RC5532/RC5532A # High Performance Dual Low Noise Operational Amplifier #### **Features** - Small signal bandwidth 10 MHz - Output drive capability 600Ω , 10 VRMS - Input noise voltage 5 nV/ $\sqrt{\text{Hz}}$ - DC voltage gain 50,000 - AC voltage gain 2200 at 10 KHz - Power bandwidth 140 KHz - Slew rate $-8 \text{ V/}\mu\text{S}$ - Large supply voltage range ±3V to ±20V ## **Description** The RC5532 is a high performance, dual low noise operational amplifier. Compared to standard dual operational amplifiers, such as the RC747, it shows better noise performance, improved output drive capability, and considerably higher small-signal and power bandwidths. This makes the device especially suitable for application in high quality and professional audio equipment, instrumentation, control circuits, and telephone channel amplifiers. The op amp is internally compensated for gains equal to one. If very low noise is of prime importance, it is recommended that the RC5532A version be used which has guaranteed noise specifications. # **Block Diagram** ## **Pin Assignments** ## **Absolute Maximum Ratings** (beyond which the device may be damaged)¹ | Parameter | Min. | Тур. | Max. | Units | | |--------------------------------------|----------|------|------|-------|----| | Supply Voltage | | | | ±22 | V | | Input Voltage | | | | ±Vs | V | | Differential Input Voltage | | | | 0.5 | V | | P _D T _A < 50°C | PDIP | | | 468 | mW | | Junction Temperature | PDIP | | | 125 | °C | | Storage Temperature | | -65 | | 150 | °C | | Operating Temperature | RC5532/A | 0 | | 70 | °C | | Lead Soldering Temperature (10 sec) | | | | 300 | °C | #### Notes: - 1. Functional operation under any of these conditions is NOT implied. - 2. For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage. - 3. Short circuit to ground on one amplifier only. # **Operating Conditions** | Parameter | | | Min. | Тур. | Max. | Units | |-------------------------------------|--------------------|------|------|------|------|-------| | θJΑ | Thermal resistance | PDIP | | 160 | | °C/W | | For T _A > 50°C Derate at | | PDIP | | 6.25 | | mW/°C | **2** REV. 1.1.3 6/14/01 PRODUCT SPECIFICATION RC5532/RC5532A ## **DC Electrical Characteristics** (VS = ± 15 V and TA = +25°C unless otherwise noted) | | | RO | RC5532/5532A | | | | |----------------------------------|---|------|--------------|------|-------|--| | Parameters | Test Conditions | Min. | Тур. | Max. | Units | | | Input Offset Voltage | | | 0.5 | 4.0 | mV | | | | Over Temperature | | | 5.0 | mV | | | Input Offset Current | | | 10 | 150 | nA | | | | Over Temperature | | | 200 | nA | | | Input Bias Current | | | 200 | 800 | nA | | | | Over Temperature | | | 1000 | nA | | | Supply Current | | | 6.0 | 16 | mA | | | | Over Temperature | | | 22 | mA | | | Input Voltage Range | | ±12 | ±13 | | V | | | Common Mode Rejection Ratio | | 70 | 100 | | dB | | | Power Supply
Rejection Ratio | | 80 | 100 | | dB | | | Large Signal | $RL \ge 2 \text{ K}\Omega$, $VOUT = \pm 10V$ | 25 | 100 | | V/mV | | | Voltage Gain | Over Temperature | 15 | 50 | | | | | | $R_L \ge 600\Omega$, $V_{OUT} = \pm 10V$ | 15 | 50 | | | | | | Over Temperature | 10 | | | | | | Output Voltage Swing | R _L ≥ 600Ω | ±12 | ±13 | | V | | | | $R_L = 600\Omega$, $V_S = \pm 18V$ | ±15 | ±16 | | | | | | $R_L \ge 2k\Omega$ | | | | 1 | | | Input Resistance
