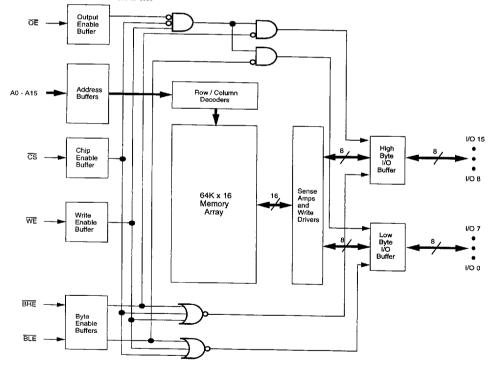


3.3V CMOS STATIC RAM 1 MEG (64K x 16-BIT)

PRELIMINARY IDT71V016

FEATURES:

- 64K x 16 advanced high-speed CMOS Static RAM
- Equal access and cycle times
 Commercial: 12/15/20/25ns
- One Chip Select plus one Output Enable pin
- Bidirectional data inputs and outputs directly TTL-compatible
- · Low power consumption via chip deselect
- Upper and Lower Byte Enable Pins
- Single 3.3V(±0.3V) power supply
- Available in 44-pin Plastic SOJ and 44-pin TSOP package


DESCRIPTION:

The IDT71V016 is a 1,048,576-bit high-speed Static RAM organized as 64K x 16. It is fabricated using IDT's high-perfomance, high-reliability CMOS technology. This state-of-the-art technology, combined with innovative circuit design techniques, provides a cost-effective solution for high-speed memory needs.

The IDT71V016 has an output enable pin which operates as fast as 7ns, with address access times as fast as 12ns. All bidirectional inputs and outputs of the IDT71V016 are TTL-compatible and operation is from a single 3.3V supply. Fully static asynchronous circuitry is used, requiring no clocks or refresh for operation.

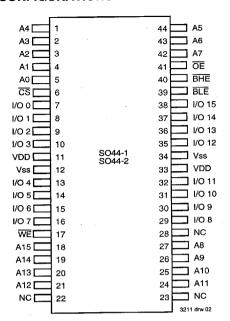
The IDT71V016 is packaged in a JEDEC standard 44-pin Plastic SOJ and 44-pin TSOP Type II.

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

3211 drw 01

COMMERCIAL TEMPERATURE RANGE

AUGUST 1996


@1996 Integrated Device Technology, Inc.

9.2

DSC-3211/4

■ 4825771 0023859 558

PIN CONFIGURATIONS

SOJ/TSOP TOP VIEW

PIN DESCRIPTIONS

A0 - A15	Address Inputs	Input
cs	Chip Select	Input
WĒ	Write Enable	Input
ŌĒ	Output Enable	Input
BHE	High Byte Enable	Input
BLE	Low Byte Enable	Input
I/O0 - I/O15	Data Input/Output	1/0
VDD	3.3V Power	Pwr
Vss	Ground	Gnd

3211 tbl 01

TRUTH TABLE(1)

		-					
cs	ŌĒ	WE	BLE	BHE	I/Oo-I/O7	I/O8-I/O15	Function
Н	X	×	×	X	High-Z	High-Z	Deselected - Standby
	L	Н	L.	н	DATAout	High-Z	Low Byte Read
	L	Н Н	Н	L	High-Z	DATAOUT	High Byte Read
-	L	H	L	L	DATAout	DATAOUT	Word Read
	X	L	<u> </u>	L	DATAIN	DATAIN	Word Write
	X	L	L	Н	DATAIN	High-Z	Low Byte Write
	X	L	Н	L	High-Z	DATAIN	High Byte Write
	H	———	T X	X	High-Z	High-Z	Outputs Disabled
1	×	T x	Н	Н	High-Z	High-Z	Outputs Disabled
							3211 thi 02

NOTE:

1.H = ViH, L = ViL, X = Don't care.

2

9.2

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Rating	Com'l.	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +4.6	٧
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to Vcc+0.5V	· V
Та	OperatingTemperature	0 to +70	°C
TBIAS	Temperature Under Bias	-55 to +125	°C
Тѕтс	Storage Temperature	-55 to +125	°C
Рт	Power Dissipation	1.0	W
Ιουτ	DC Output Current	50	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

- Voo terminals only.
- 3. Input, Output, and I/O terminals; 4.6V maximum.

