftarrow \mathrm{PC}, \mathrm{PC} \leftarrow \mathrm{AR}, \\ & \mathrm{DBF} \leftarrow(\mathrm{PC}), \mathrm{PC} \leftarrow \mathrm{ASR}, \mathrm{SP} \leftarrow \mathrm{SP}+1 \end{aligned}$	00111	000	0001	0000
	PUSH	AR	$\mathrm{SP} \leftarrow \mathrm{SP}-1, \mathrm{ASR} \leftarrow \mathrm{AR}$	00111	000	1101	0000
	POP	AR	$\mathrm{AR} \leftarrow \mathrm{ASR}, \mathrm{SP} \leftarrow \mathrm{SP}+1$	00111	000	1100	0000
	GET	DBF,p	DBF \leftarrow (p)	00111	рн	1011	pL
	PUT	p,DBF	$(\mathrm{p}) \leftarrow \mathrm{DBF}$	00111	рн	1010	pL
	PEEK	WR,rf	$\mathrm{WR} \leftarrow(\mathrm{rf})$	00111	rfR	0011	rfc
	POKE	rf,WR	$(\mathrm{rf}) \leftarrow \mathrm{WR}$	00111	rfR	0010	rfc

Instructions	Mnemonic	Operand	Operation	Instruction Code			
				Op code	Operand		
Branch	BR	addr	$\mathrm{PC}_{10-0} \leftarrow$ addr, PAGE $\leftarrow 0$	01100	addr		
			$\mathrm{PC}_{10-0} \leftarrow$ addr, PAGE $\leftarrow 1$	01101			
			$\mathrm{PC}_{10-0} \leftarrow$ addr, PAGE $\leftarrow 2$	01110			
			$\mathrm{PC}_{10-0} \leftarrow$ addr, PAGE $\leftarrow 3$	01111			
		@AR	$\mathrm{PC} \leftarrow \mathrm{AR}$	00111	000	0100	0000
Subroutine	CALL	addr	$\begin{aligned} & \mathrm{SP} \leftarrow \mathrm{SP}-1, \mathrm{ASR} \leftarrow \mathrm{PC} \\ & \mathrm{PC}_{11} \leftarrow 0, \mathrm{PC}_{10-0} \leftarrow \mathrm{addr} \end{aligned}$	11100	addr		
		@AR	$\begin{aligned} & \mathrm{SP} \leftarrow \mathrm{SP}-1, \mathrm{ASR} \leftarrow \mathrm{PC} \\ & \mathrm{PC} \leftarrow \mathrm{AR} \end{aligned}$	00111	000	0101	0000
	SYSCAL	entry	$\begin{aligned} & \mathrm{SP} \leftarrow \mathrm{SP}-1, \mathrm{ASR} \leftarrow \mathrm{PC}, \mathrm{SGR} \leftarrow 1 \\ & \mathrm{PC}_{12,11} \leftarrow 0, \mathrm{PC}_{10-8} \leftarrow \text { entryн }, \mathrm{PC}_{7-4} \leftarrow 0, \\ & \mathrm{PC}_{3-0} \leftarrow \text { entryL } \end{aligned}$	00111	entry	0010	entryL
	RET		$\mathrm{PC} \leftarrow \mathrm{ASR}, \mathrm{SP} \leftarrow \mathrm{SP}+1$	00111	000	1110	0000
	RETSK		$\mathrm{PC} \leftarrow \mathrm{ASR}, \mathrm{SP} \leftarrow \mathrm{SP}+1$ and skip	00111	001	1110	0000
	RETI		$\mathrm{PC} \leftarrow \mathrm{ASR}, \mathrm{INTR} \leftarrow \mathrm{INTSK}, \mathrm{SP} \leftarrow \mathrm{SP}+1$	00111	010	1110	0000
Interrupt	El		INTEF $\leftarrow 1$	00111	000	1111	0000
	DI		INTEF $\leftarrow 0$	00111	001	1111	0000
Others	STOP	s	STOP	00111	010	1111	s
	HALT	h	HALT	00111	011	1111	h
	NOP		No operation	00111	100	1111	0000

22.4 Assembler (RA17K) Embedded Macro Instruction

Legend

flag n : FLG symbol
n : Bit number
$<>$: Can be omitted

	Mnemonic	Operand	Operation	n
Embedded macro	SKTn	flag $1, \cdots$ flag n	if (flag1) ~ (flag n) = all "1", then skip	$1 \leq \mathrm{n} \leq 4$
	SKFn	flag $1, \cdots$ flag n	if (flag 1) ~ (flag n) = all " 0 ", then skip	$1 \leq \mathrm{n} \leq 4$
	SETn	flag $1, \cdots$ flag n	$($ flag 1) $\sim($ flag $n) \leftarrow 1$	$1 \leq \mathrm{n} \leq 4$
	CLRn	flag $1, \cdots$ flag n	$($ flag 1) $\sim($ flag $n) \leftarrow 0$	$1 \leq \mathrm{n} \leq 4$
	NOTn	flag $1, \cdots$ flag n	$\begin{aligned} & \text { if }(\text { flag } n)=" 0 " \text {, then }(f \operatorname{lag} n) \leftarrow 1 \\ & \text { if }(\text { flag } n)=\text { " } 1 \text { ", then }(\text { flag } n) \leftarrow 0 \end{aligned}$	$1 \leq \mathrm{n} \leq 4$
	INITFLG	<NOT> flag 1, ... <<NOT> flag $n>$	$\begin{aligned} & \text { if description }=\text { NOT flag } n \text {, then }(\text { flag } n) \leftarrow 0 \\ & \text { if description }=\text { flag } n \text {, then (flag } n) \leftarrow 1 \end{aligned}$	$1 \leq \mathrm{n} \leq 4$
	BANKn		$($ BANK $) \leftarrow \mathrm{n}$	$0 \leq \mathrm{n} \leq 15$
Expanded instruction	BRX	Label	Jump Label	-
	CALLX	function-name	CALL sub-routine	-
	SYSCALX	function-name or expression	CALL system sub-routine	-
	INITFLGX	<NOT/INV> flag 1, \cdots <NOT/INV> flag n	$\begin{aligned} \text { if description }= & \text { NOT }(\text { or INV }) \\ & \text { flag, }(\text { flag }) \leftarrow 0 \\ \text { if description }= & \text { flag, }(\text { flag }) \leftarrow 1 \end{aligned}$	$\mathrm{n} \leq 4$

