
Regarding the change of names mentioned in the document, such as Hitachi
Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas

Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog

and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)

Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand

names are mentioned in the document, these names have in fact all been changed to Renesas

Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and

corporate statement, no changes whatsoever have been made to the contents of the document, and

these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp.

Customer Support Dept.

April 1, 2003

To all our customers

Cautions

Keep safety first in your circuit designs!

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better
and more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements or
other reasons. It is therefore recommended that customers contact Renesas Technology Corporation
or an authorized Renesas Technology Corporation product distributor for the latest product information
before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data, diagrams,
charts, programs, and algorithms, please be sure to evaluate all information as a total system before
making a final decision on the applicability of the information and products. Renesas Technology
Corporation assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device
or system that is used under circumstances in which human life is potentially at stake. Please contact
Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor
when considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in
whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must be
exported under a license from the Japanese government and cannot be imported into a country other
than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the products
contained therein.

H8/300L Series
Programming Manual

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party’s rights, including
intellectual property rights, in connection with use of the information contained in this document.

2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.

3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi’s sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.

4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure
rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so
that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.

5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without

written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor

products.

Cautions

Preface

The H8/300L Series of single-chip microcomputers is built around the high-speed H8/300L

CPU, with an architecture featuring eight 16-bit (or sixteen 8-bit) general registers and a

concise, optimized instruction set.

This manual gives detailed descriptions of the H8/300L instructions. The descriptions apply to

all chips in the H8/300L Series. Assembly-language programmers should also read the

separate H8/300 Series Cross Assembler User's Manual.

For hardware details, refer to the hardware manual of the specific chip.

Contents

Section 1. CPU ... 1

1.1 Overview ... 1

1.1.1 Features .. 1

1.1.2 Data Structure .. 2

1.1.3 Address Space.. 4

1.1.4 Register Configuration... 5

1.2 Registers ... 6

1.2.1 General Registers ... 6

1.2.2 Control Registers ... 6

1.2.3 Initial Register Values .. 7

1.3 Instructions .. 8

1.3.1 Types of Instructions.. 8

1.3.2 Instruction Functions ... 9

1.3.3 Basic Instruction Formats .. 20

1.3.4 Addressing Modes and Effective Address Calculation.. 26

Section 2. Instruction Set ... 31

2.1 Explanation Format ... 31

2.2 Instructions .. 36

2.2.1 (1) ADD (add binary) (byte) ... 36

2.2.1 (2) ADD (add binary) (word).. 37

2.2.2 ADDS (add with sign extension) .. 38

2.2.3 ADDX (add with extend carry) ... 39

2.2.4 AND (AND logical) .. 40

2.2.5 ANDC (AND control register) .. 41

2.2.6 BAND (bit AND) .. 42

2.2.7 Bcc (branch conditionally) .. 43

2.2.8 BCLR (bit clear).. 46

2.2.9 BIAND (bit invert AND)... 48

2.2.10 BILD (bit invert load).. 49

2.2.11 BIOR (bit invert inclusive OR) ... 50

2.2.12 BIST (bit invert store) ... 51

2.2.13 BIXOR (bit invert exclusive OR) .. 52

2.2.14 BLD (bit load) ... 53

2.2.15 BNOT (bit NOT) ... 54

2.2.16 BOR (bit inclusive OR)... 56

2.2.17 BSET (bit set).. 57

2.2.18 BSR (branch to subroutine)... 59

2.2.19 BST (bit store)... 60

2.2.20 BTST (bit test)... 61

2.2.21 BXOR (bit exclusive OR) ... 63

2.2.22 (1) CMP (compare) (byte) .. 64

2.2.22 (2) CMP (compare) (word) ... 65

2.2.23 DAA (decimal adjust add)... 66

2.2.24 DAS (decimal adjust subtract) .. 68

2.2.25 DEC (decrement)... 70

2.2.26 DIVXU (divide extend as unsigned) ... 71

2.2.27 EEPMOV (move data to EEPROM) ... 73

2.2.28 INC (increment) .. 74

2.2.29 JMP (jump).. 75

2.2.30 JSR (jump to subroutine)... 76

2.2.31 LDC (load to control register) ... 77

2.2.32 (1) MOV (move data) (byte) ... 78

2.2.32 (2) MOV (move data) (word).. 79

2.2.32 (3) MOV (move data) (byte) ... 80

2.2.32 (4) MOV (move data) (word).. 81

2.2.32 (5) MOV (move data) (byte) ... 82

2.2.32 (6) MOV (move data) (word).. 83

2.2.33 MULXU (multiply extend as unsigned).. 84

2.2.34 NEG (negate)... 85

2.2.35 NOP (no operation) ... 86

2.2.36 NOT (NOT = logical complement) ... 87

2.2.37 OR (inclusive OR logical) ... 88

2.2.38 ORC (inclusive OR control register)... 89

2.2.39 POP (pop data) .. 90

2.2.40 PUSH (push data).. 91

2.2.41 ROTL (rotate left).. 92

2.2.42 ROTR (rotate right) ... 93

2.2.43 ROTXL (rotate with extend carry left).. 94

2.2.44 ROTXR (rotate with extend carry right) ... 95

2.2.45 RTE (return from exception) ... 96

2.2.46 RTS (return from subroutine).. 97

2.2.47 SHAL (shift arithmetic left) .. 98

2.2.48 SHAR (shift arithmetic right).. 99

2.2.49 SHLL (shift logical left) ..100

2.2.50 SHLR (shift logical right) ...101

2.2.51 SLEEP (sleep) ...102

2.2.52 STC (store from control register) ..103

2.2.53 (1) SUB (subtract binary) (byte) ...104

2.2.53 (2) SUB (subtract binary) (word)..105

2.2.54 SUBS (subtract with sign extension) ..106

2.2.55 SUBX (subtract with extend carry) ...107

2.2.56 XOR (exclusive OR logical) ...108

2.2.57 XORC (exclusive OR control register) ...109

2.3 Operation Code Map ...110

2.4 List of Instructions...112

2.5 Number of Execution States ..119

Section 3. CPU Operation States ...127

3.1 Program Execution State ...128

3.2 Exception Handling States...128

3.2.1 Types and Priorities of Exception Handling..128

3.2.2 Exception Sources and Vector Table ...129

3.2.3 Outline of Exception Handling Operation ..130

3.3 Reset State ...131

3.4 Power-Down State ...131

Section 4. Basic Operation Timing..133

4.1 On-chip Memory (RAM, ROM)..133

4.2 On-chip Peripheral Modules and External Devices...134

Section 1. CPU

1.1 Overview

The H8/300L CPU at the heart of the H8/300L Series features 16 general registers of 8 bits

each (or 8 registers of 16-bits each), and a concise, optimized instruction set geared to high-

speed operation.

1.1.1 Features

The H8/300L CPU has the following features.

General register configuration

16 8-bit registers (can be used as 8 16-bit registers)

55 basic instructions

• Multiply and divide instructions

• Powerful bit manipulation instructions

8 addressing modes

• Register direct (Rn)

• Register indirect (@Rn)

• Register indirect with displacement (@(d:16, Rn))

• Register indirect with post-increment/pre-decrement (@Rn+/@ –Rn)

• Absolute address (@aa:8/@aa:16)

• Immediate (#xx:8/#xx:16)

• Program-counter relative (@(d:8, PC))

• Memory indirect (@@aa:8)

64-kbyte address space

1

High-speed operation

• All frequently used instructions are executed in 2 to 4 states

• High-speed operating frequency: 5 MHz

Add/subtract between 8/16-bit registers: 0.4 µs
8 × 8-bit multiply: 2.8 µs

16 ÷ 8-bit divide: 2.8 µs

Low-power operation

• Transition to power-down state using SLEEP instruction

1.1.2 Data Structure

The H8/300L CPU can process 1-bit data, 4-bit (packed BCD) data, 8-bit (byte) data, and

16-bit (word) data.

• Bit manipulation instructions operate on 1-bit data specified as bit n (n = 0, 1, 2, ..., 7) in a

byte operand.

• All operational instructions except ADDS and SUBS can operate on byte data.
• The MOV.W, ADD.W, SUB.W, CMP.W, ADDS, SUBS, MULXU (8 bits × 8 bits), and

DIVXU (16 bits ÷ 8 bits) instructions operate on word data.

• The DAA and DAS instruction perform decimal arithmetic adjustments on byte data in

packed BCD form. Each 4-bit of the byte is treated as a decimal digit.

2

Data Structure in General Registers:Data of all the sizes above can be stored in general

registers as shown in figure 1-1.

Figure 1-1. Register Data Structure

1-Bit data

1-Bit data

Byte data

Byte data

Word data

4-Bit BCD data

Data type

Don't-care
4 37 0

Data format

7 0
7 6 5 4 3 2 1 0 Don't-care

Don't-care 7 6 5 4 3 2 1 0

Don't-care
7 0

Don't-care
7 0

015

Don't-care
4 37 0

RnL

RnH

RnL

RnH

RnL

Rn

RnH

Register No.

7 0

4-Bit BCD data

M
S
B

M
S
B

M
S
B

L
S
B

L
S
B

L
S
B

Upper Lower

Upper Lower

RnH: Upper 8 bits of General Register

RnL: Lower 8 bits of General Register

MSB: Most Significant Bit

LSB: Least Significant Bit

3

Data Structure in Memory: Figure 1-2 shows the structure of data in memory. The H8/300L
CPU is able to access word data in memory (MOV.W instruction), but only if the word data
starts from an even-numbered address. If an odd address is designated, no address error
occurs, but the access is performed starting from the previous even address, with the least
significant bit of the address regarded as 0.* The same applies to instruction codes.
* Note that the LSIs in the H8/300L Series also contain on-chip peripheral modules for which

access in word size is not possible. Details are given in the applicable hardware manual.

Figure 1-2. Memory Data Formats

The stack is always accessed a word at a time. When the CCR is pushed on the stack, two
identical copies of the CCR are pushed to make a complete word. When they are returned, the
lower byte is ignored.

1.1.3 Address Space

The H8/300L CPU supports a 64-Kbyte address space (program code + data). The memory
map differs depending on the particular chip in the H8/300L Series and its operating mode.
See the applicable hardware manual for details.

L
S
B

Upper 8 bits

7 0
7 6 5 4 3 2 1 01-Bit data

Byte data

Word data

Byte data (CCR) on stack

Word data on stack

Data type Data formatAddress

Address n

Address n

Even address

Odd address

Even address

Odd address

Even address

Odd address Lower 8 bits

M
S
B

M
S
B

L
S
B

M
S
B

L
S
B

M
S
B

L
S
B

M
S
B

L
S
B

Upper 8 bits

Lower 8 bits

CCR

CCR *

CCR: Condition code register.

Note: Word data must begin at an even address.
* : Ignored when returned.

4

1.1.4 Register Configuration

Figure 1-3 shows the register configuration of the H8/300L CPU. There are 16 8-bit general

registers (R0H, R0L, ..., R7H, R7L), which can also be accessed as eight 16-bit registers (R0

to R7). There are two control registers: the 16-bit program counter (PC) and the 8-bit

condition code register (CCR).

Figure 1-3. CPU Registers

0

7
R0H R0L
R1H R1L
R2H R2L

R3LR3H
R4LR4H

R5H R5L
R6H R6L
R7H R7L(SP)

0

15
PC

0

235
CVZH

07

CCR NI
17

SP: Stack Pointer

Program Counter

Condition Code Register

Carry flag

Overflow flag
Zero flag

Half-carry flag

Interrupt mask bit

User bit

Negative flag

U U
6 4

General Registers (Rn)

Control Registers (CR)

5

1.2 Registers

1.2.1 General Registers

All the general registers can be used as both data registers and address registers. When used as

address registers, the general registers are accessed as 16-bit registers (R0 to R7). When used

as data registers, they can be accessed as 16-bit registers (R0 to R7), or the high (R0H to R7H)

and low (R0L to R7L) bytes can be accessed separately as 8-bit registers. The register length

is determined by the instruction.

R7 also functions as the stack pointer, used implicitly by hardware in processing interrupts and

subroutine calls. In assembly language, the letters SP can be coded as a synonym for R7. As

indicated in figure 1-4, R7 (SP) points to the top of the stack.

Figure 1-4. Stack Pointer

1.2.2 Control Registers

The CPU has a 16-bit program counter (PC) and an 8-bit condition code register (CCR).

(1) Program Counter (PC): This 16-bit register indicates the address of the next instruction

the CPU will execute. Instructions are fetched by 16-bit (word) access, so the least significant

bit of the PC is ignored (always regarded as 0).

(2) Condition Code Register (CCR): This 8-bit register indicates the internal status of the

CPU with an interrupt mask (I) bit and five flag bits: half-carry (H), negative (N), zero (Z),

overflow (V), and carry (C) flags. The two unused bits are available to the user. The bit

configuration of the condition code register is shown below.

Unused area

Stack area

SP (R7)

6

* Not fixed

Bit 7—Interrupt Mask Bit (I): When this bit is set to 1, all interrupts except NMI are
masked. This bit is set to 1 automatically at the start of interrupt handling.

Bits 6 and 4—User Bits (U):These bits can be written and read by software for its own
purposes using LDC, STC, ANDC, ORC, and XORC instructions.

Bit 5—Half-Carry (H): This bit is used by add, subtract, and compare instructions to indicate
a borrow or carry out of bit 3 or bit 11. It is referenced by the decimal adjust instructions.

Bit 3—Negative (N): This bit indicates the value of the most significant bit (sign bit) of the
result of an instruction.

Bit 2—Zero (Z): This bit is set to 1 to indicate a zero result and cleared to 0 to indicate a
nonzero result.

Bit 1—Overflow (V): This bit is set to 1 when an arithmetic overflow occurs, and cleared to
0 at other times.

Bit 0—Carry (C): This bit is used by:
• Add, subtract, and compare instructions, to indicate a carry or borrow at the most

significant bit
• Shift and rotate instructions, to store the value shifted out of the most or least significant

bit
• Bit manipulation instructions, as a bit accumulator

Note that some instructions involve no flag changes. The flag operations with each instruction
are indicated in the individual instruction descriptions that follow in section 2, Instruction Set.
CCR is used by LDC, STC, ANDC, ORC, and XORC instructions. The N, Z, V, and C flags
are used by the conditional branch instruction (Bcc).

1.2.3 Initial Register Values

When the CPU is reset, the program counter (PC) is loaded from the vector table and the
interrupt mask bit (I) in CCR is set to 1. The other CCR bits and the general registers are not
initialized.

Bit 7 6 5 4 3 2 1 0

I U H U N Z V C

Initial value 1 * * * * * * *

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

7

The initial value of the stack pointer (R7) is not fixed. To prevent program crashes the stack

pointer should be initialized by software, by the first instruction executed after a reset.

1.3 Instructions

Features:

• The H8/300L CPU has a concise set of 55 instructions.

• A general-register architecture is adopted.

• All instructions are 2 or 4 bytes long.

• Fast multiply/divide instructions and extensive bit manipulation instructions are supported.

• Eight addressing modes are supported.

1.3.1 Types of Instructions

Table 1-1 classifies the H8/300L instructions by type. Section 2, Instruction Set, gives detailed

descriptions.

Table 1-1. Instruction Classification

* POP Rn is equivalent to MOV.W @SP+, Rn.

PUSH Rn is equivalent to MOV.W Rn, @-SP.

** Bcc is a conditional branch instruction in which cc represents a condition.

Function Instructions Types

Data transfer MOV, POP*, PUSH* 1

Arithmetic operationsADD, SUB, ADDX, SUBX, INC, DEC, ADDS, SUBS, 14

DAA, DAS, MULXU, DIVXU, CMP, NEG

Logic operations AND, OR, XOR, NOT 4

Shift SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, 8

ROTXR

Bit manipulation BSET, BCLR, BNOT, BTST, BAND, BIAND, BOR 14

BIOR, BXOR, BIXOR, BLD, BILD, BST, BIST

Branch Bcc ** , JMP, BSR, JSR, RTS 5

System control RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP 8

Block data transfer EEPMOV 1

Total 55

8

1.3.2 Instruction Functions

Tables 1-2 to 1-9 give brief descriptions of the instructions in each functional group.

The following notation is used.

Notation

Rd General register (destination)

Rs General register (source)

Rn General register

(EAd) Destination operand

(EAs) Source operand

CCR Condition code register

N N (negative) bit of CCR

Z Z (zero) bit of CCR

V V (overflow) bit of CCR

C C (carry) bit of CCR

PC Program counter

SP Stack pointer (R7)

#Imm Immediate data

op Operation field

disp Displacement

+ Addition

– Subtraction

× Multiplication

÷ Division

∧ AND logical

∨ OR logical

⊕ Exclusive OR logical

→ Move

¬ Not

:3, :8, :16 3-bit, 8-bit, or 16-bit length

9

Table 1-2. Data Transfer Instructions

Instruction Size* Function
MOV B/W (EAs) → Rd, Rs → (EAd)

Moves data between two general registers or between a general

register and memory, or moves immediate data to a general register.

The Rn, @Rn, @(d:16, Rn), @aa:16, #xx:8 or #xx:16, @–Rn, and

@Rn+ addressing modes are available for byte or word data. The

@aa:8 addressing mode is available for byte data only.

The @–R7 and @R7+ modes require word operands. Do not

specify byte size for these two modes.
POP W @SP+ → Rn

Pops a 16-bit general register from the stack.

Equivalent to MOV.W @SP+, Rn.
PUSH W Rn → @–SP

Pushes a 16-bit general register onto the stack.

Equivalent to MOV.W Rn, @-SP.

* Size: Operand size

B: Byte

W: Word

10

Table 1-3. Arithmetic Instructions

Instruction Size* Function
ADD B/W Rd ± Rs → Rd, Rd + #Imm→ Rd

SUB Performs addition or subtraction on data in two general registers,

or addition on immediate data and data in a general register.