(Diff. Mode) | | | 300 | | ΚΩ | | | Short Circuit Current | | | 38 | | mA | | #### Notes: 1. Diodes protect the inputs against over-voltage. Therefore, unless current-limiting resistors are used, large currents will flow if the differential input voltage exceeds 0.6V. Maximum input current should be limited to ±10mA. ### **Electrical Characteristics** $(VS = \pm 15V \text{ and } TA = +25^{\circ}C)$ | | | RC/RM5532A | | | | |-----------------------------|--|------------------|-----|------|--------------------| | Parameters | Test Conditions | s Min. Typ. Max. | | Max. | Units | | Input Noise Voltage Density | Fo = 30 Hz | | 8.0 | 12 | nV/√ Hz | | | F _O = 1 kHz | | 5.0 | 6.0 | | | Input Noise Current Density | F _O = 30 Hz | | 2.7 | | pA/√ Hz | | | Fo = 1 kHz | | 0.7 | | | | Channel Separation | $F = 1 \text{ kHz}, R_S = 5 \text{ k}\Omega$ | | 110 | | dB | REV. 1.1.3 6/14/01 3 ^{2.} Over Temperature: RC = 0° C \leq TA \leq 70 $^{\circ}$ C ## **AC Electrical Characteristics** (Vs = ± 15 V and T_A = +25°C) | Parameters | Test Conditions | Min. | Тур. | Max. | Units | |------------------------|---|------|------|------|-------| | Output Resistance | $AV = 30$ dB Closed Loop, $F = 10$ kHz, $R_L = 600\Omega$ | | 0.3 | | Ω | | Overshoot | Unity Gain, V_{IN} = 100 m V_{p-p} C_L = 100 pF, R_L = 600 Ω | | 10 | | % | | Gain | F = 10 KHz | | 2.2 | | V/mV | | Gain Bandwidth Product | $C_L = 100 \text{ pF}, R_L = 600\Omega$ | | 10 | | MHz | | Slew Rate | | | 8.0 | | V/µS | | Power Bandwidth | V _{OUT} = ±10V | | 140 | | KHz | | | $V_{OUT} = \pm 14V$, $R_{L} = 600Ω$, $V_{S} = \pm 18V$ | | 100 | | KHz | # **Test Circuits** **Figure 1. Closed Loop Frequency Response** Figure 2. Follower, Transient Response **4** REV. 1.1.3 6/14/01 PRODUCT SPECIFICATION RC5532/RC5532A # **Typical Performance Characteristics** Figure 3. Open Loop Gain vs. Frequency 40 30 20 10 0 100 1K 10K V_{OUT p-P}(V) $V_S = \pm 15V$ 10M Figure 5. Output Voltage Swing vs. Frequency 100K F (Hz) 1M Figure 7. Supply Current vs. Supply Voltage Figure 4. Closed Loop Gain vs. Frequency Figure 6. Short Circuit Current vs. Temperature Figure 8. Input Bias Current vs. Temperature REV. 1.1.3 6/14/01 5 ## **Typical Performance Characteristics** (continued) Figure 9. Output Voltage Swing vs. Supply Voltage Figure 10. Common Mode Input Range vs. Supply Voltage Figure 11. Follower Large Signal Pulse Response Figure 12. Transient Response Output Voltage vs. Time Figure 13. Input Noise Density vs. Frequency **6** REV. 1.1.3 6/14/01 PRODUCT SPECIFICATION RC5532/RC5532A ## **Mechanical Dimensions** (continued) ## 8-Lead Plastic DIP Package | Symbol | Inches | | Millim | Notes | | | |--------|--------|------|----------|-------|-------|--| | | Min. | Max. | Min. | Max. | Notes | | | Α | _ | .210 | _ | 5.33 | | | | A1 | .015 | _ | .38 | _ | | | | A2 | .115 | .195 | 2.93 | 4.95 | | | | В | .014 | .022 | .36 | .56 | | | | B1 | .045 | .070 | 1.14 | 1.78 | | | | С | .008 | .015 | .20 | .38 | 4 | | | D | .348 | .430 | 8.84 | 10.92 | 2 | | | D1 | .005 | _ | .13 | _ | | | | E | .300 | .325 | 7.62 | 8.26 | | | | E1 | .240 | .280 | 6.10 | 7.11 | 2 | | | е | .100 | BSC | 2.54 BSC | | | | | еВ | _ | .430 | _ | 10.92 | | | | L | .115 | .160 | 2.92 | 4.06 | | | | N | 8 | 8° | 8 | 3° | 5 | | #### Notes: - 1. Dimensioning and tolerancing per ANSI Y14.5M-1982. - 2. "D" and "E1" do not include mold flashing. Mold flash or protrusions shall not exceed .010 inch (0.25mm). - 3. Terminal numbers are for reference only. - 4. "C" dimension does not include solder finish thickness. - 5. Symbol "N" is the maximum number of terminals. REV. 1.1.3 6/14/01 7 ## **Ordering Information** | Product Number | Temperature Range | Screening | Package | |------------------|-------------------|------------|-------------------| | RC5532N/RC5532AN | 0°C to +70°C | Commercial | 8 Pin Plastic DIP | #### **DISCLAIMER** FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. #### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: - Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. - A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. www.fairchildsemi.com