23. RESERVED SYMBOLS

23.1 Data Buffer (DBF)

Symbol Name	Attribute	Value	R/W	
DBF3	MEM	0.0 CH	R/W	Bits 15 through 12 of data buffer
DBF2	MEM	0.0 DH	R/W	Bits 11 through 8 of data buffer
DBF1	MEM	$0.0 E \mathrm{H}$	R/W	Bits 7 through 4 of data buffer
DBF0	MEM	0.0 FH	R/W	Bits 3 through 0 of data buffer

23.2 System Registers (SYSREG)

Symbol Name	Attribute	Value	R/W	Description
AR3	MEM	0.74 H	R/W	Bits 15 through 12 of address register
AR2	MEM	0.75H	R/W	Bits 11 through 8 of address register
AR1	MEM	0.76H	R/W	Bits 7 through 4 of address register
AR0	MEM	0.77 H	R/W	Bits 3 through 0 of address register
WR	MEM	0.78 H	R/W	Window register
BANK	MEM	0.79H	R/W	Bank register
IXH	MEM	0.7AH	R/W	Bits 10 through 8 of index register
MPH	MEM	0.7 AH	R/W	Bits 6 through 4 of memory pointer
MPE	FLG	0.7AH. 3	R/W	Memory pointer enable flag
IXM	MEM	0.7BH	R/W	Bits 7 through 4 of index register
MPL	MEM	0.7BH	R/W	Bits 3 through 0 of memory pointer
IXL	MEM	0.7 CH	R/W	Bits 3 through 0 of index register
RPH	MEM	0.7DH	R/W	Bits 6 through 3 of general register pointer
RPL	MEM	0.7EH	R/W	Bits 2 through 0 of general register pointer
BCD	FLG	0.7EH. 0	R/W	BCD operation flag
PSW	MEM	0.7FH	R/W	Program status word
CMP	FLG	0.7FH. 3	R/W	Compare flag
CY	FLG	0.7FH. 2	R/W	Carry flag
Z	FLG	0.7FH. 1	R/W	Zero flag
IXE	FLG	0.7FH. 0	R/W	Index enable flag

23.3 Port Registers

Note These are input ports. However, even if an instruction that outputs data to these ports is described, the assembler and in-circuit emulator do not output an error message. Moreover, nothing is affected in terms of operation even if such an instruction is actually executed on the device.

Symbol Name	Attribute	Value	R/W	Description
P1D3	FLG	1.73 H .3	R/W	Bit 3 of port 1D
P1D2	FLG	1.73H. 2	R/W	Bit 2 of port 1D
P1D1	FLG	1.73H. 1	R/W	Bit 1 of port 1D
P1D0	FLG	1.73 H .0	R/W	Bit 0 of port 1D
P2A2	FLG	2.70H. 2	R/W	Bit 2 of port 2A
P2A1	FLG	2.70H. 1	R/W	Bit 1 of port 2A
P2A0	FLG	2.70 H .0	R/W	Bit 0 of port 2A
P2B3	FLG	2.71H. 3	R/W	Bit 3 of port 2B
P2B2	FLG	2.71H. 2	R/W	Bit 2 of port 2B
P2B1	FLG	2.71 H .1	R/W	Bit 1 of port 2B
P2B0	FLG	2.71 H .0	R/W	Bit 0 of port 2B
P2C3	FLG	2.72H. 3	R/W	Bit 3 of port 2C
P2C2	FLG	2.72H. 2	R/W	Bit 2 of port 2C
P2C1	FLG	2.72H. 1	R/W	Bit 1 of port 2C
P2C0	FLG	2.72H. 0	R/W	Bit 0 of port 2C
P2D2	FLG	2.73H. 2	R/W	Bit 2 of port 2D
P2D1	FLG	2.73 H .1	R/W	Bit 1 of port 2D
P2D0	FLG	2.73H.0	R/W	Bit 0 of port 2D
P3A3	FLG	3.70 H .3	R/W	Bit 3 of port 3A
P3A2	FLG	3.70 H .2	R/W	Bit 2 of port 3A
P3A1	FLG	3.70 H .1	R/W	Bit 1 of port 3A
P3A0	FLG	3.70 H .0	R/W	Bit 0 of port 3A
P3B3	FLG	3.71 H .3	R/W	Bit 3 of port 3B
P3B2	FLG	3.71 H .2	R/W	Bit 2 of port 3B
P3B1	FLG	3.71H. 1	R/W	Bit 1 of port 3B
P3B0	FLG	3.71 H .0	R/W	Bit 0 of port 3B
P3C3	FLG	3.72 H .3	R/W	Bit 3 of port 3C
P3C2	FLG	3.72H. 2	R/W	Bit 2 of port 3C
P3C1	FLG	3.72H. 1	R/W	Bit 1 of port 3C
P3C0	FLG	3.72H. 0	R/W	Bit 0 of port 3C
P3D3	FLG	3.73H. 3	R/W	Bit 3 of port 3D
P3D2	FLG	3.72H. 2	R/W	Bit 2 of port 3D
P3D1	FLG	3.73H. 1	R/W	Bit 1 of port 3D
P3D0	FLG	3.73 H .0	R/W	Bit 0 of port 3D