Immediate data cannot be subtracted from data in a general register.

Word data can be added or subtracted only when both words are in

general registers.
ADDX B Rd ± Rs ± C → Rd, Rd ± #Imm ± C→ Rd

SUBX Performs addition or subtraction with carry or borrow on byte data

in two general registers, or addition or subtraction on immediate data

and data in a general register.
INC B Rd ± 1 → Rd

DEC Increments or decrements a general register.
ADDS W Rd ± 1 → Rd, Rd ± 2 → Rd

SUBS Adds or subtracts immediate data to or from data in a general

register. The immediate data must be 1 or 2.
DAA B Rd decimal adjust→ Rd

DAS Decimal-adjusts (adjusts to packed BCD) an addition or subtraction

result in a general register by referring to the condition code register.
MULXU B Rd × Rs → Rd

Performs 8-bit × 8-bit unsigned multiplication on data in two

general registers, providing a 16-bit result.
DIVXU B Rd ÷ Rs → Rd

Performs 16-bit ÷ 8-bit unsigned division on data in two general

registers, providing an 8-bit quotient and 8-bit remainder.
CMP B/W Rd – Rs, Rd – #Imm

Compares data in a general register with data in another general

register or with immediate data. Word data can be compared only

between two general registers.
NEG B 0 – Rd → Rd

Obtains the two’s complement (arithmetic complement) of data in a

general register.

* Size: Operand size

B: Byte

W: Word

11

Table 1-4. Logic Operation Instructions

Instruction Size* Function
AND B Rd ∧ Rs → Rd, Rd ∧ #Imm → Rd

Performs a logical AND operation on a general register and

another general register or immediate data.
OR B Rd ∨ Rs → Rd, Rd ∨ #Imm → Rd

Performs a logical OR operation on a general register and another

general register or immediate data.
XOR B Rd ⊕ Rs → Rd, Rd ⊕ #Imm → Rd

Performs a logical exclusive OR operation on a general register

and another general register or immediate data.
NOT B ¬ Rd → Rd

Obtains the one’s complement (logical complement) of general

register contents.

* Size: Operand size

B: Byte

Table 1-5. Shift Instructions

Instruction Size* Function
SHAL B Rd shift → Rd

SHAR Performs an arithmetic shift operation on general register contents.
SHLL B Rd shift → Rd

SHLR Performs a logical shift operation on general register contents.
ROTL B Rd rotate → Rd

ROTR Rotates general register contents.
ROTXL B Rd rotate through carry → Rd

ROTXR Rotates general register contents through the C (carry) bit.

* Size: Operand size

B: Byte

12

Table 1-6. Bit Manipulation Instructions

Instruction Size* Function
BSET B 1 → (<bit-No.> of <EAd>)

Sets a specified bit in a general register or memory to 1. The bit is

specified by a bit number, given in 3-bit immediate data or the lower

three bits of a general register.
BCLR B 0 → (<bit-No.> of <EAd>)

Clears a specified bit in a general register or memory to 0. The bit

is specified by a bit number, given in 3-bit immediate data or the lower

three bits of a general register.
BNOT B ¬(<bit-No.> of <EAd>) → (<bit-No.> of <EAd>)

Inverts a specified bit in a general register or memory. The bit is

specified by a bit number, given in 3-bit immediate data or the lower

three bits of a general register.
BTST B ¬ (<bit-No.> of <EAd>) → Z

Tests a specified bit in a general register or memory and sets or

clears the Z flag accordingly. The bit is specified by a bit number,

given in 3-bit immediate data or the lower three bits of a general

register.
BAND B C ∧ (<bit-No.> of <EAd>) → C

ANDs the C flag with a specified bit in a general register or

memory.
BIAND B C ∧ [¬ (<bit-No.> of <EAd>)] → C

ANDs the C flag with the inverse of a specified bit in a general

register or memory.

The bit number is specified by 3-bit immediate data.
BOR B C ∨ (<bit-No.> of <EAd>) → C

ORs the C flag with a specified bit in a general register or memory.
BIOR B C ∨ [¬ (<bit-No.> of <EAd>)] → C

ORs the C flag with the inverse of a specified bit in a general

register or memory.

The bit number is specified by 3-bit immediate data.

13

Table 1-6. Bit Manipulation Instructions (Cont.)

Instruction Size* Function
BXOR B C ⊕ (<bit-No.> of <EAd>) → C

Exclusive-ORs the C flag with a specified bit in a general register

or memory.
BIXOR B C ⊕ [¬ (<bit-No.> of <EAd>)] → C

Exclusive-ORs the C flag with the inverse of a specified bit in a

general register or memory.

The bit number is specified by 3-bit immediate data.
BLD B (<bit-No.> of <EAd>) → C

Copies a specified bit in a general register or memory to the C flag.
BILD B ¬ (<bit-No.> of <EAd>) → C

Copies the inverse of a specified bit in a general register or

memory to the C flag.

The bit number is specified by 3-bit immediate data.
BST B C → (<bit-No.> of <EAd>)

Copies the C flag to a specified bit in a general register or memory.
BIST B ¬ C → (<bit-No.> of <EAd>)

Copies the inverse of the C flag to a specified bit in a general

register or memory.

The bit number is specified by 3-bit immediate data.

* Size: Operand size

B: Byte

14

Table 1-7. Branching Instructions

Instruction Size Function
Bcc — Branches if condition cc is true. The branching conditions are as

follows.

Mnemonic Description Condition
BRA (BT) Always (True) Always

BRN (BF) Never (False) Never
BHI High C ∨ Z = 0

BLS Low or Same C ∨ Z = 1

BCC (BHS) Carry Clear C = 0

(High or Same)

BCS (BLO) Carry Set (Low) C = 1

BNE Not Equal Z = 0

BEQ Equal Z = 1

BVC Overflow Clear V = 0

BVS Overflow Set V = 1

BPL Plus N = 0

BMI Minus N = 1
BGE Greater or Equal N ⊕ V = 0

BLT Less Than N ⊕ V = 1

BGT Greater Than Z ∨ (N ⊕ V) = 0

BLE Less or Equal Z ∨ (N ⊕ V) = 1

JMP — Branches unconditionally to a specified address.

BSR — Branches to a subroutine at a specified displacement from the current

address.

JSR — Branches to a subroutine at a specified address.

RTS — Returns from a subroutine.

15

Table 1-8. System Control Instructions

Instruction Size* Function
RTE — Returns from an exception handling routine.
SLEEP — Causes a transition to power-down state.
LDC B Rs → CCR, #Imm → CCR

Moves immediate data or general register contents to the condition
code register.

STC B CCR → Rd

Copies the condition code register to a specified general register.
ANDC B CCR ∧ #Imm → CCR

Logically ANDs the condition code register with immediate data.
ORC B CCR ∨ #Imm → CCR

Logically ORs the condition code register with immediate data.
XORC B CCR ⊕ #Imm → CCR

Logically exclusive-ORs the condition code register with immediate
data.

NOP — PC + 2 → PC

Only increments the program counter.

* Size: Operand size
B: Byte

Table 1-9. Block Data Transfer Instruction

Instruction Size Function
EEPMOV — if R4L ≠ 0 then

repeat @R5+ → @R6+
R4L – 1 → R4L

until R4L = 0
else next;
Moves a data block according to parameters set in general registers
R4L, R5, and R6.
R4L: size of block (bytes)
R5: starting source address
R6: starting destination address
Execution of the next instruction starts as soon as the block transfer is
completed.
This instruction is for writing to the large-capacity EEPROM provided
on chip with some models in the H8/300L Series. For details see the
applicable hardware manual.

16

Notes on Bit Manipulation Instructions: BSET, BCLR, BNOT, BST, and BIST are read-

modify-write instructions. They read a byte of data, modify one bit in the byte, then write the

byte back. Care is required when these instructions are applied to registers with write-only bits

and to the I/O port registers.

Example 1: BCLR is executed to clear bit 0 in port control register 4 (PCR4) under the

following conditions.

P47: Input pin, Low

P46: Input pin, High

P45 – P40: Output pins, Low

The intended purpose of this BCLR instruction is to switch P40 from output to input.

Before Execution of BCLR Instruction

Execution of BCLR Instruction

BCLR #0 @PCR4 ; clear bit 0 in PCR4

After Execution of BCLR Instruction

Sequence Operation

1 Read Read one data byte at the specified address

2 Modify Modify one bit in the data byte

3 Write Write the modified data byte back to the specified address

P47 P46 P45 P44 P43 P42 P41 P40

Input/output Input Input Output Output Output Output Output Output

Pin state Low High Low Low Low Low Low Low

PCR4 0 0 1 1 1 1 1 1

PDR4 1 0 0 0 0 0 0 0

P47 P46 P45 P44 P43 P42 P41 P40

Input/output Output Output Output Output Output Output Output Input

Pin state Low High Low Low Low Low Low High

PCR4 1 1 1 1 1 1 1 0

PDR4 1 0 0 0 0 0 0 0

17

Explanation: To execute the BCLR instruction, the CPU begins by reading PCR4. Since

PCR4 is a write-only register, it is read as H'FF, even though its true value is H'3F.

Next the CPU clears bit 0 of the read data, changing the value to H'FE.

Finally, the CPU writes this value (H'FE) back to PCR4 to complete the BCLR instruction.

As a result, bit 0 in PCR4 is cleared to 0, making P40 an input pin. In addition, bits 7 and 6 in

PCR4 are set to 1, making P47 and P46 output pins.

Example 2: BSET is executed to set bit 0 in the port 4 port data register (PDR4) under the

following conditions.

P47: Input pin, Low

P46: Input pin, High

P45 – P40: Output pins, Low

The intended purpose of this BSET instruction is to switch the output level at P40 from Low to

High.

Before Execution of BSET Instruction

Execution of BSET Instruction

BSET #0 @PDR4 ; set bit 0 in port 4 port data register

P47 P46 P45 P44 P43 P42 P41 P40

Input/output Input Input Output Output Output Output Output Output

Pin state Low High Low Low Low Low Low Low

PCR4 0 0 1 1 1 1 1 1

PDR4 1 0 0 0 0 0 0 0

18

After Execution of BSET Instruction

Explanation: To execute the BSET instruction, the CPU begins by reading port 4. Since P47

and P46 are input pins, the CPU reads the level of these pins directly, not the value in the port

data register. It reads P47 as Low (0) and P46 as High (1).

Since P45 to P40 are output pins, for these pins the CPU reads the value in PDR4. The CPU

therefore reads the value of port 4 as H'40, although the actual value in PDR4 is H'80.

Next the CPU sets bit 0 of the read data to 1, changing the value to H'41.

Finally, the CPU writes this value (H'41) back to PDR4 to complete the BSET instruction.

As a result, bit 0 in PDR4 is set to 0, switching pin P40 to High output. However, bits 7 and 6

in PDR4 change their values.

P47 P46 P45 P44 P43 P42 P41 P40

Input/output Input Input Output Output Output Output Output Output

Pin state Low High Low Low Low Low Low High

PCR4 0 0 1 1 1 1 1 1

PDR4 0 1 0 0 0 0 0 1

19

1.3.3 Basic Instruction Formats

(1) Format of Data Transfer Instructions

Figure 1-5 shows the format used for data transfer instructions.

Figure 1-5. Instruction Format of Data Transfer Instructions

15 8 7 0 MOV

op r r Rm→ Rn

r r Rn → @Rm, or @Rm → Rn

r r @(d:16, Rm) → Rn, or
disp. Rn → @(d:16, Rm)

r @Rm+ → Rn, or Rn → @–Rm

abs. @aa:8 → Rn, or Rn → @aa:8

r @aa:16 → Rn, or

abs. Rn → @aa:16

IMM #xx:8 → Rn

#xx:16 → Rn
IMM

r

m n

m

m

rn

n

n

n

n

rn

rn

m

15 8 7 0

op

15 8 7 0
op

15 8 7 0

op

15 8 7 0

op

15 8 7 0

op

15 8 7 0

op

15 8 7 0

op

15 0

op rn POP, PUSH

8 7

Notation

op: Operation field

rm, rn: Register field

disp: Displacement

abs.: Absolute address

IMM: Immediate data

20

(2) Format of Arithmetic, Logic Operation, and Shift Instructions

Figure 1-6 shows the format used for arithmetic, logic operation, and shift instructions.

Figure 1-6. Instruction Format of Arithmetic, Logic, and Shift Instructions

r ADD, SUB, CMP (Rm)

ADDX, SUBX (Rm)

r m n

15 8 7 0

op

r ADDS, SUBS, INC, DEC, DAA,

DAS, NEG, NOT

n

15 8 7 0

op

r IMM ADD, ADDX, SUBX, CMP

(#xx:8)

r IMM AND, OR, XOR (#xx:8)

n

n

15 8 7 0

op

r r AND, OR, XOR (Rm)m n

15 8 7 0

op

15 8 7 0

op

r SHAL, SHAR, SHLL, SHLR,

ROTL, ROTR, ROTXL, ROTXR
n

15 8 7 0

op

r MULXU, DIVXUn

15 0

op r m

8 7

Notation

op: Operation field

rm, rn: Register field

IMM: Immediate data

21

(3) Format of Bit Manipulation Instructions

Figure 1-7 shows the format used for bit manipulation instructions.

Figure 1-7. Instruction Format of Bit Manipulation Instructions

BSET, BCLR, BNOT, BTST

IMM r Operand: register direct (Rn)

Bit No.: immediate (#xx:3)

r r Operand: register direct (Rn)

r Operand: register indirect (@Rn)

r Bit No.: register direct (Rm)

abs. Operand: absolute (@aa:8)

IMM Bit No.: immediate (#xx:3)

abs. Operand: absolute (@aa:8)

r Bit No.: register direct (Rm)

BAND, BOR, BXOR, BLD, BST

IMM Operand: register direct (Rn)

Bit No.: immediate (#xx:3)

r Operand: register indirect (@Rn)

IMM Bit No.: immediate (#xx:3)

abs. Operand: absolute (@aa:8)

IMM Bit No.: immediate (#xx:3)

m

n

m

n

n

m

r n

n

15 8 7 0

op

15 8 7 0

op
Bit No.: register direct (Rm)

r Operand: register indirect (@Rn)

IMM Bit No.: immediate (#xx:3)

n

15 8 7 0

op

op

15 8 7 0
op

15 8 7 0
op

op

15 8 7 0
op

op

15 8 7 0

op

15 8 7 0

op
op

15 8 7 0
op
op

op

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0

Notation

op: Operation field

rm, rn: Register field

abs.: Absolute address

IMM: Immediate data

22

Figure 1-7. Instruction Format of Bit Manipulation Instructions (Cont.)

BIAND, BIOR, BIXOR, BILD, BIST

IMM Operand: register direct (Rn)

Bit No.: immediate (#xx:3)

r Operand: register indirect (@Rn)

IMM Bit No.: immediate (#xx:3)

abs. Operand: absolute (@aa:8)
IMM Bit No.: immediate (#xx:3)

rn

n

15 8 7 0
op

op

15 8 7 0

op
op

15 8 7 0

op

0 0 0 0
0 0 0 0

0 0 0 0

Notation

op: Operation field

rm, rn: Register field

abs.: Absolute address

IMM: Immediate data

23

(4) Format of Branching Instructions

Figure 1-8 shows the format used for branching instructions.

Figure 1-8. Instruction Format of Branching Instructions

cc disp. Bcc

r JMP (@Rm)

JMP (@aa:16)
abs.

abs. JMP (@@aa:8)

disp. BSR

JSR (@Rm)

JSR (@aa:16)
abs.

abs. JSR (@@aa:8)

RTS

rm

m

15 8 7 0

op

15 8 7 0

op

15 8 7 0

op

15 8 7 0

op

15 8 7 0

op

15 8 7 0

op

15 8 7 0

op

15 8 7 0

op

15 8 7 0

op

0 0 0 0

0 0 0 0

Notation

op: Operation field

cc: Condition field

rm: Register field

disp.: Displacement

abs.: Absolute address

24

(5) Format of System Control Instructions

Figure 1-9 shows the format used for system control instructions.

Figure 1-9. Instruction Format of System Control Instructions

(6) Format of Block Data Transfer Instruction

Figure 1-10 shows the format used for the block data transfer instruction.

Figure 1-10. Instruction Format of Block Data Transfer Instruction

15 8 7 0

RTE, SLEEP, NOP

r LDC, STC (Rn)

IMM ANDC, ORC, XORC, LDC

(#xx:8)

n

op

15 8 7 0

op

15 8 7 0

op

Notation

op: Operation field

rn: Register field

IMM: Immediate data

25

15 8 7 0

EEPMOV
op

op

1.3.4 Addressing Modes and Effective Address Calculation

Table 1-10 lists the eight addressing modes and their assembly-language notation. Each

instruction can use a specific subset of these addressing modes.

Arithmetic, logic, and shift instructions use register direct addressing (1). The ADD.B,

ADDX, SUBX, CMP.B, AND, OR, and XOR instructions can also use immediate addressing

(6).

The MOV instruction uses all the addressing modes except program-counter relative (7) and

memory indirect (8).

Bit manipulation instructions use register direct (1), register indirect (2), or absolute (5)

addressing to identify a byte operand and 3-bit immediate addressing to identify a bit within

the byte. The BSET, BCLR, BNOT, and BTST instructions can also use register direct

addressing (1) to identify the bit.

Table 1-10. Addressing Modes

(1) Register Direct—Rn: The register field of the instruction specifies an 8- or 16-bit general

register containing the operand. In most cases the general register is accessed as an 8-bit
register. Only the MOV.W, ADD.W, SUB.W, CMP.W, ADDS, SUBS, MULXU (8 bits × 8

bits), and DIVXU (16 bits ÷ 8 bits) instructions have 16-bit operands.