RECOMMENDED OPERATING TEMPERATURE AND SUPPLY VOLTAGE

Grade	Temperature	GND	VDD
Commercial	0°C to +70°C	0V	3.3V ± 0.3V

3211 tbl 04

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Parameter	Min.	Тур.	Max.	Unit
VDD	Supply Voltage	3.0	3.3	3.6	ν
GND	Supply Voltage	0	0	0	V
Viн	Input High Voltage - Inputs	2.0		4.6	V
ViH	Input High Voltage - I/O	2.0	_	Vpp+0.3	٧
VIL	Input Low Voltage	-0.5 ⁽¹⁾	_	0.8	٧

3211 tbl 05 1. VIL (min.) = -1.5V for pulse width less than tRC/2, once per cycle.

CAPACITANCE

(TA = +25°C, f = 1.0MHz, SOJ package)

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
CIN	Input Capacitance	VIN = 3dV	6	pF
Ci/o	I/O Capacitance	Vout = 3dV	7	pF

3211 tbl 06 1. This parameter is guaranteed by device characterization, but not production tested.

DC ELECTRICAL CHARACTERISTICS

 $VDD = 3.3V \pm 0.3V$, Commercial Temperature Range

			IDT7		
Symbol	Parameter	Test Condition	Min.	Max.	Unit
llul	Input Leakage Current	VDD = Max., VIN = GND to VDD		5	μА
litol	Output Leakage Current	$V_{DD} = Max., \overline{CS} = V_{IH}, V_{OUT} = GND to V_{DD}$		5	μА
VoL	Output Low Voltage	IOL = 8mA, VDD = Min.		0.4	- μΑ
Vон	Output High Voltage	IOH = -4mA, VDD = Min.	2.4	0.4	 `

3211 tbl 07

DC ELECTRICAL CHARACTERISTICS(1)

 $(VDD = 3.3V \pm 0.3V, VLC = 0.2V, VHC = VDD-0.2V)$

		71V016S12 ⁽³⁾		71V016S15		71V016S20		71V016S25			
Symbol	Parameter	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Unit	
lac	Dynamic Operating Current $\overline{CS} \le V_{IL}$, Outputs Open, VDD = Max., $f = f_{MAX}^{(2)}$	150	_	130	_	120	_	110	_	mA	
ISB	Standby Power Supply Current (TTL Level) $\overline{CS} \ge V$ ih, Outputs Open, VDD = Max., f = fmax $^{(2)}$	45	_	35		30		25	_	mA	
ISB1	Standby Power Supply Current (CMOS Level) $\overline{CS} \ge VHC$, Outputs Open, $VDD = Max.$, $f = 0^{(2)}$ $VIN \le VLC$ or $VIN \ge VHC$	5		5	_	5		5		mA	

NOTES:

- 1. All values are maximum guaranteed values.
- 2. fmax = 1/tec (all address inputs are cycling at fmax); f = 0 means no address input lines are changing.
- 12ns specification is preliminary.

3211 tbl 08

9.2

4825771 DO23861 106 **■**

3

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	1.5ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
AC Test Load	See Figures 1, 2, and 3

3211 tbl 09

AC TEST LOADS

Figure 1. AC Test Load

Figure 2. AC Test Load (for tclz, tolz, tchz, tohz, tow, and twhz)

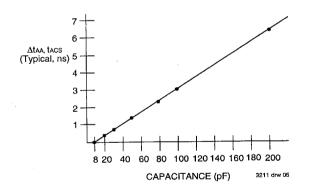
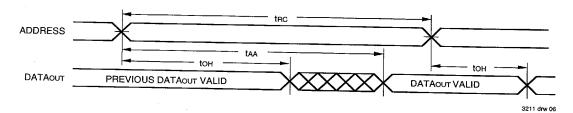


Figure 3. Output Capacitive Derating

AC ELECTRICAL CHARACTERISTICS (VDD = $3.3V \pm 0.3V$, Commercial Temperature Range)