23.4 Register File (Control Registers)

Symbol Name	Attribute	Value	R/W	Description
SP	MEM	0.81H	R/W	Stack pointer
WDTCK	MEM	0.82H	R/W	Watchdog timer clock selection flag (can be set only once after power application)
WDTCK1	FLG	0.82H. 1	R/W	Watchdog timer clock selection flag (can be set only once after power application)
WDTCK0	FLG	0.82H. 0	R/W	Watchdog timer clock selection flag (can be set only once after power application)
WDTRES	FLG	0.83H.3	R/W	Watchdog timer counter reset (when read: 0)
DBFSP	MEM	0.84H	R	DBF stack pointer
SPRSEL	MEM	0.85H	R/W	Stack overflow/underflow reset selection flag (can be set only once after power application)
ISPRES	FLG	0.85H. 1	R/W	Stack overflow/underflow reset selection flag (can be set only once after power application)
ASPRES	FLG	0.85H.0	R/W	Stack overflow/underflow reset selection flag (can be set only once after power application)
CECNT3	FLG	0.86H.3	R/W	CE reset timer carry counter
CECNT2	FLG	0.86H. 2	R/W	CE reset timer carry counter
CECNT1	FLG	0.86H. 1	R/W	CE reset timer carry counter
CECNT0	FLG	0.86H.0	R/W	CE reset timer carry counter
MOVTSEL1	FLG	0.87H. 1	R/W	MOVT bit selection flag
MOVTSELO	FLG	0.87H.0	R/W	MOVT bit selection flag
SYSRSP	MEM	0.88H	R	System register stack pointer
SIOOWSTT	FLG	0.8AH. 0	R	Serial interface 0 wait status judgment flag
SBMD	FLG	0.8BH. 2	R/W	$1^{2} \mathrm{C}$ bus slave transmission operation mode selection flag
SIOOCK1	FLG	0.8BH. 1	R/W	Serial interface 0 I/O clock selection flag
SIOOCK0	FLG	0.8BH. 0	R/W	Serial interface 0 I/O clock selection flag
SIOOIMD3	FLG	0.8CH. 3	R/W	Serial interface 0 interrupt mode selection flag (dummy)
SIOOIMD2	FLG	0.8CH. 2	R/W	Serial interface 0 interrupt mode selection flag (dummy)
SIOOIMD1	FLG	0.8CH. 1	R/W	Serial interface 0 interrupt mode selection flag
SIOOIMD0	FLG	0.8CH. 0	R/W	Serial interface 0 interrupt mode selection flag
SIO0SF8	FLG	0.8DH. 3	R	8 -count detection flag of serial interface 0 clock counter
SIO0SF9	FLG	0.8DH. 2	R	9 -count detection flag of serial interface 0 clock counter
SBSTT	FLG	0.8DH. 1	R	Serial interface $0\left(1^{2} \mathrm{C}\right.$ mode) communication status detection flag (1: Start condition detected)
SBBSY	FLG	0.8DH. 0	R	Serial interface $0\left({ }^{2} \mathrm{C}\right.$ mode) communication status detection flag (1: Start condition detected, 0: Stop condition detected)
SBACK	FLG	0.8EH. 3	R/W	Serial interface 0 (${ }^{2} \mathrm{C}$ mode) ACK signal setting/detection flag
SIOONWT	FLG	0.8EH. 2	R/W	Serial interface 0 wait status setting/detection flag (1: Wait status released (no wait))
SIOOWRQ1	FLG	0.8EH. 1	R/W	Bit 1 of serial interface 0 wait condition setting flag
SIOOWRQ0	FLG	0.8EH. 0	R/W	Bit 0 of serial interface 0 wait condition setting flag

Symbol Name	Attribute	Value	R/W	Description
SIOOCH	FLG	0.8FH. 3	R/W	Serial interface 0 mode selection flag
SB	FLG	0.8FH. 2	R/W	Serial interface 0 mode selection flag
SIOOMS	FLG	0.8FH. 1	R/W	Serial interface 0 shift clock mode selection flag
SIOOTX	FLG	0.8FH. 0	R/W	Serial interface 0 transmission (TX)/reception (RX) selection flag
PLLSCNF	FLG	0.90H. 3	R/W	Swallow counter least significant bit setting flag
PLLMD1	FLG	0.90H. 1	R/W	PLL mode selection flag
PLLMD0	FLG	0.90H. 0	R/W	PLL mode selection flag
PLLRFCK3	FLG	0.91H. 3	R/W	PLL reference frequency selection flag
PLLRFCK2	FLG	0.91H. 2	R/W	PLL reference frequency selection flag
PLLRFCK1	FLG	0.91H. 1	R/W	PLL reference frequency selection flag
PLLRFCK0	FLG	0.91H. 0	R/W	PLL reference frequency selection flag
PLLUL	FLG	0.92H. 0	R\&Reset	PLL unlock FF flag
BEEP1SEL	FLG	0.93H. 1	R/W	BEEP1/general-purpose port pin function selection flag
BEEPOSEL	FLG	0.93H. 0	R/W	BEEP0/general-purpose port pin function selection flag
BEEP1CK1	FLG	0.94H. 3	R/W	BEEP1 clock selection flag
BEEP1CK0	FLG	0.94H. 2	R/W	BEEP1 clock selection flag
BEEP0CK1	FLG	0.94H. 1	R/W	BEEPO clock selection flag
BEEPOCKO	FLG	0.94H. 0	R/W	BEEPO clock selection flag
WDTCY	FLG	0.96H.0	R	Watchdog timer/stack pointer reset status detection flag
BTM0CY	FLG	0.97H. 0	R	Basic timer 0 carry flag
BTM0CK1	FLG	0.98H. 1	R/W	Basic timer 0 clock selection flag
BTMOCK0	FLG	0.98H. 0	R/W	Basic timer 0 clock selection flag
SIO1TS	FLG	0.9DH. 3	R/W	Serial interface 1 transmission/reception start flag
SIO1HIZ	FLG	0.9DH. 2	R/W	Serial interface 1/general-purpose port selection flag
SIO1CK1	FLG	0.9DH. 1	R/W	Serial interface $1 \mathrm{l} / \mathrm{O}$ clock selection flag
SIO1CK0	FLG	0.9DH. 0	R/W	Serial interface $1 \mathrm{I} / \mathrm{O}$ clock selection flag
IEG4	FLG	0.9EH. 3	R/W	Edge direction selection flag for INT4 pin interrupt request detection
INT4SEL	FLG	0.9EH. 2	R/W	INT4 pin interrupt request flag setting disable
IEG3	FLG	0.9EH. 1	R/W	Edge direction selection flag for INT3 pin interrupt request detection
INT3SEL	FLG	0.9EH. 0	R/W	INT3 pin interrupt request flag setting disable
IEG2	FLG	0.9FH. 2	R/W	Edge direction selection flag for INT2 pin interrupt request detection
IEG1	FLG	0.9FH. 1	R/W	Edge direction selection flag for INT1 pin interrupt request detection
IEG0	FLG	0.9FH. 0	R/W	Edge direction selection flag for INT0 pin interrupt request detection
FCGCH1	FLG	0.0AOH. 1	R/W	FGC channel selection flag
FCGCH0	FLG	0.0AOH. 0	R/W	FGC channel selection flag
IFCGOSTT	FLG	0.0A1H.0	R	IF counter gate status detection flag (1: Open, 0: Closed)