(2) Register indirect—@Rn: The register field of the instruction specifies a 16-bit general

register containing the address of the operand.

No. Mode Notation

(1) Register direct Rn

(2) Register indirect @Rn

(3) Register indirect with 16-bit displacement @(d:16, Rn)

(4) Register indirect with post-increment @Rn+

Register indirect with pre-decrement @–Rn

(5) Absolute address (8 or 16 bits) @aa:8, @aa:16

(6) Immediate (3-, 8-, or 16-bit data) #xx:3, #xx:8, #xx:16

(7) PC-relative (8-bit displacement) @(d:8, PC)

(8) Memory indirect @@aa:8

26

(3) Register Indirect with Displacement—@(d:16, Rn): This mode, which is used only in

MOV instructions, is similar to register indirect but the instruction has a second word (bytes 3

and 4) which is added to the contents of the specified general register to obtain the operand

address. For the MOV.W instruction, the resulting address must be even.

(4) Register Indirect with Post-Increment or Pre-Decrement—@Rn+ or @–Rn:

• Register indirect with post-increment—@Rn+

The @Rn+ mode is used with MOV instructions that load registers from memory.

It is similar to the register indirect mode, but the 16-bit general register specified in the

register field of the instruction is incremented after the operand is accessed. The size of

the increment is 1 or 2 depending on the size of the operand: 1 for a byte operand; 2 for a

word operand. For a word operand, the original contents of the 16-bit general register

must be even.

• Register indirect with pre-decrement—@–Rn

The @–Rn mode is used with MOV instructions that store register contents to memory.

It is similar to the register indirect mode, but the 16-bit general register specified in the

register field of the instruction is decremented before the operand is accessed. The size of

the decrement is 1 or 2 depending on the size of the operand: 1 for a byte operand; 2 for a

word operand. For a word operand, the original contents of the 16-bit general register

must be even.

(5) Absolute Address—@aa:8 or @aa:16: The instruction specifies the absolute address of

the operand in memory. The @aa:8 mode uses an 8-bit absolute address of the form H'FFxx.

The upper 8 bits are assumed to be 1, so the possible address range is H'FF00 to H'FFFF

(65280 to 65535). The MOV.B, MOV.W, JMP, and JSR instructions can use 16-bit absolute

addresses.

(6) Immediate—#xx:8 or #xx:16: The instruction contains an 8-bit operand in its second

byte, or a 16-bit operand in its third and fourth bytes. Only MOV.W instructions can contain

16-bit immediate values.

The ADDS and SUBS instructions implicitly contain the value 1 or 2 as immediate data.

Some bit manipulation instructions contain 3-bit immediate data (#xx:3) in the second or

fourth byte of the instruction, specifying a bit number.

27

(7) PC-Relative—@(d:8, PC): This mode is used to generate branch addresses in the Bcc

and BSR instructions. An 8-bit value in byte 2 of the instruction code is added as a sign-

extended value to the program counter contents. The result must be an even number. The

possible branching range is –126 to +128 bytes (–63 to +64 words) from the current address.

(8) Memory Indirect—@@aa:8: This mode can be used by the JMP and JSR instructions.

The second byte of the instruction code specifies an 8-bit absolute address from H'0000 to

H'00FF (0 to 255). Note that the initial part of the area from H'0000 to H'00FF contains the

exception vector table. See the applicable hardware manual for details. The word located at

this address contains the branch address.

If an odd address is specified as a branch destination or as the operand address of a MOV.W

instruction, the least significant bit is regarded as 0, causing word access to be performed at the

address preceding the specified address. See the memory data structure description in section

1.1.2, Data Structure.

Effective Address Calculation

Table 1-11 explains how the effective address is calculated in each addressing mode.

Table 1-11. Effective Address Calculation (1)

Addressing mode, Effective address Effective
No. instruction format calculation address

1 Register direct Rn None

2 Register indirect @Rn

Operand is at address
indicated by register

15 07 6 4 3

OP reg

16-bit register contents

15 0

15 0

15 8 7 0

OP reg m reg n

4 3

3 0 3 0

reg m reg n

Operands are contained in
registers m and n

28

Table 1-11. Effective Address Calculation (2)

Addressing mode, Effective address Effective
No. instruction format calculation address

3 Register indirect with displacement
@(d:16, Rn)

4 Register indirect with pre-decrement
@-Rn

Register indirect with post-increment
@Rn+

5 Absolute address None
@aa:8

Absolute address
@aa:16

16-bit register contents

15 0

15 0

16-bit displacement

+
15 0

disp

Operand address is sum
of register contents and
displacement

OP reg

7 6 4 3

15 07 6 4 3

OP reg

16-bit register contents

15 0

-

1 or 2*

15 0

Register is decremented
before operand access

15 07 6 4 3

OP reg

16-bit register contents

15 0

+

1 or 2*

15 0

Register is incremented
after operand access

Register is incremented
after operand access

OP

15 8 7 0

abs

H'FF

15 8 7 0

Operand address is in range
from H'FF00 to H'FFFF

15 0

OP

15 0

Any address
abs

29

* 1 for a byte operand,
2 for a word operand

Table 1-11. Effective Address Calculation (3)

Addressing mode, Effective address Effective
No. instruction format calculation address

6 Immediate #xx:8. None

Immediate #xx:16 None

7 PC-relative @(d:8, PC)

8 Memory indirect @@aa:8

reg, regm, regn: General register
op: Operation field
disp: Displacement
abs: Absolute address
IMM: Immediate data

PC contents

15 0

15 0

Destination address

+

OP

15 8 7 0

disp

dispSign extension

OP

15 8 7 0

abs

H'00

15 8 7 0

16-bit memory contents

15 0 15 0

Destination address

OP

15 8 7 0

IMM Operand is 1-byte
immediate data

15 0

OP

IMM
Operand is 2-byte
immediate data

30

Section 2. Instruction Set

2.1 Explanation Format

Section 2 gives full descriptions of all the H8/300L Series instructions, presenting them in

alphabetic order. Each instruction is explained in a table like the following:

ADD (add binary) (byte) ADD

Description

This instruction adds the source operand to the contents of an 8-bit general register and places

the result in the general register .

Instruction Formats and Number of Execution States

Immediate ADD.B #xx:8, Rd 8 rd IMM 2

Register direct ADD.B Rs, Rd 0 8 rs rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

Operation
Rd + (EAs) → Rd

Assembly-Language Format
ADD.B <EAs>, Rd

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Set to 1 when there is a carry from bit 3;

otherwise cleared to 0.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Set to 1 when an overflow occurs;

otherwise cleared to 0.

C: Set to 1 when there is a carry from bit 7;

otherwise cleared to 0.

I H N Z V C

— — ↕ — ↕ ↕ ↕ ↕

31

The parts of the table are explained below.

Name: The full and mnemonic names of the instruction are given at the top of the page.

Operation: The instruction is described in symbolic notation. The following symbols are used.

Symbol Meaning

Rd General register (destination)*

Rs General register (source)*

Rn General register*

<EAd> Destination operand

<EAs> Source operand

PC Program counter

SP Stack pointer

CCR Condition code register

N N (negative) flag of CCR

Z Z (zero) flag of CCR

V V (overflow) flag of CCR

C C (carry) flag of CCR

disp Displacement

→ Transfer from left operand to right operand; or state transition from left state to

right state.

+ Addition

– Subtraction

× Multiplication

÷ Division

∧ AND logical

∨ OR logical

⊕ Exclusive OR logical

¬ Inverse logic (logical complement)

() < > Contents of operand effective address

* General registers are either 8 bits (R0H/R0L - R7H/R7L) or 16 bits (R0 - R7).

Assembly-Language Format:

The assembly-language coding

of the instruction is given. An

example is:

ADD. B <EAs>, Rd

Mnemonic Size Source Destination

32

The operand size is indicated by the letter B (byte) or W (word). Some instructions have

restrictions on the size of operands they handle.

The abbreviation EAs or EAd (effective address of source or destination) is used for operands

that permit more than one addressing mode. The H8/300L CPU supports the following eight

addressing modes. The method of calculating effective addresses is explained in section 1.3.4,

Addressing Modes and Effective Address Calculation, above.

Notation Addressing Mode

Rn Register direct

@Rn Register indirect

@(d:16, Rn) Register indirect with displacement

@Rn+/@ –Rn Register indirect with post-increment/pre-decrement

@aa:8/@aa:16 Absolute address

#xx:8/#xx:16 Immediate

@(d:8, PC) Program-counter relative

@@aa:8 Memory indirect

Operand size: Word or byte. Byte size is indicated for bit-manipulation instructions because

these instructions access a full byte in order to read or write one bit.

Condition code: The effect of instruction execution on the flag bits in CCR is indicated. The

following notation is used:

Symbol Meaning
↕ The flag is altered according to the result of the instruction.

0 The flag is cleared to "0."

— The flag is not changed.

* Not fixed; the flag is left in an unpredictable state.

Description: The action of the instruction is described in detail.

33

Instruction Formats: Each possible format of the instruction is shown explicitly, indicating

the addressing mode, the object code, and the number of states required for execution when the

instruction and its operands are located in on-chip memory. The following symbols are used:

Symbol Meaning

Imm. Immediate data (3, 8, or 16 bits)

abs. An absolute address (8 bits or 16 bits)

disp. Displacement (8 bits or 16 bits)

rs, rd, rn General register number (3 bits or 4 bits) The s, d, and n correspond to the letters

in the operand notation.

Register Designation:16-bit general registers are indicated by a 3-bit rs, rd, or rn value. 8-bit

registers are indicated by a 4-bit rs, rd, or rn value. Address registers used in the @Rn,

@(disp:16, Rn), @Rn+, and @–Rn addressing modes are always 16-bit registers. Data

registers are 8-bit or 16-bit registers depending on the size of the operand. For 8-bit registers,

the lower three bits of rs, rd, or rn give the register number. The most significant bit is 1 if the

lower byte of the register is used, or 0 if the upper byte is used. Registers are thus indicated as

follows:

16-Bit register

r s, rd, or rn Register

0 0 0 R0

0 0 1 R1

: :

1 1 1 R7

Bit Data Access: Bit data are accessed

as the n-th bit of a byte operand in a general register or memory. The bit number is given by 3-

bit immediate data, or by a value in a general register. When a bit number is specified in a

general register, only the lower three bits of the register are significant. Two examples are

shown below.

8-Bit registers

rs, rd, or rn Register

0 0 0 0 R0H

0 0 0 1 R1H

: :

0 1 1 1 R7H

1 0 0 0 R0L

1 0 0 1 R1L

: :

1 1 1 1 R7L

34

BSET R1L, R2H

BLD #5, @H'FF02:8

The addressing mode and operand size apply to the register or memory byte containing the bit.

Number of States Required for Execution:The number of states indicated is the number

required when the instruction and any memory operands are located in on-chip ROM or RAM.

If the instruction or an operand is located in external memory or the on-chip register field,

additional states are required for each access. See section 2.5, Number of Execution States.

1 0 1 0 0 1 1 0H'FF02

Loaded to C (carry)
flag in CCR

C

Bit No. 5

R1L don't care 0 1 1

R2H 0 1 1 0 0 1 0 1

Bit number = 3

Bit 3 is set to 1

35

2.2 Instructions

2.2.1 (1) ADD (add binary) (byte) ADD

Description

This instruction adds the source operand to the contents of an 8-bit general register and places

the result in the general register .

Instruction Formats and Number of Execution States

Immediate ADD.B #xx:8, Rd 8 rd IMM 2

Register direct ADD.B Rs, Rd 0 8 rs rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

Operation
Rd + (EAs) → Rd

Assembly-Language Format
ADD.B <EAs>, Rd

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Set to 1 when there is a carry from bit 3;

otherwise cleared to 0.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Set to 1 when an overflow occurs;

otherwise cleared to 0.

C: Set to 1 when there is a carry from bit 7;

otherwise cleared to 0.

I H N Z V C

— — ↕ — ↕ ↕ ↕ ↕

36

2.2.1 (2) ADD (add binary) (word) ADD

Description

This instruction adds word data in two general registers and places the result in the second

general register.

Instruction Formats and Number of Execution States

Register direct ADD.W Rs, Rd 0 9 0 rs 0 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

Operation
Rd + Rs → Rd

Assembly-Language Format
ADD.W Rs, Rd

Operand Size

Word

Condition Code

I: Previous value remains unchanged.

H: Set to 1 when there is a carry from bit

11; otherwise cleared to 0.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Set to 1 when an overflow occurs;

otherwise cleared to 0.

C: Set to 1 when there is a carry from bit

15; otherwise cleared to 0.

I H N Z V C

— — ↕ — ↕ ↕ ↕ ↕

37

2.2.2 ADDS (add with sign extension) ADDS

Description

This instruction adds the immediate value 1 or 2 to word data in a general register. Unlike the

ADD instruction, it does not affect the condition code flags.

Instruction Formats and Number of Execution States

Note: This instruction cannot access byte-size data.

Operation
Rd + 1 → Rd

Rd + 2 → Rd

Assembly-Language Format
ADDS #1, Rd

ADDS #2, Rd

Operand Size

Word

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

I H N Z V C

— — — — — — — —

Register direct ADDS #1, Rd 0 B 0 0 rd 2

Register direct ADDS #2, Rd 0 B 8 0 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

38

2.2.3 ADDX (add with extend carry) ADDX

Description

This instruction adds the source operand and carry flag to the contents of an 8-bit general

register and places the result in the general register.

Instruction Formats and Number of Execution States

Operation
Rd + (EAs) + C → Rd

Assembly-Language Format
ADDX <EAs>, Rd

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Set to 1 if there is a carry from bit 3;

otherwise cleared to 0.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Set to 1 when an overflow occurs;

otherwise cleared to 0.

C: Set to 1 when there is a carry from bit 7;

otherwise cleared to 0.

I H N Z V C

— — ↕ — ↕ ↕ ↕ ↕

Immediate ADDX #xx:8, Rd 9 rd IMM 2

Register direct ADDX Rs, Rd 0 E rs rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

39

2.2.4 AND (AND logical) AND

Description

This instruction ANDs the source operand with the contents of an 8-bit general register and

places the result in the general register.

Instruction Formats and Number of Execution States

Immediate AND #xx:8, Rd E rd IMM 2

Register direct AND Rs, Rd 1 6 rs rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

Operation
Rd ∧ (EAs) → Rd

Assembly-Language Format
AND <EAs>, Rd

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Previous value remains unchanged.

I H N Z V C

— — — — ↕ ↕ 0 —

40

2.2.5 ANDC (AND control register) ANDC

Description

This instruction ANDs the condition code register (CCR) with immediate data and places the

result in the condition code register. Bits 6 and 4 are ANDed as well as the flag bits.

No interrupt requests are accepted immediately after this instruction. All interrupts, including

the nonmaskable interrupt (NMI), are deferred until after the next instruction.

Instruction Formats and Number of Execution States

Immediate ANDC #xx:8, CCR 0 6 IMM 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

Operation
CCR ∧ #IMM→ CCR

Assembly-Language Format
ANDC #xx:8, CCR

Operand Size

Byte

Condition Code

I: ANDed with bit 7 of the immediate data.

H: ANDed with bit 5 of the immediate data.

N: ANDed with bit 3 of the immediate data.

Z: ANDed with bit 2 of the immediate data.

V: ANDed with bit 1 of the immediate data.

C: ANDed with bit 0 of the immediate data.

I H N Z V C

↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕

41

2.2.6 BAND (bit AND) BAND

Description

This instruction ANDs a specified bit with the carry flag and places the result in the carry flag.

The specified bit can be located in a general register or memory. The bit number is specified

by 3-bit immediate data. The operation is shown schematically below.

The value of the specified bit is not changed.

Instruction Formats and Number of Execution States

* Register direct, register indirect, or absolute addressing.

Register direct BAND #xx:3, Rd 7 6 0 IMM rd 2

Register indirect BAND #xx:3,@Rd 7 C 0 rd 0 7 6 0 IMM 0 6

Absolute address BAND #xx:3,@aa:8 7 E abs 7 6 0 IMM 0 6

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

Operation
C ∧ (<Bit No.> of <EAd>) → C

Assembly-Language Format
BAND #xx:3, <EAd>

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: ANDed with the specified bit.

I H N Z V C

— — — — — — — ↕

C ∧ C

Bit No. 7 0#xx:3

Byte data in register or memory<EAd>*→

42

2.2.7 Bcc (branch conditionally) Bcc

Operation

If cc then

PC + d:8 → PC

else next;

Assembly-Language Format

(For mnemonics, see the table on the

next page.)

Operand Size

—

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

I H N Z V C

— — — — — — — —

∧Bcc
Condition code field

d:8

43

Bcc (branch conditionally) Bcc

Description

If the specified condition is false, this instruction does nothing; the next instruction is executed.

If the specified condition is true, a signed displacement is added to the address of the next

instruction and execution branches to the resulting address.

The displacement is a signed 8-bit value which must be even. The branch destination address

can be located in the range –126 to +128 bytes from the address of the Bcc instruction.

The applicable conditions and their mnemonics are given below.

BT, BF, BHS, and BLO are synonyms for BRA, BRN, BCC, and BCS, respectively.

