Current Transducers HAS 50..600-P For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit). $I_{PN} = 50..600 A$ $V_{OUT} = \pm 4 V$ | Electrical data | | | | | | | | |--|---|---|--|--------------------------------------|--|--|--| | Primary nominar.m.s. current | al Primary current measuring range I _P (A) | Туре | | | | | | | 50
100
200
300
400
500 | ±150
±300
±600
±900
±900
±900 | HAS 50-P
HAS 100-P
HAS 200-P
HAS 300-P
HAS 400-P
HAS 500-P | | | | | | | V _c | ±900 Supply voltage (± 5 %) Current consumption | HAS 600-P | ±15
±15 | V
mA | | | | | $egin{array}{l}_{c} \\ oldsymbol{I}_{oc} \\ oldsymbol{V}_{d} \\ oldsymbol{K}_{ls} \\ oldsymbol{V}_{out} \\ oldsymbol{R}_{out} \\ oldsymbol{R}_{l} \end{array}$ | Overload capacity R.m.s. voltage for AC isolat R.m.s. rated voltage, safe s Isolation resistance @ 500 Output voltage @ ± I _{PN} , R _L = Output internal resistance Load resistance | separation
VDC | 30,000
3
500 ¹⁾ > 1000
±4V ±40
100
> 1 | At
kV
V
MΩ
mV
Ω
kΩ | | | | | uracy - Dynamic performance data | | | |---|--|--| | Accuracy @ I_{PN} , $T_{A} = 25^{\circ}C$ (without offset) | < ±1 | % | | Linearity $^{2)}$ $(0\pm 1_{PN})$ | < ±1 | % of I _{PN} | | Electrical offset voltage, $T_{A} = 25^{\circ}C$ | < ±40 | m̈̈V | | Hysteresis offset voltage $\hat{\mathbb{Q}} _{PN} \rightarrow 0$ | < ±20 | mV | | Thermal drift of V _{OF} HAS 50-P | < ±2 | mV/K | | HAS 100600-P | < ±1 | mV/K | | Thermal drift of the gain (% of reading) | < ±0.1 | %/K | | Response time @ 90% of I_P | < 3 | μs | | di/dt accurately followed | > 50 | A/μs | | Frequency bandwidth (small signal, -1dB) 3) 4) | DC 25 | 6 kHz | | | Electrical offset voltage, $\mathbf{T}_{\mathrm{A}} = 25^{\circ}\mathrm{C}$ Hysteresis offset voltage @ $\mathbf{I}_{\mathrm{PN}} \rightarrow 0$ Thermal drift of \mathbf{V}_{OE} HAS 50-P HAS 100600-P Thermal drift of the gain (% of reading) Response time @ 90% of \mathbf{I}_{P} di/dt accurately followed | Accuracy @ \mathbf{I}_{PN} , $\mathbf{T}_{\text{A}} = 25^{\circ}\text{C}$ (without offset) < ± 1 Linearity 2) (0 $\pm \mathbf{I}_{\text{PN}}$) < ± 1 Electrical offset voltage, $\mathbf{T}_{\text{A}} = 25^{\circ}\text{C}$ < ± 40 Hysteresis offset voltage @ $\mathbf{I}_{\text{PN}} \rightarrow 0$ < ± 20 Thermal drift of \mathbf{V}_{OE} HAS 50-P < ± 2 HAS 100600-P < ± 1 Thermal drift of the gain (% of reading) < ± 0.1 Response time @ 90% of \mathbf{I}_{P} < 3 di/dt accurately followed > 50 | | | General data | | | | | | |---------------------------------------|---|--|---------|--|--|--| | T _A
T _S
m | Ambient operating temperature Ambient storage temperature Mass approx. Standards 5) | - 25 + 85
- 25 + 85
80
EN 50082-2 | °C
g | | | | #### Notes: 1) Pollution class 2, overvoltage category III. - ²⁾ Linearity data exclude the electrical offset. - ³⁾ Please refer to derating curves in the technical file to avoid excessive core heating at high frequency. - ⁴⁾ Amorphous core option for high frequency application. - ⁵⁾ Please consult characterisation report for more technical details and application advice. #### **Features** - Hall effect measuring principle - Galvanic isolation between primary and secondary circuit - Isolation voltage 3000 V~ - Low power consumption - Extended measuring range (3 x I_{PN}) - Insulated plastic case made of polycarbonate PBT recognized according to UL 94-V0 - Right angle pins for direct PCB mounting #### **Advantages** - Easy mounting - Small size and space saving - Only one design for wide current ratings range - High immunity to external interference. ### **Applications** - AC variable speed drives - Static converters for DC motor drives - Battery supplied applications - Uninterruptible Power Supplies (UPS) - Switched Mode Power Supplies (SMPS) - Power supplies for welding applications. 040406/0 # HAS 50..600-P Dimensions (in mm) ## PINS ARRANGEMENT - 1. +15V - 2. -15V - 3. OUTPUT - 4. 0V