Symbol Name	Atribute	Value	R/W	Description
IFCMD1	FLG	0.0A2H. 3	R/W	IF counter mode selection flag (10: AMIF, 11: FCG)
IFCMD0	FLG	0.0A2H. 2	R/W	IF counter mode selection flag (00: CGP, 11: FMIF)
IFCCK1	FLG	0.0A2H. 1	R/W	IF counter clock selection flag
IFCCK0	FLG	0.0A2H.0	R/W	IF counter clock selection flag
IFCSTRT	FLG	0.0A3H. 1	W	IF counter count start flag
IFCRES	FLG	0.0A3H.0	W	IF counter reset flag
ADCCH3	FLG	0.044H. 3	R/W	A/D converter channel selection flag (dummy)
ADCCH2	FLG	0.0A4H. 2	R/W	A/D converter channel selection flag
ADCCH1	FLG	0.0A4H. 1	R/W	A/D converter channel selection flag
ADCCH0	FLG	0.0A4H.0	R/W	A/D converter channel selection flag
ADCMD	FLG	0.0A5H. 2	R/W	A/D converter compare mode selection flag
ADCSTT	FLG	0.0A5H. 1	R	A/D converter operation status detection flag (0 : End of conversion, 1: Conversion in progress)
ADCCMP	FLG	0.0A5H.0	R	A/D converter compare result detection flag
PWMBIT	FLG	0.0A6H. 2	R/W	PWM counter bit selection flag (0: 8 bits, 1:9 bits)
PWMCK	FLG	0.0A6H.0	R/W	PWM timer output clock selection flag
PWM2SEL	FLG	0.0A7H. 2	R/W	PWM2/general-purpose port pin function selection flag
PWM1SEL	FLG	0.0A7H. 1	R/W	PWM1/general-purpose port pin function selection flag
PWMOSEL	FLG	0.0A7H. 0	R/W	PWM0/general-purpose port pin function selection flag
TM3SEL	FLG	0.0 A 8 H .3	R/W	PWM/modulo timer 3 selection flag
TM3EN	FLG	0.0A8H. 1	R/W	Modulo timer 3 count start flag
TM3RES	FLG	0.0A8H.0	R/W	Modulo timer 3 reset flag (when read: 0)
TM2EN	FLG	0.0A9H. 3	R/W	Modulo timer 2 count start flag
TM2RES	FLG	0.0A9H. 2	R/W	Modulo timer 2 reset flag (when read: 0)
TM2CK1	FLG	0.0A9H. 1	R/W	Modulo timer 2 clock selection flag
TM2CK0	FLG	0.0А9Н. 0	R/W	Modulo timer 2 clock selection flag
TM1EN	FLG	0.0AAH. 3	R/W	Modulo timer 1 count start flag
TM1RES	FLG	0.OAAH. 2	R/W	Modulo timer 1 reset flag (when read: 0)
TM1CK1	FLG	0.OAAH. 1	R/W	Modulo timer 1 clock selection flag
TM1CK0	FLG	0.0AAH. 0	R/W	Modulo timer 1 clock selection flag
TMOEN	FLG	0.0ABH. 3	R/W	Modulo timer 0 count start flag
TMORES	FLG	0.0ABH. 2	R/W	Modulo timer 0 reset flag (when read: 0)
TM0CK1	FLG	0.0ABH. 1	R/W	Modulo timer 0 clock selection flag
TMOCKO	FLG	0.0ABH. 0	R/W	Modulo timer 0 clock selection flag
TM0OVF	FLG	0.0ACH. 3	R	Modulo timer 0 overflow detection flag
TM0GCEG	FLG	0.0ACH. 2	R/W	Modulo timer 0 gate close input signal edge selection flag
TMOGOEG	FLG	0.0ACH. 1	R/W	Modulo timer 0 gate open input signal edge selection flag
TMOMD	FLG	0.0ACH. 0	R/W	Modulo timer 0 modulo counter/gate counter selection flag

Symbol Name	Attribute	Value	R/W	Description
IPSIO1	FLG	0.0ADH. 3	R/W	Serial interface 1 interrupt enable flag
IPSIO0	FLG	O.OADH. 2	R/W	Serial interface 0 interrupt enable flag
IPTM3	FLG	O.OADH. 1	R/W	PWM timer interrupt enable flag
IPTM2	FLG	0.0ADH. 0	R/W	Modulo timer 2 interrupt enable flag
IPTM1	FLG	0.0AEH. 3	R/W	Modulo timer 1 interrupt enable flag
IPTM0	FLG	0.0AEH. 2	R/W	Modulo timer 0 interrupt enable flag
IP4	FLG	0.0AEH. 1	R/W	INT4 pin interrupt enable flag
IP3	FLG	0.0AEH. 0	R/W	INT3 pin interrupt enable flag
IP2	FLG	0.0AFH. 3	R/W	INT2 pin interrupt enable flag
IP1	FLG	0.0AFH. 2	R/W	INT1 pin interrupt enable flag
IP0	FLG	0.0AFH. 1	R/W	INT0 pin interrupt enable flag
IPCE	FLG	0.0AFH. 0	R/W	CE pin interrupt enable flag
IRQSIO1	FLG	0.0B4H. 0	R/W	Serial interface 1 interrupt request detection flag
IRQSIO0	FLG	0.0B5H. 0	R/W	Serial interface 0 interrupt request detection flag
IRQTM3	FLG	0.0B6H.0	R/W	PWM timer interrupt request detection flag
IRQTM2	FLG	0.0B7H. 0	R/W	Modulo timer 2 interrupt request detection flag
IRQTM1	FLG	0.0B8H. 0	R/W	Modulo timer 1 interrupt request detection flag
IRQTM0	FLG	0.0B9H. 0	R/W	Modulo timer 0 interrupt request detection flag
INT4	FLG	0.0BAH. 3	R	INT4 pin status detection flag
IRQ4	FLG	0.0BAH. 0	R/W	INT4 pin interrupt request detection flag
INT3	FLG	0.0BBH. 3	R	INT3 pin status detection flag
IRQ3	FLG	0.0BBH. 0	R/W	INT3 pin interrupt request detection flag
INT2	FLG	0.0BCH. 3	R	INT2 pin status detection flag
IRQ2	FLG	0.0BCH. 0	R/W	INT2 pin interrupt request detection flag
INT1	FLG	0.0BDH. 3	R	INT1 pin status detection flag
IRQ1	FLG	0.0BDH. 0	R/W	INT1 pin interrupt request detection flag
INT0	FLG	0.0BEH. 3	R	INT0 pin status detection flag
IRQ0	FLG	0.0BEH. 0	R/W	INT0 pin interrupt request detection flag
CE	FLG	0.0BFH. 3	R	CE pin status detection flag
CECNTSTT	FLG	0.0BFH. 1	R	CE reset counter status detection flag
IRQCE	FLG	0.0BFH. 0	R/W	CE pin interrupt request detection flag
P0DPLD3	FLG	15.66 H .3	R/W	POD3 pin pull-down resistor selection flag
P0DPLD2	FLG	15.66H. 2	R/W	P0D2 pin pull-down resistor selection flag
P0DPLD1	FLG	15.66H. 1	R/W	POD1 pin pull-down resistor selection flag
P0DPLD0	FLG	15.66 H .0	R/W	POD0 pin pull-down resistor selection flag