Mnemonic cc Field Description Condition Meaning

BRA (BT) 0 0 0 0 Always (True) Always true

BRN (BF) 0 0 0 1 Never (False) Never

BHI 0 0 1 0 High C ∨ Z = 0 X > Y (Unsigned)

BLS 0 0 1 1 Low or Same C ∨ Z = 1 X ≤ Y (Unsigned)

BCC (BHS) 0 1 0 0 Carry Clear C = 0 X ≥ Y (Unsigned)
(High or Same)

BCS (BLO) 0 1 0 1 Carry Set (Low) C = 1 X < Y (Unsigned)

BNE 0 1 1 0 Not Equal Z = 0 X ≠ Y (Signed or
unsigned)

BEQ 0 1 1 1 Equal Z = 1 X = Y (Signed or
unsigned)

BVC 1 0 0 0 Overflow Clear V = 0

BVS 1 0 0 1 Overflow Set V = 1

BPL 1 0 1 0 Plus N = 0

BMI 1 0 1 1 Minus N = 1

BGE 1 1 0 0 Greater or Equal N ⊕ V = 0 X ≥ Y (Signed)

BLT 1 1 0 1 Less Than N ⊕ V = 1 X < Y (Signed)

BGT 1 1 1 0 Greater Than Z ∨ (N ⊕ V) = 0 X > Y (Signed)

BLE 1 1 1 1 Less or Equal Z ∨ (N ⊕ V) = 1 X ≤ Y (Signed)

44

Bcc (branch conditionally) Bcc

Instruction Formats and Number of Execution States

* The branch address must be even.

1st byte 2nd byte 3rd byte 4th byte
Mnem. Operands

Instruction code No . ofAdressing
mode states

BRA (BT)

BRN (BF)

PC relative

PC relative

PC relative

PC relative

PC relative

PC relative

PC relative

PC relative

PC relative

PC relative

PC relative

PC relative

4

4

4

4

4

4

PC relative

PC relative

PC relative

PC relative

4

4

4

4

d:8

d:8

d:8

d:8

d:8

d:8

d:8

d:8

d:8

d:8

d:8

d:8

d:8

d:8

d:8

d:8

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

0

1

2

3

4

5

6

8

7

9

A

B

C

D

E

F

disp.

disp.

disp.

disp.

disp.

disp.

disp.

disp.

disp.

disp.

disp.

disp.

disp.

disp.

disp.

disp.

BHI

BLS

BCC (BHS)

BCS (BLO)

BNE

BEQ

BVC

BVS

BPL

BMI

BGE

BLT

BGT

BLE

45

2.2.8 BCLR (bit clear) BCLR

Description

This instruction clears a specified bit in the destination operand to 0. The bit number can be

specified by 3-bit immediate data, or by the lower three bits of an 8-bit general register. The

destination operand can be located in a general register or memory.

The specified bit is not tested before being cleared. The condition code flags are not altered.

* Register direct, register indirect, or absolute addressing.

#xx:3 or Rn

Bit No. 7 0

0

Byte data in register or memory<EAd>*→

Operation
0 → (<Bit No.> of <EAd>)

Assembly-Language Format

BCLR #xx:3, <EAd>

BCLR Rn, <EAd>

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

46

I H N Z V C

— — — — — — — —

BCLR (bit clear) BCLR

Instruction Formats and Number of Execution States

Register direct BCLR #xx:3, Rd 7 2 0 IMM rd 2

Register indirect BCLR #xx:3,@Rd 7 D 0 rd 0 7 2 0 IMM 0 8

Absolute address BCLR #xx:3,@aa:8 7 F abs 7 2 0 IMM 0 8

Register direct BCLR Rn, Rd 6 2 rn rd 2

Register indirect BCLR Rn, @Rd 7 D 0 rd 0 6 2 rn 0 8

Absolute address BCLR Rn, @aa:8 7 F abs 6 2 rn 0 8

Addressing
mode Mnem. Operands

1st byte

Instruction code No. of
states

2nd byte 3rd byte 4th byte

47

2.2.9 BIAND (bit invert AND) BIAND

Description

This instruction ANDs the inverse of a specified bit with the carry flag and places the result in

the carry flag. The specified bit can be located in a general register or memory. The bit

number is specified by 3-bit immediate data. The operation is shown schematically below.

The value of the specified bit is not changed.

Instruction Formats and Number of Execution States

* Register direct, register indirect, or absolute addressing.

I H N Z V C

— — — — — — — ↕

Operation
C ∧ [¬ (<Bit No.> of <EAd>)]→ C

Assembly-Language Format
BIAND #xx:3, <EAd>

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: ANDed with the inverse of the specified

bit.

I H N Z V C

— — — — — — — ↕

Register direct BIAND #xx:3, Rd 7 6 1 IMM rd 2

Register indirect BIAND #xx:3,@Rd 7 C 0 rd 0 7 6 1 IMM 0 6

Absolute address BIAND #xx:3,@aa:8 7 E abs 7 6 1 IMM 0 6

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

Bit No.

Byte data in register or memory<EAd>*→

7 0

C ∧ C

#xx:3

Invert

48

2.2.10 BILD (bit invert load) BILD

Description

This instruction loads the inverse of a specified bit into the carry flag. The specified bit can be

located in a general register or memory. The bit number is specified by 3-bit immediate data.

The operation is shown schematically below.

The value of the specified bit is not changed.

Instruction Formats and Number of Execution States

* Register direct, register indirect, or absolute addressing.

Operation
¬ (<Bit No.> of <EAd>)→ C

Assembly-Language Format
BILD #xx:3, <EAd>

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Loaded with the inverse of the specified

bit.

I H N Z V C

— — — — — — — ↕

Bit No. 7 0

C

#xx:3

Invert

Byte data in register or memory<EAd>*→

Register direct BILD #xx:3, Rd 7 7 1 IMM rd 2

Register indirect BILD #xx:3,@Rd 7 C 0 rd 0 7 7 1 IMM 0 6

Absolute address BILD #xx:3,@aa:8 7 E abs 7 7 1 IMM 0 6

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

49

2.2.11 BIOR (bit invert inclusive OR) BIOR

Description

This instruction ORs the inverse of a specified bit with the carry flag and places the result in

the carry flag. The specified bit can be located in a general register or memory. The bit

number is specified by 3-bit immediate data. The operation is shown schematically below.

The value of the specified bit is not changed.

Instruction Formats and Number of Execution States

* Register direct, register indirect, or absolute addressing.

#xx:3
Bit No.

Byte data in register or memory<EAd>*→

7 0

C C

Invert

∧

Register direct BIOR #xx:3, Rd 7 4 1 IMM rd 2

Register indirect BIOR #xx:3,@Rd 7 C 0 rd 0 7 4 1 IMM 0 6

Absolute address BIOR #xx:3,@aa:8 7 E abs 7 4 1 IMM 0 6

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

Operation
C ∨ [¬ (<Bit No.> of <EAd>)] → C

Assembly-Language Format
BIOR #xx:3, <EAd>

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: ORed with the inverse of the specified

bit.

I H N Z V C

— — — — — — — ↕

50

2.2.12 BIST (bit invert store) BIST

Description

This instruction stores the inverse of the carry flag to a specified bit location in a general

register or memory. The bit number is specified by 3-bit immediate data. The operation is

shown schematically below.

The values of the unspecified bits are not changed.

Instruction Formats and Number of Execution States

* Register direct, register indirect, or absolute addressing.

Bit No. 7 0

C

#xx:3

Invert

Byte data in register or memory<EAd>*→

Operation
¬ C → (<Bit No.> of <EAd>)

Assembly-Language Format
BIST #xx:3, <EAd>

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

I H N Z V C

— — — — — — — —

Register direct BIST #xx:3, Rd 6 7 1 IMM rd 2

Register indirect BIST #xx:3,@Rd 7 D 0 rd 0 6 7 1 IMM 0 8

Absolute address BIST #xx:3,@aa:8 7 F abs 6 7 1 IMM 0 8

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

51

2.2.13 BIXOR (bit invert exclusive OR) BIXOR

Description

This instruction exclusive-ORs the inverse of a specified bit with the carry flag and places the

result in the carry flag. The specified bit can be located in a general register or memory. The

bit number is specified by 3-bit immediate data. The operation is shown schematically below.

The value of the specified bit is not changed.

Instruction Formats and Number of Execution States

* Register direct, register indirect, or absolute addressing.

⊕

Bit No.

Byte data in register or memory<EAd>*→

7 0

C C

#xx:3

Invert

Register direct BIXOR #xx:3, Rd 7 5 1 IMM rd 2

Register indirect BIXOR #xx:3,@Rd 7 C 0 rd 0 7 5 1 IMM 0 6

Absolute address BIXOR #xx:3,@aa:8 7 E abs 7 5 1 IMM 0 6

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

Operation
C ⊕ [¬ (<Bit No.> of <EAd>)] → C

Assembly-Language Format
BIXOR #xx:3, <EAd>

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Exclusive-ORed with the inverse of the

specified bit.

I H N Z V C

— — — — — — — ↕

52

2.2.14 BLD (bit load) BLD

Description

This instruction loads a specified bit into the carry flag. The specified bit can be located in a

general register or memory. The bit number is specified by 3-bit immediate data. The

operation is shown schematically below.

The value of the specified bit is not changed.

Instruction Formats and Number of Execution States

* Register direct, register indirect, or absolute addressing.

Bit No. 7 0

C

#xx:3

Byte data in register or memory<EAd>*→

Operation
(<Bit No.> of <EAd>)→ C

Assembly-Language Format
BLD #xx:3, <EAd>

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Loaded with the specified bit.

I H N Z V C

— — — — — — — ↕

Register direct BLD #xx:3, Rd 7 7 0 IMM rd 2

Register indirect BLD #xx:3,@Rd 7 C 0 rd 0 7 7 0 IMM 0 6

Absolute address BLD #xx:3,@aa:8 7 E abs 7 7 0 IMM 0 6

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

53

2.2.15 BNOT (bit NOT) BNOT

Description

This instruction inverts a specified bit in a general register or memory location. The bit

number is specified by 3-bit immediate data, or by the lower three-bits of a general register.

The operation is shown schematically below.

The bit is not tested before being inverted. The condition code flags are not altered.

* Register direct, register indirect, or absolute addressing.

#xx:3 or Rn
Bit No. 7 0

Invert

Byte data in register or memory<EAd>*→

Operation

¬ (<Bit No.> of <EAd>)

→ (<Bit No.> of <EAd>)

Assembly-Language Format
BNOT #xx:3, <EAd>

BNOT Rn, <EAd>

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

I H N Z V C

— — — — — — — —

54

BNOT (bit NOT) BNOT

Instruction Formats and Number of Execution States

Register direct BNOT #xx:3, Rd 7 1 0 IMM rd 2

Register indirect BNOT #xx:3,@Rd 7 D 0 rd 0 7 1 0 IMM 0 8

Absolute address BNOT #xx:3,@aa:8 7 F abs 7 1 0 IMM 0 8

Register direct BNOT Rn, Rd 6 1 rn rd 2

Register indirect BNOT Rn, @Rd 7 D 0 rd 0 6 1 rn 0 8

Absolute address BNOT Rn, @aa:8 7 F abs 6 1 rn 0 8

Addressing
mode Mnem. Operands

1st byte

Instruction code No. of
states

2nd byte 3rd byte 4th byte

55

2.2.16 BOR (bit inclusive OR) BOR

Description

This instruction ORs a specified bit with the carry flag and places the result in the carry flag.

The specified bit can be located in a general register or memory. The bit number is specified

by 3-bit immediate data. The operation is shown schematically below.

The value of the specified bit is not changed.

Instruction Formats and Number of Execution States

* Register direct, register indirect, or absolute addressing.

Operation
C ∨ (<Bit No.> of <EAd>) → C

Assembly-Language Format
BOR #xx:3, <EAd>

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: ORed with the specified bit.

I H N Z V C

— — — — — — — ↕

C C

Bit No. 7 0#xx:3

Byte data in register or memory<EAd>*→

∨

Register direct BOR #xx:3, Rd 7 4 0 IMM rd 2

Register indirect BOR #xx:3,@Rd 7 C 0 rd 0 7 4 0 IMM 0 6

Absolute address BOR #xx:3,@aa:8 7 E abs 7 4 0 IMM 0 6

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

56

2.2.17 BSET (bit set) BSET

Description

This instruction sets a specified bit in the destination operand to 1. The bit number can be

specified by 3-bit immediate data, or by the lower three-bits of an 8-bit general register. The

destination operand can be located in a general register or memory.

The specified bit is not tested before being cleared. The condition code flags are not altered.

* Register direct, register indirect, or absolute addressing.

Operation
1 → (<Bit No.> of <EAd>)

Assembly-Language Format
BSET #xx:3,<EAd>

BSET Rn,<EAd>

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

I H N Z V C

— — — — — — — —

1

#xx:3 or Rn

Bit No. 7 0

Byte data in register or memory<EAd>*→

57

BSET (bit set) BSET

Instruction Formats and Number of Execution States

58

Register direct BSET #xx:3, Rd 7 0 0 IMM rd 2

Register indirect BSET #xx:3,@Rd 7 D 0 rd 0 7 0 0 IMM 0 8

Absolute address BSET #xx:3,@aa:8 7 F abs 7 0 0 IMM 0 8

Register direct BSET Rn, Rd 6 0 rn rd 2

Register indirect BSET Rn, @Rd 7 D 0 rd 0 6 0 rn 0 8

Absolute address BSET Rn, @aa:8 7 F abs 6 0 rn 0 8

Addressing
mode Mnem. Operands

1st byte

Instruction code No. of
states

2nd byte 3rd byte 4th byte

2.2.18 BSR (branch to subroutine) BSR

Description

This instruction pushes the program counter (PC) value onto the stack, then adds a specified

displacement to the program counter value and branches to the resulting address. The program

counter value used is the address of the instruction following the BSR instruction.

The displacement is a signed 8-bit value which must be even. The possible branching range is

–126 to +128 bytes from the address of the BSR instruction.

Instruction Formats and Number of Execution States

Operation
PC → @–SP

PC + d:8 → PC

Assembly-Language Format
BSR d:8

Operand Size

—

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

I H N Z V C

— — — — — — — —

PC-relative BSR d:8 5 5 disp 6

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

59

2.2.19 BST (bit store) BST

Description

This instruction stores the carry flag to a specified flag location in a general register or

memory. The bit number is specified by 3-bit immediate data. The operation is shown

schematically below.

Instruction Formats and Number of Execution States

* Register direct, register indirect, or absolute addressing.

Operation
C → (<Bit No.> of <EAd>)

Assembly-Language Format
BST #xx:3, <EAd>

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

I H N Z V C

— — — — — — — —

Bit No. 7 0

C

#xx:3

Byte data in register or memory<EAd>*→

Register direct BST #xx:3, Rd 6 7 0 IMM rd 2

Register indirect BST #xx:3,@Rd 7 D 0 rd 0 6 7 0 IMM 0 8

Absolute address BST #xx:3,@aa:8 7 F abs 6 7 0 IMM 0 8

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

60

2.2.20 BTST (bit test) BTST

Description

This instruction tests a specified bit in a general register or memory location and sets or clears

the Zero flag accordingly. The bit number can be specified by 3-bit immediate data, or by the

lower three bits of an 8-bit general register. The operation is shown schematically below.

The value of the specified bit is not altered.

* Register direct, register indirect, or absolute addressing.

Operation
¬ (<Bit No.> of <EAd>) → Z

Assembly-Language Format
BTST #xx:3, <EAd>

BTST Rn, <EAd>

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Set to 1 when the specified bit is zero;

otherwise cleared to 0.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

I H N Z V C

— — — — — ↕ — —

#xx:3 or Rn
Bit No. 7 0

Test

Byte data in register or memory<EAd>*→

61

BTST (bit test) BTST

Instruction Formats and Number of Execution States

Register direct BTST #xx:3, Rd 7 3 0 IMM rd 2

Register indirect BTST #xx:3,@Rd 7 C 0 rd 0 7 3 0 IMM 0 6

Absolute address BTST #xx:3,@aa:8 7 E abs 7 3 0 IMM 0 6

Register direct BTST Rn, Rd 6 3 rn rd 2

Register indirect BTST Rn, @Rd 7 C 0 rd 0 6 3 rn 0 6

Absolute address BTST Rn, @aa:8 7 E abs 6 3 rn 0 6

Addressing
mode Mnem. Operands

1st byte

Instruction code No. of
states

2nd byte 3rd byte 4th byte

62

2.2.21 BXOR (bit exclusive OR) BXOR

Description

This instruction exclusive-ORs a specified bit with the carry flag and places the result in the

carry flag. The specified bit can be located in a general register or memory. The bit number is

specified by 3-bit immediate data. The operation is shown schematically below.

The value of the specified bit is not changed.

Instruction Formats and Number of Execution States

* Register direct, register indirect, or absolute addressing.

Operation
C ⊕ (<Bit No.> of <EAd>) → C

Assembly-Language Format
BXOR #xx:3, <EAd>

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Exclusive-ORed with the specified bit.

I H N Z V C

— — — — — — — ↕

Bit No.

Byte data in register or memory<EAd>*→

7 0

⊕C C

#xx:3

Register direct BXOR #xx:3, Rd 7 5 0 IMM rd 2

Register indirect BXOR #xx:3,@Rd 7 C 0 rd 0 7 5 0 IMM 0 6

Absolute address BXOR #xx:3,@aa:8 7 E abs 7 5 0 IMM 0 6

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

63

2.2.22 (1) CMP (compare) (byte) CMP

Description

This instruction subtracts an 8-bit source register or immediate data from an 8-bit destination

register and sets the condition code flags according to the result. The destination register is not

altered.

Instruction Formats and Number of Execution States

Immediate CMP.B #xx:8,Rd A rd IMM 2

Register direct CMP.B Rs, Rd 1 C rs rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

64

Operation

Rd – (EAs); set condition code

Assembly-Language Format
CMP.B <EAs>, Rd

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Set to 1 when there is a borrow from bit

3; otherwise cleared to 0.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Set to 1 when an overflow occurs;

otherwise cleared to 0.

C: Set to 1 when there is a borrow from bit

7; otherwise cleared to 0.

I H N Z V C

— — ↕ — ↕ ↕ ↕ ↕

2.2.22 (2) CMP (compare) (word) CMP

Description

This instruction subtracts a source register from a destination register and sets the condition

code flags according to the result. The destination register is not altered.