Symbol Name	Attribute	Value	R/W	Description
P3DGIO	FLG	15.67H. 3	R/W	P3D input/output selection flag
P3CGIO	FLG	15.67H. 2	R/W	P3C input/output selection flag
P3BGIO	FLG	15.67H. 1	R/W	P3B input/output selection flag
P3AGIO	FLG	15.67H. 0	R/W	P3A input/output selection flag
P2DBIO3	FLG	15.68H. 3	R/W	P2D3 input/output selection flag (dummy)
P2DBIO2	FLG	15.68H. 2	R/W	P2D2 input/output selection flag
P2DBIO1	FLG	15.68H. 1	R/W	P2D1 input/output selection flag
P2DBIO0	FLG	15.68 H .0	R/W	P2D0 input/output selection flag
P2CBIO3	FLG	15.69H. 3	R/W	P2C3 input/output selection flag
P2CBIO2	FLG	15.69H. 2	R/W	P2C2 input/output selection flag
P2CBIO1	FLG	15.69H. 1	R/W	P2C1 input/output selection flag
P2CBIO0	FLG	15.69H. 0	R/W	P2C0 input/output selection flag
P2BBIO3	FLG	15.6AH. 3	R/W	P2B3 input/output selection flag
P2BBIO2	FLG	15.6AH. 2	R/W	P2B2 input/output selection flag
P2BBIO1	FLG	15.6AH. 1	R/W	P2B1 input/output selection flag
P2BBIO0	FLG	15.6AH. 0	R/W	P2B0 input/output selection flag
P2ABIO3	FLG	15.6BH. 3	R/W	P2A3 input/output selection flag (dummy)
P2ABIO2	FLG	15.6BH. 2	R/W	P2A2 input/output selection flag
P2ABIO1	FLG	15.6BH. 1	R/W	P2A1 input/output selection flag
P2ABIO0	FLG	15.6BH. 0	R/W	P2A0 input/output selection flag
P1DBIO3	FLG	15.6CH. 3	R/W	P1D3 input/output selection flag
P1DBIO2	FLG	15.6CH. 2	R/W	P1D2 input/output selection flag
P1DBIO1	FLG	15.6CH. 1	R/W	P1D1 input/output selection flag
P1DBIO0	FLG	15.6CH. 0	R/W	P1D0 input/output selection flag
P0CBIO3	FLG	15.6DH. 3	R/W	P0C3 input/output selection flag
P0CBIO2	FLG	15.6DH. 2	R/W	P0C2 input/output selection flag
P0CBIO1	FLG	15.6DH. 1	R/W	P0C1 input/output selection flag
P0CBIO0	FLG	15.6DH. 0	R/W	POC0 input/output selection flag
P0BBIO3	FLG	15.6EH. 3	R/W	P0B3 input/output selection flag
P0BBIO2	FLG	15.6EH. 2	R/W	P0B2 input/output selection flag
P0BBIO1	FLG	15.6EH. 1	R/W	P0B1 input/output selection flag
P0BBIO0	FLG	15.6EH. 0	R/W	POB0 input/output selection flag
P0ABIO3	FLG	15.6FH. 3	R/W	POA3 input/output selection flag
P0ABIO2	FLG	15.6FH. 2	R/W	POA2 input/output selection flag
P0ABIO1	FLG	15.6FH. 1	R/W	P0A1 input/output selection flag
POABIO0	FLG	15.6FH. 0	R/W	POAO input/output selection flag

23.5 Peripheral Hardware Registers

Symbol Name	Atribute	Value	R/W	Description
ADCR	DAT	02H	R/W	A/D converter reference voltage setting register
SIOOSFR	DAT	03H	R/W	Serial interface 0 presettable shift register
SIO1SFR	DAT	04H	R/W	Serial interface 1 presettable shift register
TMOM	DAT	1AH	R/W	Timer modulo 0 register
TM0C	DAT	1BH	R	Timer modulo 0 counter
TM1M	DAT	1 CH	R/W	Timer modulo 1 register
TM1C	DAT	1DH	R	Timer modulo 1 counter
TM2M	DAT	1EH	R/W	Timer modulo 2 register
TM2C	DAT	1FH	R	Timer modulo 2 counter
AR	DAT	40H	R/W	Address register
DBFSTK	DAT	41H	R/W	DBF stack register
PLLR	DAT	42 H	R/W	PLL data register
IFC	DAT	43H	R	IF counter data register
PWMR0	DAT	44H	R/W	PWM0 data register
PWMR1	DAT	45H	R/W	PWM1 data register
PWMR2	DAT	46 H	R/W	PWM2 data register
TM3M	DAT	46H	R/W	Timer modulo 3 register

23.6 Others

Symbol Name	Attribute	Value	Description
DBF	DAT	$0 F H$	Operand of GET/PUT/MOVT/MOVTH/MOVL instruction (DBF)
IX	DAT	01 H	Operand of INC instruction (IX)
AR_EPA1	DAT	8040 H	Operand of CALL/BR/MOVT/MOVTH/MOVTL instruction (EPA bit on)
AR_EPA0	DAT	4040 H	Operand of CALL/BR/MOVT/MOVTH/MOVTL instruction (EPA bit off)

24. ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings ($\mathrm{T} A=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Condition	Rating	Unit
Supply voltage	VDD		$-0.3 \sim+6.0$	V
Input voltage	V	Other than CE, INT0 through INT4, and $\overline{\text { RESET pins }}$	-0.3 ~ VDD +0.3	V
		CE, INT0 through INT4, and RESET pins	-0.3 ~ V $\mathrm{DD}+0.6$	V
Output voltage	Vo	Except P1B0 through P1B3	-0.3 ~ VDD +0.3	mA
High-level output current	Іон	1 pin	-8.0	mA
		Total of P2A0 through P2A2, P3A0 through P3A3, and P3B0 through P3B3	-15.0	mA
		Total of POAO through POA3, POBO through POB3, P0C0 through P0C3, P1D0 through P1D3, P2B0 through P2B3, P2C0 through P2C3, P2D0 through P2D2, P3C0 through P3C3, and P3D0 through P3D3	-25.0	mA
Low-level output current	loL	1 pin of P1B0 through P1B3	12.0	mA
		1 pin of P1B0 through P1B3	8.0	mA
		Total of P2A0 through P2A2, P3A0 through P3A3, and P3B0 through P3B3	15.0	mA
		Total of POAO through POA3, POBO through POB3, P0C0 through P0C3, P1D0 through P1D3, P2B0 through P2B3, P2C0 through P2C3, P2D0 through P2D2, P3C0 through P3C3, and P3D0 through P3D3	25.0	mA
		Total of P1B0 through P1B3 pins	25.0	mA
Output voltage	Vbds	P1B0-P1B3	14.0	V
Total power dissipation	P_{t}		200	mW
Operating ambient temperature	TA		-40 ~ +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$		$-55 \sim+125$	${ }^{\circ} \mathrm{C}$

Caution If the rated value of even one of the above parameters is exceeded even momentarily, the quality of the product may be degraded. The absolute maximum ratings define the rated values exceeding which the product may be physically damaged. Never exceed these ratings.

Recommended Operating Range ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Supply voltage	VDD1 2	When CPU and PLL are operating	4.5	5.0	5.5	V
	VDD2 2	When CPU and PLL are stopped	3.5	5.0	5.5	V

Recommended Output Voltage ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Output voltage	$V_{\text {BDS }}$	P1B0-P1B3			12	V

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85{ }^{\circ} \mathrm{C}, \mathrm{VDD}=3.5$ to 5.5 V)

Parameter	Symbol	Condition		MIN.	TYP.	MAX.	Unit
Supply current	ldD1	When CPU is operating and PLL is stopped with sine wave input to Xis pin.$\left(f_{\mathrm{IN}}=4.5 \mathrm{MHz} \pm 1 \%, \mathrm{VIN}_{\mathrm{IN}}=\mathrm{VDD}^{\mathrm{D}}\right)$			1.5	3.0	mA
	Ido2	When CPU and PLL are stopped with sine wave input to Xin pin. $\left(\mathrm{fin}_{\mathrm{IN}}=4.5 \mathrm{MHz} \pm 1 \%, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}\right)$ With HALT instruction			0.7	1.5	mA
Data retention voltage	VDDR1	Crystal oscillation		3.5		5.5	V
	VDDR2	Crystal oscillation stops	Power failure detection by timer FF	2.2		5.5	V
	VdDR3		Data memory retained	2.0		5.5	V
Data retention current	Idor1	Crystal oscillation stops	$V_{D D}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.0	4.0	$\mu \mathrm{A}$
	Idor2				2.0	30.0	$\mu \mathrm{A}$
High-level input voltage	$\mathrm{V}_{\mathrm{HH} 1}$	```P0A0, P0B1, P0C0-P0C3, P1A0, P1A1, P1C0-P1C3, P1D0-P1D3, P2A2, P2B0-P2B3, P2C0-P2C3, P2D0-P2D2, P3A0-P3A3, P3B0-P3B3, P3C0-P3C3, P3D0-P3D3```		0.7VDD		VDD	V
	V_{1+2}	P0A1-P0A3, P0B0, P0B2, P0B3, P2A0, P2A1, CE, INT0-INT4, RESET		0.8VDD		VDD	V
	$\mathrm{V}_{\mathbf{\prime \prime}}$	P0DO-P0D3		0.55 V DD		VDD	V
Low-level input voltage	$\mathrm{V}_{\text {IL1 }}$	```P0A0, P0B1, P0C0-P0C3, P1A0, P1A1, P1C0-P1C3, P1D0-P1D3, P2A2, P2B0-P2B3, P2C0-P2C3, P2D0-P2D2, P3A0-P3A3, P3B0-P3B3, P3C0-P3C3, P3D0-P3D3```		0		0.3 VDD	V
	VIL2	P0A1-P0A3, P0B0, P0B2, P0B3, P2A0, P2A1, CE, INT0-INT4, RESET		0		0.2 V DD	V
	VIL3	PODO-P0D3		0		0.15 V DD	V
High-level output current	Іон1	$\begin{array}{r} \text { P0A0-P0A3, P0B0-P0B3, P0C0-P0C3, P1D0-P1D3, } \\ \text { P2A0-P2A2, P2B0-P2B3, P2C0-P2C3, P2D0-P2D2, } \\ \text { P3A0-P3A3, P3B0-P3B3, P3C0-P3C3, P3D0-P3D3 } \\ V_{o H}=V_{D D}-1 \mathrm{~V} \end{array}$		-1.0			mA
	Іон2	$\mathrm{EO}, \mathrm{EO1} \mathrm{VDD}=4.5 \sim 5.5 \mathrm{~V}, \mathrm{~V}$ OH $=\mathrm{V}_{\mathrm{DD}}-1 \mathrm{~V}$P0A0-P0A3, P0B0-P0B3, P0C0-P0C3, P1D0-P1D3,P2A0-P2A2, P2B0-P2B3, P2C0-P2C3, P2D0-P2D2,P3A0-PA3A, P3B0-P3B3, P3C0-P3C3, P3D0-P3D3Vol $=1 \mathrm{~V}$		-3.0			mA
Low-level output current	loL1			1.0			mA
	loL2	EO0, EO1	VDD $=4.5 \sim 5.5 \mathrm{~V}, \mathrm{VOL}=1 \mathrm{~V}$	3.0			mA
	IoL3	P1B0-P1B3	$\mathrm{VoL}=1 \mathrm{~V}$	7.0			mA
High-level input current	ІІн	P0D0 through P0D3 pulled down $\quad \mathrm{VIN}=\mathrm{V}_{\text {do }}$		5.0		150	$\mu \mathrm{A}$
Output off leakage current	ILO1	P1B0-P1B3	VIN $=12 \mathrm{~V}$			1.0	$\mu \mathrm{A}$
	ILo2	EO0, EO1	$\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathbb{I}}=0 \mathrm{~V}$			± 1.0	$\mu \mathrm{A}$
High-level input leakage current	ILIH	Input pin	$\mathrm{V}_{1 \mathrm{~N}}=\mathrm{V}_{\mathrm{DD}}$			1.0	$\mu \mathrm{A}$
Low-level input leakage current	ILIL	Input pin	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$			-1.0	$\mu \mathrm{A}$