Instruction Formats and Number of Execution States

Register direct CMP.W Rs, Rd 1 D 0 rs 0 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

Operation

Rd – Rs; set condition code

Assembly-Language Format
CMP.W Rs, Rd

Operand Size

Word

Condition Code

I: Previous value remains unchanged.

H: Set to 1 when there is a borrow from bit

11; otherwise cleared to 0.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Set to 1 when an overflow occurs;

otherwise cleared to 0.

C: Set to 1 when there is a borrow from bit

15; otherwise cleared to 0.

I H N Z V C

— — ↕ — ↕ ↕ ↕ ↕

65

2.2.23 DAA (decimal adjust add) DAA

Description

When the result of an addition operation performed by the ADD.B or ADDX instruction on 4-

bit BCD data is contained in an 8-bit general register and the carry and half-carry flags, the

DAA instruction adjusts the result by adding H'00, H'06, H'60, or H'66 to the general register

according to the table below.

Valid results are not assured if this instruction is executed under conditions other than those

stated above.

Operation
Rd (decimal adjust) → Rd

Assembly-Language Format
DAA Rd

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Unpredictable.

N: Set to 1 when the adjusted result is

negative; otherwise cleared to 0.

Z: Set to 1 when the adjusted result is zero;

otherwise cleared to 0.

V: Unpredictable.

C: Set to 1 when there is a carry from bit 7;

otherwise left unchanged.

I H N Z V C

— — * — ↕ ↕ * ↕

0 0 – 9 0 0 – 9 H'00 0
0 0 – 8 0 A – F H'06 0
0 0 – 9 1 0 – 3 H'06 0
0 A – F 0 0 – 9 H'60 1
0 9 – F 0 A – F H'66 1
0 A – F 1 0 – 3 H'66 1
1 0 – 2 0 0 – 9 H'60 1
1 0 – 2 0 A – F H'66 1
1 0 – 3 1 0 – 3 H'66 1

C flag Upper nibble H flag Lower nibble

Value
added

Resulting
C flag

Status before adjustment

66

DAA (decimal adjust add) DAA

Instruction Formats and Number of Execution States

Register direct DAA Rd 0 F 0 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

67

2.2.24 DAS (decimal adjust subtract) DAS

Description

When the result of a subtraction operation performed by the SUB.B, SUBX, or NEG

instruction on 4-bit BCD data is contained in an 8-bit general register and the carry and half-

carry flags, the DAA instruction adjusts the result by adding H'00, H'FA, H'A0, or H'9A to the

general register according to the table below.

Valid results are not assured if this instruction is executed under conditions other than those

stated above.

Operation
Rd (decimal adjust) → Rd

Assembly-Language Format
DAS Rd

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Unpredictable.

N: Set to 1 when the adjusted result is

negative; otherwise cleared to 0.

Z: Set to 1 when the adjusted result is zero;

otherwise cleared to 0.

V: Unpredictable.

C: Previous value remains unchanged.

I H N Z V C

— — * — ↕ ↕ * —

0 0 – 9 0 0 – 9 H'00 0
0 0 – 8 1 6 – F H'FA 0
1 7 – F 0 0 – 9 H'A0 1
1 6 – F 1 6 – F H'9A 1

C flag Upper nibble H flag Lower nibble

Value
added

Resulting
C flag

Status before adjustment

68

DAS (decimal adjust subtract) DAS

Instruction Formats and Number of Execution States

Register direct DAS Rd 1 F 0 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

69

2.2.25 DEC (decrement) DEC

Description

This instruction decrements an 8-bit general register and places the result in the general

register.

Instruction Formats and Number of Execution States

Operation
Rd – 1 → Rd

Assembly-Language Format
DEC Rd

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Set to 1 when an overflow occurs (the

previous value in Rd was H'80);

otherwise cleared to 0.

C: Previous value remains unchanged.

I H N Z V C

— — — — ↕ ↕ ↕ —

70

Register direct DEC Rd 1 A 0 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

2.2.26 DIVXU (divide extend as unsigned) DIVXU

Description

This instruction divides a 16-bit general register by an 8-bit general register and places the

result in the 16-bit general register. The quotient is placed in the lower byte. The remainder is

placed in the upper byte. The operation is shown schematically below.

Valid results (Rd, N, Z) are not assured if division by zero is attempted or an overflow occurs.

Division by zero is indicated in the Zero flag. Overflow can be avoided by the coding shown

on the next page.

Instruction Formats and Number of Execution States

Operation
Rd ÷ Rs → Rd

Assembly-Language Format
DIVXU Rs, Rd

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the divisor is negative;

otherwise cleared to 0.

Z: Cleared to 0 when divisor ≠ 0;

otherwise not guaranteed.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

I H N Z V C

— — — — ↕ ↕ — —

Rd Rs (RdH)

Dividend ÷ Divisor → Remainder Quotient

16 bits 8 bits 8 bits 8 bits

(RdL)

Rd

Register direct DIVXU Rs, Rd 5 1 rs 0 rd 14

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

71

DIVXU (divide extend as unsigned) DIVXU

Note: DIVXU Overflow
Since the DIVXU instruction performs 16-bit ÷ 8-bit → 8-bit division, an overflow will occur

if the divisor byte is equal to or less than the upper byte of the dividend. For example, H'FFFF

÷ H'01 → H'FFFF causes an overflow. (The quotient has more than 8 bits.)

Overflows can be avoided by using a subprogram like the following. A work register is

required.

R0L Divisor

R1 Dividend

R1 Remainder Quotient (*1)

R1

R2 H'00 Dividend (High) (*2)

R1 Partial remainder Dividend (Low)

R2

R1

R2 (*4)

Dividend

Partial remainder Quotient (High)

Remainder Quotient (Low)

Quotient

(*3)

DIVXU R0L, R1:

MOV.B #H'00, R2H

CMP.B R0L, R1H

BCC L1

DIVXU R0L, R1 (*1)

MOV.B R1L, R2L

BRA L2

L1 MOV.B R1H, R2L (*2)

DIVXU R0L, R2

 MOV.B R2H, R1H (*3)

DIVXU R0L, R1

MOV.B R2L, R2H

MOV.B R1L, R2L

L2 RTS (*4)

To perform

72

2.2.27 EEPMOV (move data to EEPROM) EEPMOV

Description

This instruction moves a block of data from the memory location specified in general register

R5 to the memory location specified in general register R6. General register R4L gives the

byte length of the block.

Data are transferred a byte at a time. After each byte transfer, R5 and R6 are incremented and

R4L is decremented. When R4L reaches 0, the transfer ends and the next instruction is

executed. No interrupt requests are accepted during the data transfer.

At the end of this instruction, R4L contains H'00. R5 and R6 contain the last transfer address

+1.

The memory locations specified by general registers R5 and R6 are read before the block

transfer is performed.

Instruction Formats and Number of Execution States

* n is the initial value in R4L (0 ≤ n ≤ 255). Although n bytes of data are transferred, memory

is accessed 2(n+1) times, requiring 4(n+1) states.

Operation

if R4L ≠ 0 then

repeat @R5+ → @R6+

R4L – 1 → R4L

until R4L = 0

else next;

Assembly-Language Format

EEPMOV

Operand Size

—

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

I H N Z V C

— — — — — — — —

EEPMOV 7 B 5 C 5 9 8 F 9+4n*

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

73

2.2.28 INC (increment) INC

Description

This instruction increments an 8-bit general register and places the result in the general

register.

Instruction Formats and Number of Execution States

Operation
Rd + 1 → Rd

Assembly-Language Format
INC Rd

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Set to 1 when an overflow occurs (the

previous value in Rd was H'7F);

otherwise cleared to 0.

C: Previous value remains unchanged.

I H N Z V C

— — — — ↕ ↕ ↕ —

Register direct INC Rd 0 A 0 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

74

2.2.29 JMP (jump) JMP

Description

This instruction branches unconditionally to a specified destination address.

The destination address must be even.

Instruction Formats and Number of Execution States

Register indirect JMP @Rn 5 9 0 rn 0 4

Absolute address JMP @aa:16 5 A 0 0 abs. 6

Memory indirect JMP @@aa:8 5 B abs. 8

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

75

Operation
(EAd) → PC

Assembly-Language Format
JMP <EA>

Operand Size

—

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

I H N Z V C

— — — — — — — —

2.2.30 JSR (Jump to subroutine) JSR

Description

This instruction pushes the program counter onto the stack, then branches to a specified

destination address. The program counter value pushed on the stack is the address of the

instruction following the JSR instruction. The destination address must be even.

Instruction Formats and Number of Execution States

Operation
PC → @-SP

(EAd) → PC

Assembly-Language Format
JSR <EA>

Operand Size

—

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

I H N Z V C

— — — — — — — —

Register indirect JSR @Rn 5 D 0 rn 0 6

Absolute address JSR @aa:16 5 E 0 0 abs. 8

Memory indirect JSR @@aa:8 5 F abs. 8

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

76

2.2.31 LDC (load to control register) LDC

Description

This instruction loads the source operand contents into the condition code register (CCR). Bits

4 and 6 are loaded as well as the flag bits.

No interrupt requests are accepted immediately after this instruction. All interrupts are

deferred until after the next instruction.

Instruction Formats and Number of Execution States

Operation
(EAs) → CCR

Assembly-Language Format
LDC <EAs>, CCR

Operand Size

Byte

Condition Code

I: Loaded from the source operand.

H: Loaded from the source operand.

N: Loaded from the source operand.

Z: Loaded from the source operand.

V: Loaded from the source operand.

C: Loaded from the source operand.

I H N Z V C

↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕

Immediate LDC #xx:8, CCR 0 7 IMM 2

Register direct LDC Rs, CCR 0 3 0 rs 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

77

78

2.2.32 (1) MOV (move data) (byte) MOV

Description

This instruction moves one byte of data from a source register to a destination register and sets

condition code flags according to the data value.

Instruction Formats and Number of Execution States

Operation
Rs → Rd

Assembly-Language Format
MOV.B Rs, Rd

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the data value is negative;

otherwise cleared to 0.

Z: Set to 1 when the data value is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Previous value remains unchanged.

I H N Z V C

— — — — ↕ ↕ 0 —

Register direct MOV.B Rs, Rd 0 C rs rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

2.2.32 (2) MOV (move data) (word) MOV

Description

This instruction moves one word of data from a source register to a destination register and

sets condition code flags according to the data value.

Instruction Formats and Number of Execution States

Operation
Rs → Rd

Assembly-Language Format
MOV.W Rs, Rd

Operand Size

Word

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the data value is negative;

otherwise cleared to 0.

Z: Set to 1 when the data value is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Previous value remains unchanged.

I H N Z V C

— — — — ↕ ↕ 0 —

Register direct MOV.W Rs, Rd 0 D 0 rs 0 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

79

2.2.32 (3) MOV (move data) (byte) MOV

Description

This instruction moves one byte of data from a source operand to a destination register and sets

condition code flags according to the data value.

The MOV.B @R7+, Rd instruction should never be used, because it leaves an odd value in the

stack pointer. See section 3.2.3 for details.

Instruction Formats and Number of Execution States

Operation
(EAs) → Rd

Assembly-Language Format
MOV.B <EAs>, Rd

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the data value is negative;

otherwise cleared to 0.

Z: Set to 1 when the data value is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Previous value remains unchanged.

I H N Z V C

— — — — ↕ ↕ 0 —

Immediate MOV.B #xx:8, Rd F rd IMM 2

Register indirect MOV.B @RS, Rd 6 8 0 rs rd 4

Register indirect
with displacement MOV.B @(d:16,Rs),Rd 6 E 0 rs rd disp. 6

Register indirect
with post-increment MOV.B @Rs+, Rd 6 C 0 rs rd 6

Absolute address MOV.B @aa:8, Rd 2 rd abs 4

Absolute address MOV.B @aa:16, Rd 6 A 0 rd abs. 6

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

80

2.2.32 (4) MOV (move data) (word) MOV

Description

This instruction moves one word of data from a source operand to a destination register and

sets condition code flags according to the data value.

If the source operand is in memory, it must be located at an even address.

MOV.W @R7+, Rd is identical in machine language to POP.W Rd.

Note that the LSIs in the H8/300L Series contain on-chip peripheral modules for which access

in word size is not possible. Details are given in the applicable hardware manual.

Instruction Formats and Number of Execution States

Immediate MOV.W #xx:16, Rd 7 9 0 0 rd IMM 4

Register indirect MOV.W @RS, Rd 6 9 0 rs 0 rd 4

Register indirect
with displacement MOV.W @(d:16,Rs),Rd 6 F 0 rs 0 rd disp. 6

Register indirect
with post-increment MOV.W @Rs+, Rd 6 D 0 rs 0 rd 6

Absolute address MOV.W @aa:16, Rd 6 B 0 0 rd abs. 6

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

Operation
(EAs) → Rd

Assembly-Language Format
MOV.W <EAs>, Rd

Operand Size

Word

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the data value is negative;

otherwise cleared to 0.

Z: Set to 1 when the data value is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Previous value remains unchanged.

I H N Z V C

— — — — ↕ ↕ 0 —

81

2.2.32 (5) MOV (move data) (byte) MOV

Description

This instruction moves one byte of data from a source register to memory and sets condition

code flags according to the data value.

The MOV.B Rs, @–R7 instruction should never be used, because it leaves an odd value in the

stack pointer. See section 3.2.3 for details.

The instruction MOV.B RnH, @–Rn or MOV.B RnL, @–Rn decrements register Rn, then

moves the upper or lower byte of the decremented result to memory.

Instruction Formats and Number of Execution States

Operation
Rs → (EAd)

Assembly-Language Format
MOV.B Rs, <EAd>

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the data value is negative;

otherwise cleared to 0.

Z: Set to 1 when the data value is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Previous value remains unchanged.

I H N Z V C

— — — — ↕ ↕ 0 —

Register indirect MOV.B Rs, @Rd 6 8 1 rd rs 4

Register indirect Rs,
with displacement MOV.B @(d:16,Rd) 6 E 1 rd rs disp. 6

Register indirect
with pre-decrement MOV.B Rs, @-Rd 6 C 1 rd rs 6

Absolute address MOV.B Rs,@aa:8 3 rs abs 4

Absolute address MOV.B Rs,@aa:16 6 A 8 rs abs. 6

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

82

2.2.32 (6) MOV (move data) (word) MOV

Description

This instruction moves one word of data from a general register to memory and sets condition

code flags according to the data value.

The destination address in memory must be even.

MOV.W Rs, @–R7 is identical in machine language to PUSH.W Rs.

The instruction MOV.W Rn, @–Rn decrements register Rn by 2, then moves the decremented

result to memory.

Note that the LSIs in the H8/300L Series contain on-chip peripheral modules for which access

in word size is not possible. Details are given in the applicable hardware manual.

Instruction Formats and Number of Execution States

Operation
Rs → (EAd)

Assembly-Language Format
MOV.W Rs, <EAd>

Operand Size

Word

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the data value is negative;

otherwise cleared to 0.

Z: Set to 1 when the data value is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Previous value remains unchanged.

I H N Z V C

— — — — ↕ ↕ 0 —

Register indirect MOV.W Rs, @Rd 6 9 1 rd 0 rs 4

Register indirect Rs,
with displacement MOV.W @(d:16, Rd) 6 F 1 rd 0 rs disp. 6

Register indirect
with pre-decrement MOV.W Rs, @-Rd 6 D 1 rd 0 rs 6

Absolute address MOV.W Rs, @aa:16 6 B 8 0 rs abs. 6

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

83

2.2.33 MULXU (multiply extend as unsigned) MULXU

Description
This instruction performs 8-bit × 8-bit → 16-bit multiplication. It multiplies a destination

register by a source register and places the result in the destination register. The source

register is an 8-bit register. The destination register is a 16-bit register containing the data to

be multiplied in the lower byte. (The upper byte is ignored). The result is placed in both bytes

of the destination register. The operation is shown schematically below.

The multiplier can occupy either the upper or lower byte of the source register.

Instruction Formats and Number of Execution States

Operation
Rd × Rs → Rd

Assembly-Language Format
MULXU Rs, Rd

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

I H N Z V C

— — — — — — — —

Rd Rs Rd

Don't-care × Multiplier → Product

8 bits 8 bits 16 bits

Multiplicand

84

Register direct MULXU Rs, Rd 5 0 rs 0 rd 14

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

2.2.34 NEG (negate) NEG

Description

This instruction replaces the contents of an 8-bit general register with its two's complement

(subtracts the register contents from H'00).

If the original contents of the destination register was H'80, the register value remains H'80 and

the overflow flag is set.

Instruction Formats and Number of Execution States

Operation
0 – Rd → Rd

Assembly-Language Format
NEG Rd

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Set to 1 when there is a borrow from bit

3; otherwise cleared to 0.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Set to 1 when an overflow occurs (the

previous contents of the destination

register was H'80); otherwise cleared to

0.

C: Set to 1 when there is a borrow from bit

7 (the previous contents of the

destination register was not H'00);

otherwise cleared to 0.

I H N Z V C

— — ↕ — ↕ ↕ ↕ ↕

Register direct NEG Rd 1 7 8 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

85

2.2.35 NOP (no operation) NOP

Description

This instruction only increments the program counter, causing the next instruction to be

executed. The internal state of the CPU does not change.

Instruction Formats and Number of Execution States

NOP 0 0 0 0 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

86

Operation
PC + 2 → PC

Assembly-Language Format

NOP

Operand Size

—

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

I H N Z V C

— — — — — — — —

2.2.36 NOT (NOT = logical complement) NOT

Description

This instruction replaces the contents of an 8-bit general register with its one’s complement

(subtracts the register contents from H'FF).

Instruction Formats and Number of Execution States

Operation
¬ Rd → Rd

Assembly-Language Format
NOT Rd

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Previous value remains unchanged.