AC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=5 \mathrm{~V} \pm 10 \%$)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Operating frequency	fin 1	VCOL pin, MF mode, sine wave input $\mathrm{V}_{\mathbb{N}}=0.1 \mathrm{~V}_{\mathrm{pp}} \text { Note }$	0.5		3	MHz
	fin2	VCOL pin, HF mode, sine wave input $\mathrm{V}_{\mathrm{IN}}=0.1 \mathrm{~V}_{\text {p-p }} \text { Note }$	10		40	MHz
	fins	VCOH pin, VHF mode, sine wave input $\mathrm{V}_{\mathbb{N}}=0.1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \text { Note }$	60		130	MHz
	fina	AMIFC pin, sine wave input $\mathrm{V}_{\mathrm{IN}}=0.15 \mathrm{~V}_{\text {p-p }} \text { Note }$	0.4		0.5	MHz
	fins	FMIFC pin, FMIF count mode, sine wave input $\mathrm{V}_{\mathrm{IN}}=0.20 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	10		11	MHz
	fing	FMIFC pin, AMIF count mode, sine wave input $\mathrm{V}_{\mathbb{N}}=0.15 \mathrm{~V}_{p-p}$	0.4		0.5	MHz
SIOO input frequency	fin7	External clock			1	MHz
SIO1 input frequency	fins	External clock			0.7	MHz

Note The condition of sine wave input $\mathrm{V} \operatorname{IN}=0.1 \mathrm{~V}$ p-p is the rated value when the $\mu \mathrm{PD} 17704,17705,17707,17708$, or 17709 alone is operating. Where influence of noise must be taken into consideration, operation under input amplitude condition of $\mathrm{V}_{\mathrm{IN}}=0.15 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ is recommended.

A/D Converter Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=5 \mathrm{~V} \pm 10 \%$)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.
Unit					
A/D conversion total error		8 BIT			± 3.0
A/D conversion total error		8 BIT	$\mathrm{T}_{\mathrm{A}}=0 \sim 85^{\circ} \mathrm{C}$		

Reference Characteristics ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Supply current	IoD3	When CPU and PLL are operating with sine wave input to VCOH pin $\left(\mathrm{fin}=130 \mathrm{MHz}, \mathrm{VIN}=0.3 \mathrm{~V}_{\text {p-p })}\right.$		6.0	12.0	mA

25. PACKAGE DRAWING

80 PIN PLASTIC QFP (14×14)

NOTE
Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	17.2 ± 0.4	0.677 ± 0.016
B	14.0 ± 0.2	$0.551_{-0.008}^{+0.009}$
C	14.0 ± 0.2	$0.551_{-0.008}^{+0.009}$
D	17.2 ± 0.4	0.677 ± 0.016
F	0.825	0.032
G	0.825	0.032
H	0.30 ± 0.10	$0.012_{-0.005}^{+0.004}$
I	0.13	0.005
J	$0.65($ T.P. $)$	$0.026($ T.P. $)$
K	1.6 ± 0.2	0.063 ± 0.008
L	0.8 ± 0.2	$0.031_{-0.008}^{+0.009}$
M	$0.15_{-0.05}^{+0.10}$	$0.006_{-0.003}^{+0.004}$
N	0.10	0.004
P	2.7	0.106
Q	0.1 ± 0.1	0.004 ± 0.004
R	$5^{\circ} \pm 5^{\circ}$	$5^{\circ} \pm 5^{\circ}$
S	3.0 MAX.	0.119 MAX.
		S80GC-65-3B9-4

Remark The dimensions and materials of the ES model are the same as those of the mass-produced model.

26. RECOMMENDED SOLDERING CONDITIONS

Solder the μ PD17709 under the following recommended conditions.
For the details of the recommended soldering conditions, refer to "Semiconductor Device Mounting Technology Manual" (C10535E).

For the soldering method and conditions other than those recommended, consult NEC.

Table 26-1. Soldering Conditions of Surface Mount Type
μ PD17704GC-xxx-3B9: 80-pin plastic QFP ($14 \times 14 \mathrm{~mm}, 0.65 \mathrm{~mm}$ pitch)
$\star \mu$ PD17705GC-xxx-3B9: 80-pin plastic QFP ($14 \times 14 \mathrm{~mm}, 0.65 \mathrm{~mm}$ pitch) μ PD17707GC-xxx-3B9: 80-pin plastic QFP ($14 \times 14 \mathrm{~mm}, 0.65 \mathrm{~mm}$ pitch)
μ PD17708GC-xxx-3B9: 80-pin plastic QFP ($14 \times 14 \mathrm{~mm}, 0.65 \mathrm{~mm}$ pitch)
μ PD17709GC-xxx-3B9: 80-pin plastic QFP ($14 \times 14 \mathrm{~mm}, 0.65 \mathrm{~mm}$ pitch)

Soldering Method	Soldering Condition	Symbol of Recommended Condition
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Time: 30 seconds MAX. ($210^{\circ} \mathrm{C}$ MIN.) Number of times: 2 MAX.	IR35-00-2
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Time: 40 seconds MAX. ($200^{\circ} \mathrm{C}$ MIN.) Number of times: 2 MAX.	VP15-00-2
Wave soldering	Soldering bath temperature: $260^{\circ} \mathrm{C}$ MAX., Time: 10 seconds MAX., Number of times: 1, Preheating temperature: $120{ }^{\circ} \mathrm{C}$ MAX. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: $300{ }^{\circ} \mathrm{C}$ MAX., Time: 3 seconds MAX. (per side of device)	-

Caution Do not use two or more soldering methods in combination (except partial heating method).

APPENDIX A. CAUTIONS ON CONNECTING CRYSTAL RESONATOR

When using the system clock oscillation circuit, wire the portion enclosed by the dotted line in the figure below as follows to prevent adverse influence from wiring capacity.

- Keep the wiring length as short as possible.
- If capacitances C1 and C2 are too high, the oscillation start characteristics may be degraded or current consumption may increase.
- Generally, connect a trimmer capacitor for adjusting the oscillation frequency to the XIn pin. Depending on the crystal resonator to be used, however, the oscillation stability differs. Therefore, evaluate the crystal resonator actually used.
- The crystal oscillation frequency cannot be accurately adjusted when an emulation probe is connected to the Xout and Xin pin, because of the capacitance of the probe. Adjust the frequency while measuring the VCO oscillation frequency.

APPENDIX B. DEVELOPMENT TOOLS

The following development tools are available for development of programs for the μ PD17709.

Hardware

Name	Outline
In-circuit emulator $\left(\begin{array}{l} I \mathrm{E}-17 \mathrm{~K} \\ \mathrm{IE}-17 \mathrm{~K}-\mathrm{ET}^{\text {Note } 1} \\ \mathrm{EMU}-17 \mathrm{~K}^{\text {Note } 2} \end{array}\right)$	IE-17K, IE-17K-ET, and EMU-17K are in-circuit emulators that can be used with any model in the 17 K series. IE-17K and IE-17K-ET are connected to a host machine, which is PC-9800 series or IBM PC/AT ${ }^{\top}$, with RS-232C. EMU-17K is mounted to the expansion slot of a host machine, PC-9800 series. By using these in-circuit emulators with a system evaluation board (SE board) corresponding to each model, these emulators operate dedicated to the model. When man-machine interface software SIMPLEHOST ${ }^{T M}$ is used, a more sophisticated debugging environment can be created. EMU-17K also has a function to allow you to check the contents of the data memory real-time.
SE board (SE-17709)	SE-17709 is an SE board for the μ PD17709 subseries. This board can be used alone to evaluate a system, or in combination with an in-circuit emulator for debugging.
Emulation probe (EP-17K80GC)	EP-17K80GC is an emulation probe for the μ PD17709 subseries. By using this probe with EV-9200GC-80 ${ }^{\text {Note } 3}$, the SE board and target system are connected.
Conversion socket (EV-9200GC-80 ${ }^{\text {Note } 3}$)	EV-9200GC-80 is a conversion socket for 80 -pin plastic QFP ($14 \times 14 \mathrm{~mm}$). It is used to connect EP17K80GC and target system.
PROM programmer (PG-1500)	PG-1500 is a PROM programmer supporting μ PD17P709. It can program μ PD17P709 when connected with PG-1500 adapter PA-17KDZ and programmer adapter PA-17P709GC.
Programmer adapter (PA-17P709GC)	PA-17P709GC is an adapter to program μ PD17P709. It is used with PG-1500.

Notes 1. Low-price model: external power supply type
2. This is a product of I.C Corp. For details, consult I.C Corp. ((03) 3447-3793).
3. One EV-9200GC-80 is supplied with the EP-17K80GC. Five EV-9200GC-80 are also available as a set.

Remark Third party PROM programmers AF-9703, AF-9704, AF-9705, and AF-9706 are available from Ando Electric Co., Ltd. Use these programmers with programmer adapter PA-17P709GC. For details, consult Ando Electric Co., Ltd. ((03) 3733-1163).

Software

Name	Outline	Host Machine	OS		Media	Parts Number
17K series assembler (AS17K)	AS17K is an assembler that can be commonly used with 17 K series. To develop programs for the μ PD17709, this AS17K and a device file (AS17707) are used in combination.	PC-9800 series	MS-DOS ${ }^{\text {™ }}$		5" 2HD	μ S5A10AS17K
					3.5" 2HD	μ S5A13AS17K
		IBM PC/AT	PC DOS ${ }^{\text {TM }}$		5" 2HC	μ S7B10AS17K
					3.5" 2HC	μ S7B13AS17K
Device file (AS17707)	AS17707 is a device file for the μ PD17709 subseries. It is used with the assembler common to the 17 K series (AS17K).	PC-9800 series	MS-DOS		5" 2HD	μ S5A10AS17707
					3.5" 2HD	μ S5A13AS17707
		IBM PC/AT	PC DOS		5" 2HC	μ S7B10AS17707
					3.5" 2HC	μ S7B13AS17707
Support software (SIMPLEHOST)	SIMPLEHOST is man-machine interface software that runs on Windows ${ }^{\text {TM }}$ when a program is developed by using an in-circuit emulator and personal computer.	PC-9800 series	MS-DOS	Windows	5" 2HD	μ S5A10IE17K
					3.5 " 2HD	μ S5A13IE17K
		IBM PC/AT	PC DOS		5" 2HC	μ S7B10IE17K
					3.5" 2HC	μ S7B13IE17K

Remark The version of the supported OS is as follows:

OS	Version
MS-DOS	Ver.3.30 \sim Ver.5.00A ${ }^{\text {Note }}$
PC DOS	Ver.3.1 \sim Ver.5.0Note
Windows	Ver.3.0 \sim Ver.3.1

Note MS-DOS Ver. 5.00/5.00A and PC DOS Ver. 5.0 have a task swap function, but this function cannot be used with this software.

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to Vod or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 800-366-9782
Fax: 800-729-9288
NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 0302
Fax: 0211-65 03490
NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290
NEC Electronics Italiana s.r.1.
Milano, Italy
Tel: 02-66 7541
Fax: 02-66 754299

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580
NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 5800
Fax: 01-30-67 5899
NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 01-504-2787
Fax: 01-504-2860
NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80820
Fax: 08-63 80388

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044
NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411
NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 253-8311
Fax: 250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-719-2377
Fax: 02-719-5951
NEC do Brasil S.A.
Sao Paulo-SP, Brasil
Tel: 011-889-1680
Fax: 011-889-1689

Purchase of NEC $I^{2} \mathrm{C}$ components conveys a license under the Philips $I^{2} \mathrm{C}$ Patent Rights to use these components in an $I^{2} \mathrm{C}$ system, provided that the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ Standard Specification as defined by Philips.

SIMPLEHOST is a trademark of NEC Corporation.

MS-DOS and Windows are trademarks of Microsoft Corporation.

PC/AT and PC DOS are trademarks of IBM Corporation.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

[^0]: Power-ON reset : Reset by RESET pin up on power application
 WDT\&SP reset : Reset by watchdog timer and stack pointer
 CE reset : CE reset
 Clock stop : Upon execution of clock stop instruction

[^1]: U: Undefined
 R: Retained

[^2]: R:Retained