I H N Z V C

— — — — ↕ ↕ 0 —

87

Register direct NOT Rd 1 7 0 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

2.2.37 OR (inclusive OR logical) OR

Description

This instruction ORs the source operand with the contents of an 8-bit general register and

places the result in the general register.

Instruction Formats and Number of Execution States

Operation
Rd ∨ (EAs) → Rd

Assembly-Language Format
OR <EAs>, Rd

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Previous value remains unchanged.

I H N Z V C

— — — — ↕ ↕ 0 —

Immediate OR #xx:8, Rd C rd IMM 2

Register direct OR Rs, Rd 1 4 rs rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code No. of
states

2nd byte 3rd byte 4th byte

88

2.2.38 ORC (inclusive OR control register) ORC

Description

This instruction ORs the condition code register (CCR) with immediate data and places the

result in the condition code register. Bits 6 and 4 are ORed as well as the flag bits.

No interrupt requests are accepted immediately after this instruction. All interrupts are

deferred until after the next instruction.

Instruction Formats and Number of Execution States

Operation
CCR ∨ #IMM → CCR

Assembly-Language Format
ORC #xx:8, CCR

Operand Size

Byte

Condition Code

I: ORed with bit 7 of the immediate data.

H: ORed with bit 5 of the immediate data.

N: ORed with bit 3 of the immediate data.

Z: ORed with bit 2 of the immediate data.

V: ORed with bit 1 of the immediate data.

C: ORed with bit 0 of the immediate data.

I H N Z V C

↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕

Immediate ORC #xx:8, CCR 0 4 IMM 2

Addressing
mode Mnem. Operands

1st byte

Instruction code No. of
states

2nd byte 3rd byte 4th byte

89

2.2.39 POP (pop data) POP

Description

This instruction pops data from the stack to a 16-bit general register and sets condition code

flags according to the data value.

POP.W Rn is identical in machine language to MOV.W @SP+, Rn.

Instruction Formats and Number of Execution States

Operation
@SP+ → Rn

Assembly-Language Format
POP Rn

Operand Size

Word

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the data value is negative;

otherwise cleared to 0.

Z: Set to 1 when the data value is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Previous value remains unchanged.

I H N Z V C

— — — — ↕ ↕ 0 —

POP Rd 6 D 7 0 rn 6

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

90

2.2.40 PUSH (push data) PUSH

Description

This instruction pushes data from a 16-bit general register onto the stack and sets condition

code flags according to the data value.

PUSH.W Rn is identical in machine language to MOV.W Rn, @–SP.

Instruction Formats and Number of Execution States

PUSH Rs 6 D F 0 rn 6

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

Operation
Rn → @–SP

Assembly-Language Format
PUSH Rn

Operand Size

Word

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the data value is negative;

otherwise cleared to 0.

Z: Set to 1 when the data value is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Previous value remains unchanged.

I H N Z V C

— — — — ↕ ↕ 0 —

91

2.2.41 ROTL (rotate left) ROTL

Description

This instruction rotates an 8-bit general register one bit to the left. The most significant bit is

rotated to the least significant bit, and also copied to the carry flag.

The operation is shown schematically below.

Instruction Formats and Number of Execution States

Operation
Rd (rotated left) → Rd

Assembly-Language Format
ROTL Rd

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Receives the previous value in bit 7.

I H N Z V C

— — — — ↕ ↕ 0 ↕

Register direct ROTL Rd 1 2 8 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

C Bit 7 Bit 0

∧ ∧
MSB LSB

92

2.2.42 ROTR (rotate right) ROTR

Description

This instruction rotates an 8-bit general register one bit to the right. The least significant bit is

rotated to the most significant bit, and also copied to the carry flag.

The operation is shown schematically below.

Instruction Formats and Number of Execution States

Operation
Rd (rotated right) → Rd

Assembly-Language Format
ROTR Rd

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Receives the previous value in bit 0.

I H N Z V C

— — — — ↕ ↕ 0 ↕

∧

CBit 7 Bit 0

∧
MSB LSB

Register direct ROTR Rd 1 3 8 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

93

2.2.43 ROTXL (rotate with extend carry left) ROTXL

Description

This instruction rotates an 8-bit general register one bit to the left through the carry flag. The

carry flag is rotated into the least significant bit of the register. The most significant bit rotates

into the carry flag.

The operation is shown schematically below.

Instruction Formats and Number of Execution States

Operation
Rd (rotated with carry left) → Rd

Assembly-Language Format
ROTXL Rd

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Receives the previous value in bit 7.

I H N Z V C

— — — — ↕ ↕ 0 ↕

Register direct ROTXL Rd 1 2 0 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

C Bit 7 Bit 0

MSB LSB

94

2.2.44 ROTXR (rotate with extend carry right) ROTXR

Description

This instruction rotates an 8-bit general register one bit to the right through the carry flag. The

least significant bit is rotated into the carry flag. The carry flag rotates into the most

significant bit.

The operation is shown schematically below.

Instruction Formats and Number of Execution States

Operation
Rd (rotated with carry right) → Rd

Assembly-Language Format
ROTXR Rd

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Receives the previous value in bit 0.

I H N Z V C

— — — — ↕ ↕ 0 ↕

∧

CBit 7 Bit 0

∧ ∧

MSB LSB

Register direct ROTXR Rd 1 3 0 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

95

2.2.45 RTE (return from exception) RTE

Description

This instruction returns from an exception-handling routine. It pops the condition code

register (CCR) and program counter (PC) from the stack. Program execution continues from

the address restored to the program counter.

The CCR and PC contents at the time of execution of this instruction are lost.

The CCR is one byte in size, but it is popped from the stack as a word (in which the lower 8

bits are ignored). This instruction therefore adds 4 to the value of the stack pointer (R7).

Instruction Formats and Number of Execution States

Operation
@SP+ → CCR

@SP+ → PC

Assembly-Language Format

RTE

Operand Size

—

Condition Code

I: Restored from stack.

H: Restored from stack.

N: Restored from stack.

Z: Restored from stack.

V: Restored from stack.

C: Restored from stack.

I H N Z V C

↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕

RTE 5 6 7 0 10

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

96

2.2.46 RTS (return from subroutine) RTS

Description

This instruction returns from a subroutine. It pops the program counter (PC) from the stack.

Program execution continues from the address restored to the program counter.

The PC contents at the time of execution of this instruction are lost.

Instruction Formats and Number of Execution States

Operation
@SP+ → PC

Assembly-Language Format

RTS

Operand Size

—

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

I H N Z V C

— — — — — — — —

RTS 5 4 7 0 8

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

97

2.2.47 SHAL (shift arithmetic left) SHAL

Description

This instruction shifts an 8-bit general register one bit to the left. The most significant bit

shifts into the carry flag, and the least significant bit is cleared to 0.

The operation is shown schematically below.

The SHAL instruction is identical to the SHLL instruction except for its effect on the overflow

(V) flag.

Instruction Formats and Number of Execution States

Operation
Rd (shifted arithmetic left) → Rd

Assembly-Language Format
SHAL Rd

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Set to 1 when an overflow occurs;

otherwise cleared to 0.

C: Receives the previous value in bit 7.

I H N Z V C

— — — — ↕ ↕ ↕ ↕

C Bit 7 Bit 0

∧ ∧
0

∧
MSB LSB

Register direct SHAL Rd 1 0 8 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

98

2.2.48 SHAR (shift arithmetic right) SHAR

Description

This instruction shifts an 8-bit general register one bit to the right. The most significant bit

remains unchanged. The sign of the result does not change. The least significant bit shifts into

the carry flag.

The operation is shown schematically below.

Instruction Formats and Number of Execution States

Operation
Rd (shifted arithmetic right) → Rd

Assembly-Language Format
SHAR Rd

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Receives the previous value in bit 0.

I H N Z V C

— — — — ↕ ↕ 0 ↕

∧

CBit 7 Bit 0

∧

∧

MSB LSB

Register direct SHAR Rd 1 1 8 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

99

2.2.49 SHLL (shift logical left) SHLL

Description

This instruction shifts an 8-bit general register one bit to the left. The least significant bit is

cleared to 0. The most significant bit shifts into the carry flag.

The operation is shown schematically below.

The SHLL instruction is identical to the SHAL instruction except for its effect on the overflow

(V) flag.

Instruction Formats and Number of Execution States

Operation
Rd (shifted logical left) → Rd

Assembly-Language Format
SHLL Rd

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Receives the previous value in bit 0.

I H N Z V C

— — — — ↕ ↕ 0 ↕

C Bit 7 Bit 0

∧ ∧
0

∧
MSB LSB

Register direct SHLL Rd 1 0 0 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

100

2.2.50 SHLR (shift logical right) SHLR

Description

This instruction shifts an 8-bit general register one bit to the right. The most significant bit is

cleared to 0. The least significant bit shifts into the carry flag.

The operation is shown schematically below.

Instruction Formats and Number of Execution States

Operation
Rd (shifted logical right) → Rd

Assembly-Language Format
SHLR Rd

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Receives the previous value in bit 0.

I H N Z V C

— — — — ↕ ↕ 0 ↕

CBit 7 Bit 0

∧∧

∧

0

MSB LSB

Register direct SHLR Rd 1 1 0 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

101

2.2.51 SLEEP (sleep) SLEEP

Description

When the SLEEP instruction is executed, the CPU enters a power-down mode. Its internal

state remains unchanged, but the CPU stops executing instructions and waits for an exception-

handling request (interrupt or reset). When it receives an exception-handling request, the CPU

exits the power-down mode and begins the exception-handling sequence.

If the interrupt mask (I) bit is set to 1, the power-down mode can be released only by a

nonmaskable interrupt (NMI) or reset.

For information about the power-down modes, see the applicable hardware manual.

Instruction Formats and Number of Execution States

Operation
Program execution state → power-

down mode

Assembly-Language Format

SLEEP

Operand Size

—

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

I H N Z V C

— — — — — — — —

SLEEP 0 1 8 0 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

102

2.2.52 STC (store from control register) STC

Description

This instruction copies the condition code register (CCR) to a specified general register. Bits 6

and 4 are copied as well as the flag bits.

Instruction Formats and Number of Execution States

Operation
CCR → Rd

Assembly-Language Format
STC CCR, Rd

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

I H N Z V C

— — — — — — — —

Register direct STC CCR, Rd 0 2 0 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

103

2.2.53 (1) SUB (subtract binary) (byte) SUB

Description

This instruction subtracts an 8-bit source register from an 8-bit destination register and places

the result in the destination register.

Only register direct addressing is supported. To subtract immediate data it is necessary to use

the SUBX.B instruction, first setting the zero flag to 1 and clearing the carry flag to 0.

The following codings can also be used to subtract nonzero immediate data.

(1) ORC #H'05, CCR (2) ADD #(0 – Imm), Rd

SUBX #(Imm – 1), Rd XORC #H'01, CCR

Instruction Formats and Number of Execution States

Operation
Rd – Rs → Rd

Assembly-Language Format
SUB.B Rs, Rd

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Set to 1 when there is a borrow from

bit 3; otherwise cleared to 0.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Set to 1 when an overflow occurs;

otherwise cleared to 0.

C: Set to 1 when there is a borrow from

bit 7; otherwise cleared to 0.

I H N Z V C

— — ↕ — ↕ ↕ ↕ ↕

Register direct SUB.B Rs, Rd 1 8 rs rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

104

2.2.53 (2) SUB (subtract binary) (word) SUB

Description

This instruction subtracts a 16-bit source register from a 16-bit destination register and places

the result in the destination register.

Instruction Formats and Number of Execution States

Register direct SUB.W Rs, Rd 1 9 0 rs 0 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

Operation
Rd - Rs → Rd

Assembly-Language Format

SUB.W Rs, Rd

Operand Size

Word

Condition Code

I: Previous value remains unchanged.

H: Set to 1 when there is a borrow from

bit 11; otherwise cleared to 0.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Set to 1 when an overflow occurs;

otherwise cleared to 0.

C: Set to 1 when there is a borrow from

bit 15; otherwise cleared to 0.

I H N Z V C

— — ↕ — ↕ ↕ ↕ ↕

105

2.2.54 SUBS (subtract with sign extension) SUBS

Description

This instruction subtracts the immediate value 1 or 2 from word data in a general register.

Unlike the SUB instruction, it does not affect the condition code flags.

The SUBS instruction does not permit byte operands.

Instruction Formats and Number of Execution States

Operation
Rd – 1 → Rd

Rd – 2 → Rd

Assembly-Language Format
SUBS #1, Rd

SUBS #2, Rd

Operand Size

Word

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

I H N Z V C

— — — — — — — —

Register direct SUBS #1, Rd 1 B 0 0 rd 2

Register direct SUBS #2, Rd 1 B 8 0 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

106

2.2.55 SUBX (subtract with extend carry) SUBX

Description

This instruction subtracts the source operand and carry flag from the contents of an 8-bit

general register and places the result in the general register.

Instruction Formats and Number of Execution States

Operation
Rd – (EAs) – C → Rd

Assembly-Language Format
SUBX <EAs>, Rd

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Set to 1 if there is a borrow from bit 3;

otherwise cleared to 0.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Previous value remains unchanged when

the result is zero; otherwise cleared to 0.

V: Set to 1 when an overflow occurs;

otherwise cleared to 0.

I H N Z V C

— — ↕ — ↕ ↕ ↕ ↕

Immediate SUBX #xx:8, Rd B rd IMM 2

Register direct SUBX Rs, Rd 1 E rs rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

107

2.2.56 XOR (exclusive OR logical) XOR

Description

This instruction exclusive-ORs the source operand with the contents of an 8-bit general

register and places the result in the general register.

Instruction Formats and Number of Execution States

Operation
Rd ⊕ (EAs) → Rd

Assembly-Language Format
XOR <EAs>, Rd

Operand Size

Byte

Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Previous value remains unchanged.

I H N Z V C

— — — — ↕ ↕ 0 —

Immediate XOR #xx:8, Rd D rd IMM 2

Register direct XOR Rs, Rd 1 5 rs rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

108

2.2.57 XORC (exclusive OR control register) XORC

Description

This instruction exclusive-ORs the condition code register (CCR) with immediate data and

places the result in the condition code register. Bits 6 and 4 are exclusive-ORed as well as the

flag bits.

No interrupt requests are accepted immediately after this instruction. All interrupts, including

the nonmaskable interrupt (NMI), are deferred until after the next instruction.

Instruction Formats and Number of Execution States

Operation
CCR ⊕ #IMM → CCR

Assembly-Language Format
XORC #xx:8, CCR

Operand Size

Byte

Condition Code

I: Exclusive-ORed with bit 7 of the

immediate data.

H: Exclusive-ORed with bit 5 of the

immediate data.

N: Exclusive-ORed with bit 3 of the

immediate data.

Z: Exclusive-ORed with bit 2 of the

immediate data.

V: Exclusive-ORed with bit 1 of the

immediate data.

C: Exclusive-ORed with bit 0 of the

immediate data.

I H N Z V C

↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕

Immediate XORC #xx:8, CCR 0 5 IMM 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

109

2.3 Operation Code Map

Table 2-1 shows the operation code map for instructions of the H8/300L CPU. Only the first

byte (bits 15 to 8 of the first word) of the instruction code is indicated here.

Indicates that the most significant bit of the 2nd byte
(bit 7 of 1st word of instruction code) is 0.

Indicates that the most significant bit of the 2nd byte
(bit 7 of 1st word of instruction code) is 1.

110

T
ab

le
 2

-1
.

O
pe

ra
ti

on
 C

od
e

M
ap

+45<=EFNO
����"�!")*3��
;DELM��"#+,4

H
I

LO
0

1
2

3
4

5
6

7
8

9
A

B
C

D
E

F

0 1 2 3 4 5 6 7 8 9 A B C D E F

N
O

P

B
R

A

M
U

LX
U

B
S

E
T

S
H

LL S
H

A
L

S
LE

E
P

B
R

N

D
IV

X
U

B
N

O
T

S
H

LR S
H

A
R

S
T

C

B
H

I

B
C

LR

R
O

TX
L

R
O

T
L

LD
C

B
LS

B
T

S
T

R
O

TX
R

R
O

T
R

O
R

C

O
R

B
C

C

R
T

S

X
O

R
C

X
O

R

B
C

S

B
S

R

B
O

R B
IO

R

B
X

O
R

B
IX

O
R

B
A

N
D

B
IA

N
D

A
N

D
C

A
N

D

B
N

E

R
T

E

LD
C

B
E

Q

N
O

T N
E

G

B
LD

B
IL

D

B
S

T B
IS

T

A
D

D

S
U

B

B
V

C
B

V
S

M
O

V

IN
C

D
E

C

B
P

L

JM
P

A
D

D
S

S
U

B
S

B
M

I

E
E

P
M

O
V

M
O

V

C
M

P

B
G

E
B

LT

A
D

D
X

S
U

B
X

B
G

T

JS
R

D
A

A

D
A

S

B
LE

M
O

V

A
D

D

A
D

D
X

C
M

P

S
U

B
X

O
R

X
O

R

A
N

D

M
O

V

M
O

V
*�()12:

T
he

 P
U

S
H

 a
nd

 P
O

P
 in

st
ru

ct
io

ns
 a

re
 e

qu
iv

al
en

t i
n

m
ac

hi
ne

 la
ng

ua
ge

 to
 th

e
M

O
V

 in
st

ru
ct

io
n.

 S
ee

 th
e

de
sc

rip
tio

ns
 o

f i
nd

iv
id

ua
l i

ns
tr

uc
tio

ns
 in

 s
ec

tio
n

2.
2,

 In
st

ru
ct

io
ns

, f
or

 d
et

ai
ls

.
N

ot
e:

B
it

m
an

ip
ul

at
io

n
in

st
ru

ct
io

ns

111

2.4 List of Instructions

Table 2-2. List of Instructions (1)

Mnemonic Operation I H N Z V C

MOV.B #xx:8, Rd B #xx:8 → Rd8 2 — — ↕ ↕ 0 — 2

MOV.B Rs, Rd B Rs8 → Rd8 2 — — ↕ ↕ 0 — 2

MOV.B @Rs, Rd B @Rs16 → Rd8 2 — — ↕ ↕ 0 — 4

MOV.B @(d:16, Rs), Rd B @(d:16, Rs16) → Rd8 4 — — ↕ ↕ 0 — 6

MOV.B @Rs+, Rd B @Rs16 → Rd8 2 — — ↕ ↕ 0 — 6
Rs16+1 → Rs16

MOV.B @aa:8, Rd B @aa:8 → Rd8 2 — — ↕ ↕ 0 — 4

MOV.B @aa:16, Rd B @aa:16 → Rd8 4 — — ↕ ↕ 0 — 6

MOV.B Rs, @Rd B Rs8 → @Rd16 2 — — ↕ ↕ 0 — 4

MOV.B Rs, @(d:16, Rd) B Rs8 → @(d:16, Rd16) 4 — — ↕ ↕ 0 — 6

MOV.B Rs, @–Rd B Rd16–1 → Rd16 2 — — ↕ ↕ 0 — 6
Rs8 → @Rd16

MOV.B Rs, @aa:8 B Rs8 → @aa:8 2 — — ↕ ↕ 0 — 4

MOV.B Rs, @aa:16 B Rs8 → @aa:16 4 — — ↕ ↕ 0 — 6

MOV.W #xx:16, Rd W #xx:16 → Rd 4 — — ↕ ↕ 0 — 4

MOV.W Rs, Rd W Rs16 → Rd16 2 — — ↕ ↕ 0 — 2

MOV.W @Rs, Rd W @Rs16 → Rd16 2 — — ↕ ↕ 0 — 4

MOV.W @(d:16, Rs), Rd W @(d:16, Rs16) → Rd16 4 — — ↕ ↕ 0 — 6

MOV.W @Rs+, Rd W @Rs16 → Rd16 2 — — ↕ ↕ 0 — 6
Rs16+2 → Rs16

MOV.W @aa:16, Rd W @aa:16 → Rd16 4 — — ↕ ↕ 0 — 6

MOV.W Rs, @Rd W Rs16 → @Rd16 2 — — ↕ ↕ 0 — 4

MOV.W Rs, @(d:16, Rd) W Rs16 → @(d:16, Rd16) 4 — — ↕ ↕ 0 — 6

MOV.W Rs, @–Rd W Rd16–2 → Rd16 2 — — ↕ ↕ 0 — 6
Rs16 → @Rd16

MOV.W Rs, @aa:16 W Rs16 → @aa:16 4 — — ↕ ↕ 0 — 6

POP Rd W @SP → Rd16 2 — — ↕ ↕ 0 — 6
SP+2 → SP

PUSH Rs W SP–2 → SP 2 — — ↕ ↕ 0 — 6
Rs16 → @SP

S
iz

e

#x
x:

8/
16

R
n

@
R

n

@
(d

:1
6,

 R
n

)

@
–R

n
/@

R
n

+

@
aa

:8
/1

6

@
(d

:8
, P

C
)

@
@

aa

m
p

lie
d

N
o

. o
f

S
ta

te
s

*

Addressing Mode and
Instruction Length (Bytes)

Condition Code

112

Table 2-2. List of Instructions (2)

Mnemonic Operation I H N Z V C

ADD.B #xx:8, Rd B Rd8+#xx:8 → Rd8 2 — ↕ ↕ ↕ ↕ ↕ 2

ADD.B Rs, Rd B Rd8+Rs8 → Rd8 2 — ↕ ↕ ↕ ↕ ↕ 2

ADD.W Rs, Rd W Rd16+Rs16 → Rd16 2 — ➀ ↕ ↕ ↕ ↕ 2

ADDX.B #xx:8, Rd B Rd8+#xx:8+C → Rd8 2 — ↕ ↕ ➁ ↕ ↕ 2

ADDX.B Rs, Rd B Rd8+Rs8+C → Rd8 2 — ↕ ↕ ➁ ↕ ↕ 2

ADDS.W #1, Rd W Rd16+1 → Rd16 2 — — — — — — 2

ADDS.W #2, Rd W Rd16+2 → Rd16 2 — — — — — — 2

INC.B Rd B Rd8+1 → Rd8 2 — — ↕ ↕ ↕ — 2

DAA.B Rd B Rd8 decimal-adjust → Rd8 2 — * ↕ ↕ * ➂ 2

SUB.B Rs, Rd B Rd8–Rs8 → Rd8 2 — ↕ ↕ ↕ ↕ ↕ 2

SUB.W Rs, Rd W Rd16–Rs16 → Rd16 2 — ➀ ↕ ↕ ↕ ↕ 2

SUBX.B #xx:8, Rd B Rd8–#xx:8–C → Rd8 2 — ↕ ↕ ➁ ↕ ↕ 2

SUBX.B Rs, Rd B Rd8–Rs8–C → Rd8 2 — ↕ ↕ ➁ ↕ ↕ 2

SUBS.W #1, Rd W Rd16–1 → Rd16 2 — — — — — — 2

SUBS.W #2, Rd W Rd16–2 → Rd16 2 — — — — — — 2

DEC.B Rd B Rd8–1 → Rd8 2 — — ↕ ↕ ↕ — 2

DAS.B Rd B Rd8 decimal-adjust → Rd8 2 — * ↕ ↕ * — 2

NEG.B Rd B 0–Rd → Rd 2 — ↕ ↕ ↕ ↕ ↕ 2

CMP.B #xx:8, Rd B Rd8–#xx:8 2 — ↕ ↕ ↕ ↕ ↕ 2

CMP.B Rs, Rd B Rd8–Rs8 2 — ↕ ↕ ↕ ↕ ↕ 2

CMP.W Rs, Rd W Rd16–Rs16 2 — ➀ ↕ ↕ ↕ ↕ 2

MULXU.B Rs, Rd B Rd8×Rs8 → Rd16 2 — — — — — — 14

DIVXU.B Rs, Rd B Rd16÷Rs8 → Rd16 2 — — ➄ ➅ — — 14
(RdH: remainder,
RdL: quotient)

AND.B #xx:8, Rd B Rd8∧ #xx:8 → Rd8 2 — — ↕ ↕ 0 — 2

AND.B Rs, Rd B Rd8∧ Rs8 → Rd8 2 — — ↕ ↕ 0 — 2

OR.B #xx:8, Rd B Rd8∨ #xx:8 → Rd8 2 — — ↕ ↕ 0 — 2

OR.B Rs, Rd B Rd8∨ Rs8 → Rd8 2 — — ↕ ↕ 0 — 2

XOR.B #xx:8, Rd B Rd8⊕ #xx:8 → Rd8 2 — — ↕ ↕ 0 — 2

XOR.B Rs, Rd B Rd8⊕ Rs8 → Rd8 2 — — ↕ ↕ 0 — 2

NOT.B Rd B Rd → Rd 2 — — ↕ ↕ 0 — 2

S
iz

e

#x
x:

8/
16

R
n

@
R

n

@
(d

:1
6,

 R
n

)

@
–R

n
/@

R
n

+

@
aa

:8
/1

6

@
(d

:8
, P

C
)

@
@

aa

m
p

lie
d

N
o

. o
f

S
ta

te
s

*

Addressing Mode and
Instruction Length (Bytes)

Condition Code

113

Table 2-2. List of Instructions (3)

Mnemonic Operation I H N Z V C

SHAL.B Rd B 2 — — ↕ ↕ ↕ ↕ 2

SHAR.B Rd B 2 — — ↕ ↕ 0 ↕ 2

SHLL.B Rd B 2 — — ↕ ↕ 0 ↕ 2

SHLR.B Rd B 2 — — 0 ↕ 0 ↕ 2

ROTXL.B Rd B 2 — — ↕ ↕ 0 ↕ 2

ROTXR.B Rd B 2 — — ↕ ↕ 0 ↕ 2

ROTL.B Rd B 2 — — ↕ ↕ 0 ↕ 2

ROTR.B Rd B 2 — — ↕ ↕ 0 ↕ 2

BSET #xx:3, Rd B (#xx:3 of Rd8) ← 1 2 — — — — — — 2

BSET #xx:3, @Rd B (#xx:3 of @Rd16) ← 1 4 — — — — — — 8

BSET #xx:3, @aa:8 B (#xx:3 of @aa:8) ← 1 4 — — — — — — 8

BSET Rn, Rd B (Rn8 of Rd8) ← 1 2 — — — — — — 2

BSET Rn, @Rd B (Rn8 of @Rd16) ← 1 4 — — — — — — 8

BSET Rn, @aa:8 B (Rn8 of @aa:8) ← 1 4 — — — — — — 8

S
iz

e

#x
x:

8/
16

R
n

@
R

n

@
(d

:1
6,

 R
n

)

@
–R

n
/@

R
n

+

@
aa

:8
/1

6

@
(d

:8
, P

C
)

@
@

aa

m
p

lie
d

N
o

. o
f

S
ta

te
s

*

Addressing Mode and
Instruction Length (Bytes)

Condition Code

b7 b0

0C

C

b7 b0

b7 b0

0C

b7 b0

0 C

C

b7 b0

C

b7 b0

C

b7 b0

C

b7 b0

114

Table 2-2. List of Instructions (4)

Mnemonic Operation I H N Z V C

BCLR #xx:3, Rd B (#xx:3 of Rd8) ← 0 2 — — — — — — 2

BCLR #xx:3, @Rd B (#xx:3 of @Rd16) ← 0 4 — — — — — — 8

BCLR #xx:3, @aa:8 B (#xx:3 of @aa:8) ← 0 4 — — — — — — 8

BCLR Rn, Rd B (Rn8 of Rd8) ← 0 2 — — — — — — 2

BCLR Rn, @Rd B (Rn8 of @Rd16) ← 0 4 — — — — — — 8

BCLR Rn, @aa:8 B (Rn8 of @aa:8) ← 0 4 — — — — — — 8

BNOT #xx:3, Rd B (#xx:3 of Rd8) ← 2 — — — — — — 2
(#xx:3 of Rd8)

BNOT #xx:3, @Rd B (#xx:3 of @Rd16) ← 4 — — — — — — 8
(#xx:3 of @Rd16)

BNOT #xx:3, @aa:8 B (#xx:3 of @aa:8) ← 4 — — — — — — 8
(#xx:3 of @aa:8)

BNOT Rn, Rd B (Rn8 of Rd8) ← 2 — — — — — — 2
(Rn8 of Rd8)

BNOT Rn, @Rd B (Rn8 of @Rd16) ← 4 — — — — — — 8
(Rn8 of @Rd16)

BNOT Rn, @aa:8 B (Rn8 of @aa:8) ← 4 — — — — — — 8
(Rn8 of @aa:8)

BTST #xx:3, Rd B (#xx:3 of Rd8) → Z 2 — — — ↕ — — 2

BTST #xx:3, @Rd B (#xx:3 of @Rd16) → Z 4 — — — ↕ — — 6

BTST #xx:3, @aa:8 B (#xx:3 of @aa:8) → Z 4 — — — ↕ — — 6

BTST Rn, Rd B (Rn8 of Rd8) → Z 2 — — — ↕ — — 2

BTST Rn, @Rd B (Rn8 of @Rd16) → Z 4 — — — ↕ — — 6

BTST Rn, @aa:8 B (Rn8 of @aa:8) → Z 4 — — — ↕ — — 6

BLD #xx:3, Rd B (#xx:3 of Rd8) → C 2 — — — — — ↕ 2

BLD #xx:3, @Rd B (#xx:3 of @Rd16) → C 4 — — — — — ↕ 6

BLD #xx:3, @aa:8 B (#xx:3 of @aa:8) → C 4 — — — — — ↕ 6

BILD #xx:3, Rd B (#xx:3 of Rd8) → C 2 — — — — — ↕ 2

BILD #xx:3, @Rd B (#xx:3 of @Rd16) → C 4 — — — — — ↕ 6

BILD #xx:3, @aa:8 B (#xx:3 of @aa:8) → C 4 — — — — — ↕ 6

BST #xx:3, Rd B C → (#xx:3 of Rd8) 2 — — — — — — 2

BST #xx:3, @Rd B C → (#xx:3 of @Rd16) 4 — — — — — — 8

BST #xx:3, @aa:8 B C → (#xx:3 of @aa:8) 4 — — — — — — 8

S
iz

e

#x
x:

8/
16

R
n

@
R

n

@
(d

:1
6,

 R
n

)

@
–R

n
/@

R
n

+

@
aa

:8
/1

6

@
(d

:8
, P

C
)

@
@

aa

m
p

lie
d

N
o

. o
f

S
ta

te
s

*

Addressing Mode and
Instruction Length (Bytes)

Condition Code

115

Table 2-2. List of Instructions (5)

Mnemonic Operation I H N Z V C

BIST #xx:3, Rd B C → (#xx:3 of Rd8) 2 — — — — — — 2

BIST #xx:3, @Rd B C → (#xx:3 of @Rd16) 4 — — — — — — 8

BIST #xx:3, @aa:8 B C → (#xx:3 of @aa:8) 4 — — — — — — 8

BAND #xx:3, Rd B C∧ (#xx:3 of Rd8) → C 2 — — — — — ↕ 2

BAND #xx:3, @Rd B C∧ (#xx:3 of @Rd16) → C 4 — — — — — ↕ 6

BAND #xx:3, @aa:8 B C∧ (#xx:3 of @aa:8) → C 4 — — — — — ↕ 6

BIAND #xx:3, Rd B C∧ (#xx:3 of Rd8) → C 2 — — — — — ↕ 2

BIAND #xx:3, @Rd B C∧ (#xx:3 of @Rd16) → C 4 — — — — — ↕ 6

BIAND #xx:3, @aa:8 B C∧ (#xx:3 of @aa:8) → C 4 — — — — — ↕ 6

BOR #xx:3, Rd B C∨ (#xx:3 of Rd8) → C 2 — — — — — ↕ 2

BOR #xx:3, @Rd B C∨ (#xx:3 of @Rd16) → C 4 — — — — — ↕ 6

BOR #xx:3, @aa:8 B C∨ (#xx:3 of @aa:8) → C 4 — — — — — ↕ 6

BIOR #xx:3, Rd B C∨ (#xx:3 of Rd8) → C 2 — — — — — ↕ 2

BIOR #xx:3, @Rd B C∨ (#xx:3 of @Rd16) → C 4 — — — — — ↕ 6

BIOR #xx:3, @aa:8 B C∨ (#xx:3 of @aa:8) → C 4 — — — — — ↕ 6

BXOR #xx:3, Rd B C⊕ (#xx:3 of Rd8) → C 2 — — — — — ↕ 2

BXOR #xx:3, @Rd B C⊕ (#xx:3 of @Rd16) → C 4 — — — — — ↕ 6

BXOR #xx:3, @aa:8 B C⊕ (#xx:3 of @aa:8) → C 4 — — — — — ↕ 6

BIXOR #xx:3, Rd B C⊕ (#xx:3 of Rd8) → C 2 — — — — — ↕ 2

BIXOR #xx:3, @Rd B C⊕ (#xx:3 of @Rd16) → C 4 — — — — — ↕ 6

BIXOR #xx:3, @aa:8 B C⊕ (#xx:3 of @aa:8) → C 4 — — — — — ↕ 6

BRA d:8 (BT d:8) — PC ← PC+d:8 2 — — — — — — 4

BRN d:8 (BF d:8) — PC ← PC+2 2 — — — — — — 4

BHI d:8 — C∨ Z = 0 2 — — — — — — 4

BLS d:8 — C∨ Z = 1 2 — — — — — — 4

BCC d:8 (BHS d:8) — C = 0 2 — — — — — — 4

BCS d:8 (BLO d:8) — C = 1 2 — — — — — — 4

BNE d:8 — Z = 0 2 — — — — — — 4

BEQ d:8 — Z = 1 2 — — — — — — 4

BVC d:8 — V = 0 2 — — — — — — 4

BVS d:8 — V = 1 2 — — — — — — 4

S
iz

e

#x
x:

8/
16

R
n

@
R

n

@
(d

:1
6,

 R
n

)

@
–R

n
/@

R
n

+

@
aa

:8
/1

6

@
(d

:8
, P

C
)

@
@

aa

m
p

lie
d

N
o

. o
f

S
ta

te
s

*

Addressing Mode and
Instruction Length (Bytes)

Condition CodeBranching
Condition

if condition
is true then
PC ←
PC+d:8
else next;

116

Table 2-2. List of Instructions (6)

Mnemonic Operation I H N Z V C

BPL d:8 — N = 0 2 — — — — — — 4

BMI d:8 — N = 1 2 — — — — — — 4

BGE d:8 — N⊕ V = 0 2 — — — — — — 4

BLT d:8 — N⊕ V = 1 2 — — — — — — 4

BGT d:8 — Z∨ (N⊕ V) = 0 2 — — — — — — 4

BLE d:8 — Z∨ (N⊕ V) = 1 2 — — — — — — 4

JMP @Rn — PC ← Rn16 2 — — — — — — 4

JMP @aa:16 — PC ← aa:16 4 — — — — — — 6

JMP @@aa:8 — PC ← @aa:8 2 — — — — — — 8

BSR d:8 — SP–2 → SP 2 — — — — — — 6
PC → @SP
PC ← PC+d:8

JSR @Rn — SP–2 → SP 2 — — — — — — 6
PC → @SP
PC ← Rn16

JSR @aa:16 — SP–2 → SP 4 — — — — — — 8
PC → @SP
PC ← aa:16

JSR @@aa:8 SP–2 → SP 2 — — — — — — 8
PC → @SP
PC ← @aa:8

RTS — PC ← @SP 2 — — — — — — 8
SP+2 → SP

RTE — CCR ← @SP 2 ↕ ↕ ↕ ↕ ↕ ↕ 10
SP+2 → SP
PC ← @SP
SP+2 → SP

SLEEP — Transit to sleep mode. 2 — — — — — — 2

LDC #xx:8, CCR B #xx:8 → CCR 2 ↕ ↕ ↕ ↕ ↕ ↕ 2

LDC Rs, CCR B Rs8 → CCR 2 ↕ ↕ ↕ ↕ ↕ ↕ 2

STC CCR, Rd B CCR → Rd8 2 — — — — — — 2

ANDC #xx:8, CCR B CCR∧ #xx:8 → CCR 2 ↕ ↕ ↕ ↕ ↕ ↕ 2

ORC #xx:8, CCR B CCR∨ #xx:8 → CCR 2 ↕ ↕ ↕ ↕ ↕ ↕ 2

if condition
is true then
PC ←
PC+d:8
else next;

S
iz

e

#x
x:

8/
16

R
n

@
R

n

@
(d

:1
6,

 R
n

)

@
–R

n
/@

R
n

+

@
aa

:8
/1

6

@
(d

:8
, P

C
)

@
@

aa

m
p

lie
d

N
o

. o
f

S
ta

te
s

*

Addressing Mode and
Instruction Length (Bytes)

Condition CodeBranching
Condition

117

Table 2-2. List of Instructions (7)

Mnemonic Operation I H N Z V C

XORC #xx:8, CCR B CCR⊕ #xx:8 → CCR 2 ↕ ↕ ↕ ↕ ↕ ↕ 2

NOP — PC ← PC+2 2 — — — — — — 2

EEPMOV — if R4L ≠ 0 4 — — — — — — ➃

Repeat @R5 → @R6
R5+1 → R5
R6+1 → R6
R4L–1 → R4L

Until R4L = 0
else next;

Notes: * The number of execution states indicated here assumes that the operation code and operand data are
in on-chip memory. For other cases, refer to section 2.5, Number of Execution States.

➀ Set to 1 when there is a carry or borrow at bit 11; otherwise cleared to 0.
➁ When the result is 0, the previous value remains unchanged; otherwise cleared to 0.
➂ Set to 1 when there is a carry in the adjusted result; otherwise the previous value remains unchanged.
➃ The number of execution states is 4n + 9, with n being the value set in R4L.
➄ Set to 1 when the divisor is negative; otherwise cleared to 0.
➅ Set to 1 when the divisor is 0; otherwise cleared to 0.

S
iz

e

#x
x:

8/
16

R
n

@
R

n

@
(d

:1
6,

 R
n

)

@
–R

n
/@

R
n

+

@
aa

:8
/1

6

@
(d

:8
, P

C
)

@
@

aa

m
p

lie
d

N
o

. o
f

S
ta

te
s

*

Addressing Mode and
Instruction Length (Bytes)

Condition Code

118

2.5 Number of Execution States

The tables here can be used to calculate the number of states required for instruction execution.

Table 2-3 indicates the number of states required for each cycle (instruction fetch, branch

address read, stack operation, byte data access, word data access, internal operation).

Table 2-4 indicates the number of cycles of each type occurring in each instruction. The total

number of states required for execution of an instruction can be calculated from these two

tables as follows:

Execution states = I × SI + J × SJ + K × SK + L × SL + M × SM + N × SN

Examples: When instruction is fetched from on-chip ROM, and an on-chip RAM is

accessed.

1. BSET #0, @FF00

From table 2-4:

I = L = 2, J = K = M = N= 0

From table 2-3:

SI = 2, SL = 2

Number of states required for execution = 2 × 2 + 2 × 2 = 8

When instruction is fetched from on-chip ROM, branch address is read from on-chip ROM,

and on-chip RAM is used for stack area.

2. JSR @@ 30

From table 2-4:

I = 2, J = K = 1, L = M = N = 0

From table 2-3:

SI = SJ = SK = 2

Number of states required for execution = 2 × 2 + 1 × 2+ 1 × 2 = 8

119

Table 2-3. Number of States Taken by Each Cycle in Instruction Execution

* Depends on which on-chip module is accessed. See the applicable hardware manual for

details.

Execution Status Access Location
(instruction cycle) On-Chip Memory On-Chip Peripheral Module

Instruction fetch SI

Branch address read SJ

Stack operation SK 2

Byte data access SL 2 or 3*

Word data access SM

Internal operation SN 1

120

Table 2-4. Number of Cycles in Each Instruction

ADD ADD.B #xx:8, Rd 1

ADD.B Rs, Rd 1

ADD.W Rs, Rd 1

ADDS ADDS.W #1/2, Rd 1

ADDX ADDX.B #xx:8, Rd 1

ADDX.B Rs, Rd 1

AND AND.B #xx:8, Rd 1

AND.B Rs, Rd 1

ANDC ANDC #xx:8, CCR 1

BAND BAND #xx:3, Rd 1

BAND #xx:3, @Rd 2 1

BAND #xx:3, @aa:8 2 1

Bcc BRA d:8 (BT d:8) 2

BRN d:8 (BF d:8) 2

BHI d:8 2

BLS d:8 2

BCC d:8 (BHS d:8) 2

BCS d:8 (BLO d:8) 2

BNE d:8 2

BEQ d:8 2

BVC d:8 2

BVS d:8 2

BPL d:8 2

BMI d:8 2

BGE d:8 2

BLT d:8 2

BGT d:8 2

BLE d:8 2

BCLR BCLR #xx:3, Rd 1

BCLR #xx:3, @Rd 2 2

BCLR #xx:3, @aa:8 2 2

BCLR Rn, Rd 1

Instruction Branch Stack Byte Data Word Data Internal
Instruction Mnemonic Fetch Addr. Read Operation Access Access Operation

I J K L M N

121

BCLR BCLR Rn, @Rd 2 2

BCLR Rn, @aa:8 2 2

BIAND BIAND #xx:3, Rd 1

BIAND #xx:3, @Rd 2 1

BIAND #xx:3, @aa:8 2 1

BILD BILD #xx:3, Rd 1

BILD #xx:3, @Rd 2 1

BILD #xx:3, @aa:8 2 1

BIOR BIOR #xx:3, Rd 1

BIOR #xx:3, @Rd 2 1

BIOR #xx:3, @aa:8 2 1

BIST BIST #xx:3, Rd 1

BIST #xx:3, @Rd 2 2

BIST #xx:3, @aa:8 2 2

BIXOR BIXOR #xx:3, Rd 1

BIXOR #xx:3, @Rd 2 1

BIXOR #xx:3, @aa:8 2 1

BLD BLD #xx:3, Rd 1

BLD #xx:3, @Rd 2 1

BLD #xx:3, @aa:8 2 1

BNOT BNOT #xx:3, Rd 1

BNOT #xx:3, @Rd 2 2

BNOT #xx:3, @aa:8 2 2

BNOT Rn, Rd 1

BNOT Rn, @Rd 2 2

BNOT Rn, @aa:8 2 2

BOR BOR #xx:3, Rd 1

BOR #xx:3, @Rd 2 1

BOR #xx:3, @aa:8 2 1

BSET BSET #xx:3, Rd 1

BSET #xx:3, @Rd 2 2

BSET #xx:3, @aa:8 2 2

BSET Rn, Rd 1

BSET Rn, @Rd 2 2

Instruction Branch Stack Byte Data Word Data Internal
Instruction Mnemonic Fetch Addr. Read Operation Access Access Operation

I J K L M N

122

BSET BSET Rn, @aa:8 2 2

BSR BSR d:8 2 1

BST BST #xx:3, Rd 1

BST #xx:3, @Rd 2 2

BST #xx:3, @aa:8 2 2

BTST BTST #xx:3, Rd 1

BTST #xx:3, @Rd 2 1

BTST #xx:3, @aa:8 2 1

BTST Rn, Rd 1

BTST Rn, @Rd 2 1

BTST Rn, @aa:8 2 1

BXOR BXOR #xx:3, Rd 1

BXOR #xx:3, @Rd 2 1

BXOR #xx:3, @aa:8 2 1

CMP CMP. B #xx:8, Rd 1

CMP. B Rs, Rd 1

CMP.W Rs, Rd 1

DAA DAA.B Rd 1

DAS DAS.B Rd 1

DEC DEC.B Rd 1

DIVXU DIVXU.B Rs, Rd 1 12

EEPMOV EEPMOV 2 2n+2* 1

INC INC.B Rd 1

JMP JMP @Rn 2

JMP @aa:16 2 2

JMP @@aa:8 2 1 2

JSR JSR @Rn 2 1

JSR @aa:16 2 1 2

JSR @@aa:8 2 1 1

LDC LDC #xx:8, CCR 1

LDC Rs, CCR 1

MOV MOV.B #xx:8, Rd 1

MOV.B Rs, Rd 1

MOV.B @Rs, Rd 1 1

Instruction Branch Stack Byte Data Word Data Internal
Instruction Mnemonic Fetch Addr. Read Operation Access Access Operation

I J K L M N

123

MOV MOV.B @(d:16, Rs), Rd 2 1

MOV.B @Rs+, Rd 1 1 2

MOV.B @aa:8, Rd 1 1

MOV.B @aa:16, Rd 2 1

MOV.B Rs, @Rd 1 1

MOV.B Rs, @(d:16, Rd) 2 1

MOV.B Rs, @–Rd 1 1 2

MOV.B Rs, @aa:8 1 1

MOV.B Rs, @aa:16 2 1

MOV.W #xx:16, Rd 2

MOV.W Rs, Rd 1

MOV.W @Rs, Rd 1 1

MOV.W @(d:16, Rs), Rd 2 1

MOV.W @Rs+, Rd 1 1 2

MOV.W @aa:16, Rd 2 1

MOV.W Rs, @Rd 1 1

MOV.W Rs, @(d:16, Rd) 2 1

MOV.W Rs, @-Rd 1 1 2

MOV.W Rs, @aa:16 2 1

MULXU MULXU.B Rs, Rd 1 12

NEG NEG.B Rd 1

NOP NOP 1

NOT NOT.B Rd 1

OR OR.B #xx:8, Rd 1

OR.B Rs, Rd 1

ORC ORC #xx:8, CCR 1

POP POP Rd 1 1 2

PUSH PUSH Rs 1 1 2

ROTL ROTL.B Rd 1

ROTR ROTR.B Rd 1

ROTXL ROTXL.B Rd 1

ROTXR ROTXR.B Rd 1

RTE RTE 2 2 2

RTS RTS 2 1 2

Instruction Branch Stack Byte Data Word Data Internal
Instruction Mnemonic Fetch Addr. Read Operation Access Access Operation

I J K L M N

124

SHLL SHLL.B Rd 1

SHAL SHAL.B Rd 1

SHAR SHAR.B Rd 1

SHLR SHLR.B Rd 1

SLEEP SLEEP 1

STC STC CCR, Rd 1

SUB SUB.B Rs, Rd 1

SUB.W Rs, Rd 1

SUBS SUBS.W #1/2, Rd 1

SUBX SUBX.B #xx:8, Rd 1

SUBX.B Rs, Rd 1

XOR XOR.B #xx:8, Rd 1

XOR.B Rs, Rd 1

XORC XORC #xx:8, CCR 1

* n: Initial value in R4L. The source and destination operands are accessed n + 1 times each.

Instruction Branch Stack Byte Data Word Data Internal
Instruction Mnemonic Fetch Addr. Read Operation Access Access Operation

I J K L M N

125

Section 3. CPU Operation States

There are three CPU operation states, namely, program execution state, power-down state, and

exception-handling state. In power-down state there are sleep mode, standby mode, and watch

mode. These operation states are shown in figure 3-1. Figure 3-2 shows the state transitions.

For further details please refer to the applicable hardware manual.

Figure 3-1. CPU Operation States

State Program execution state Active mode

The CPU executes successive program instructions,
 synchronized by the system clock.

Subactive mode

The CPU executes
successive program
instructions in low-
speed operations,
synchronized by the
subclock.

Power-down state

Low-power modes

A state in which some or all
of the chip functions are
stopped to conserve power.

Sleep mode

Standby mode

Watch mode

Exception-handling state

A transient state in which the CPU changes
the processing flow due to a reset or an interrupt.

127

Figure 3-2. State Transitions

3.1 Program Execution State

In program execution state the CPU executes program instructions in sequence.

3.2 Exception Handling States

Exception-handling states are transient states occurring when exception handling is raised by a

reset or interrupt, and the CPU changes its normal processing flow, branching to a start address

acquired from a vector table. In exception handling caused by an interrupt, PC and CCR

values are saved to the stack, with reference made to a stack pointer (R7).

3.2.1 Types and Priorities of Exception Handling

Exception handling includes processing of reset exceptions and of interrupts. Table 3-1

summarizes the factors causing each kind of exception, and their priorities. Reset exception

handling has the highest priority.

Reset state

Power-down state

Exception-
handling state

Program
execution state

Reset cleared

SLEEP instruction executed

Reset occurs

Interrupt
raised

Interrupt
raised

Interrupt handling
completeReset

occurs

Note: On the transitions between modes, see the applicable hardware manual.

128

Table 3-1. Types of Exception Handling and Priorities

Timing for start of

Priority Exception source Detection timing exception handling

High Reset Clock-synchronous Reset exception handling starts as

soon as RES pin changes from low

to high.

Interrupt End of instruction When an interrupt request is made,

execution* interrupt exception handling starts

after execution of the present

Low instruction is completed.

* Interrupt detection is not made upon completion of ANDC, ORC, XORC, and LDC

instruction execution, nor upon completion of reset exception handling.

3.2.2 Exception Sources and Vector Table

The factors causing exception handling can be classified as in figure 3-3.

For details of exception handling, the vector numbers of each source, and the vector addresses,

see the applicable hardware manual.

Figure 3-3. Classification of Exception Sources

Exception source

Reset

Interrupt

External interrupt

Internal interrupt
(interrupt raised by on-chip peripheral module)

129

3.2.3 Outline of Exception Handling Operation

A reset has the highest priority of all exception handling. After the RES pin goes to low level

putting the CPU in reset state, the RES pin is then put at high level, and reset exception

handling is started at the point when the reset conditions are met. For details on reset

conditions refer to the applicable hardware manual. When reset exception handling is started,

the CPU gets a start address from the exception handling vector table, and starts executing the

exception handling routine from that address. During execution of this routine and

immediately after, all interrupts including NMI are masked.

When interrupt exception handling is started, the CPU refers to the stack pointer (R7) and

pushes the PC and CCR contents to the stack. The CCR I bit is then set to 1, a start address is

acquired from the exception handling vector table, and the interrupt exception handling routine

is executed from this address. The stack state in this case is as shown in figure 3-4.

Figure 3-4. Stack State after Completion of Interrupt Exception Handling

Contents
saved to stack

SP (R7)

SP – 1

SP – 2

SP – 3

SP – 4

Stack
SP + 4

SP + 3

SP + 2

SP + 1

SP (R7)

Even-numbered
address

Prior to start of interrupt
exception handling

After completion of interrupt
exception handling

Notation
PCH:
PCL:
CCR:
SP:

Upper 8 bits of program counter (PC)
Lower 8 bits of program counter (PC)
Condition code register
Stack pointer

* Ignored on return from interrupt.Notes:

CCR

CCR*

PCH

PCL

1.

2.

PC shows the address of the first instruction to be executed upon
return from the interrupt.
Saving and restoring of register contents must always be done
in word size, and must start from an even-numbered address.

130

3.3 Reset State

When the RES pin goes to low level, all processing stops and the system goes to reset state.

The I bit of the condition code register (CCR) is set, masking all interrupts.

After the RES pin is changed externally from low to high level, reset exception handling starts

at the point when the reset conditions are met. For details on reset conditions refer to the

applicable hardware manual.

3.4 Power-Down State

In power-down state the CPU operation is stopped, reducing power consumption. For details

see the applicable hardware manual.

131

Section 4. Basic Operation Timing

CPU operation is synchronized by a clock (φ). The period from the rising edge of φ to the next

rising edge is called one state. A memory cycle or bus cycle consists of two or three states.

For details on access to on-chip memory and to on-chip peripheral modules see the applicable

hardware manual.

4.1 On-chip Memory (RAM, ROM)

Two-state access is employed for high-speed access to on-chip memory. The data bus width is

16 bits, allowing access in byte or word size. Figure 4-1 shows the on-chip memory access

cycle.

Figure 4-1. On-Chip Memory Access Cycle

φ

Internal address bus

Internal read signal

Internal data bus*
(read access)

Internal write signal

Internal data bus*
(write access)

Note:

Bus cycle

T1 state T2 state

Address

Read data

Write data

A 16-bit data bus is used making possible access to word-size
data in 2 states.

133

4.2 On-chip Peripheral Modules and External Devices

On-chip peripheral modules are accessed in two or three states. The data bus width is 8 bits,

so access is made in byte size only. Access to word data or instruction codes is not possible.

Figure 4-2 shows the on-chip peripheral module access cycle.

Figure 4-2. On-Chip Peripheral Module Access Cycle

φ

Internal address bus

Internal read signal

Internal data bus*
(read access)

Internal write signal

Internal data bus*
(write access)

Note: An 8-bit data bus is used.

Bus cycle

T1 state T2 state

Address

Read data

Write data

(a) Two-state access

φ

Internal address bus

Internal read signal

Internal data bus*
(read access)

Internal write signal

Internal data bus*
(write access)

Bus cycle

T1 state T2 state

Address

Read data

Write data

(b) Three-state access

T3 state

134

H8/300L Series Programming Manual

Publication Date: 1st Edition, December 1991
Published by: Business Planning Division

Semiconductor & Integrated Circuits
Hitachi, Ltd.

Edited by: Technical Documentation Group
Hitachi Kodaira Semiconductor Co., Ltd.

Copyright © Hitachi, Ltd., 1991. All rights reserved. Printed in Japan.