0		71V01	6S12 ⁽²⁾	71V0	16S15	71V0	16520	71V0)16S25	
Symbol	Parameter Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Read Cycle										
trc	Read Cycle Time	12	_	15		20	_	25	T	ns
taa	Address Access Time		12		15		20		25	ns
tacs	Chip Select Access Time	_	12	<u> </u>	15		20		25	ns
tcLz ⁽¹⁾	Chip Select Low to Output in Low-Z	4		5		5		5		ns
tcHz ⁽¹⁾	Chip Select High to Output in High-Z	_	6		6		8	-	8	ns
toE	Output Enable Low to Output Valid	1 -	7		8		10	 	12	
toLz ⁽¹⁾	Output Enable Low to Output in Low-Z	0	_	0		0		0	12	ns
tonz ⁽¹⁾	Output Enable High to Output in High-Z	T = -	6		6	<u> </u>	8		8	ns
tон	Output Hold from Address Change	4		4	 _ _	5		5	-	ns
tBE	Byte Enable Low to Output Valid	† <u> </u>	7		8		10	-		ns
tBLZ ⁽¹⁾	Byte Enable Low to Output in Low-Z	0		0		0	10		12	ns
tBHZ ⁽¹⁾	Byte Enable High to Output in High-Z	+=	6		6		8	0	<u> </u>	ns
Write Cycle							_ 。		8	ns
twc	Write Cycle Time	12	$\Gamma = 1$	15		20		25	l .	
taw	Address Valid to End of Write	9		10		12		14		ns
tcw	Chip Select Low to End of Write	9		10		12		14	=	ns
tew	Byte Enable Low to End of Write	9		10		12		14		ns
tas	Address Set-up Time	0		0		0	_	0		ns
twr	Address Hold from End of Write	0		0		0				ns
twp	Write Pulse Width	9		10		12		0		ns
tow	Data Valid to End of Write	7		8		10		14		ns
tDH	Data Hold Time	10		0				10		ns
tow ⁽¹⁾	Write Enable High to Output in Low-Z	1		1		0		0		ns
twHZ ⁽¹⁾	Write Enable Low to Output in High-Z	 '	6	'_		_1_		1		ns
OTE:			٥		6	- !	8	-	8	ns

NOTE:

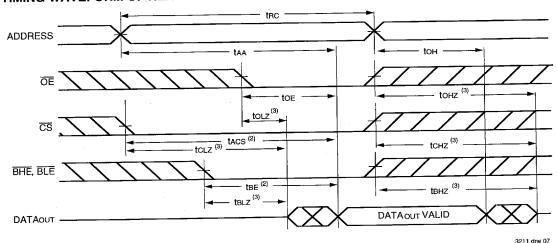
1. This parameter is guaranteed with the AC Load (Figure 2) by device characterization, but is not production tested.

2. 12ns specification is preliminary.

TIMING WAVEFORM OF READ CYCLE NO. 1^(1,2,3)

NOTES:

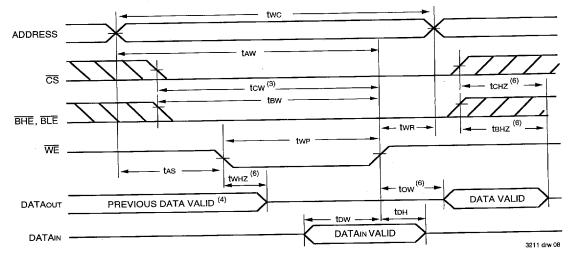
WE is HIGH for Read Cycle.


Device is continuously selected, \overline{CS} is LOW. \overline{OE} , \overline{BHE} , and \overline{BLE} are LOW.

9.2

4825771 0023863 T89 I

5


TIMING WAVEFORM OF READ CYCLE NO. 2⁽¹⁾

NOTES:

- 1. WE is HIGH for Read Cycle.
- 2. Address must be valid prior to or coincident with the later of $\overline{\text{CS}}$, $\overline{\text{BHE}}$, or $\overline{\text{BLE}}$ transition LOW; otherwise tax is the limiting parameter.
- 3. Transition is measured ±200mV from steady state.

TIMING WAVEFORM OF WRITE CYCLE NO. 1 ($\overline{\text{WE}}$ CONTROLLED TIMING) $^{(1,2,3,5)}$

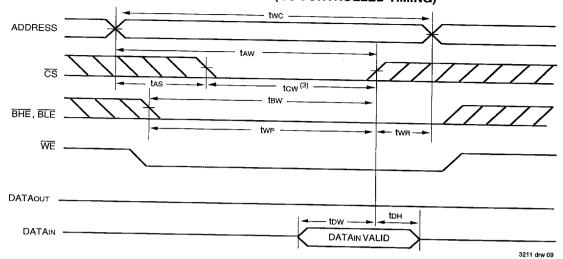
- NOTES:

 1. WE, BHE and BLE, or CS must be HIGH during all address transitions.

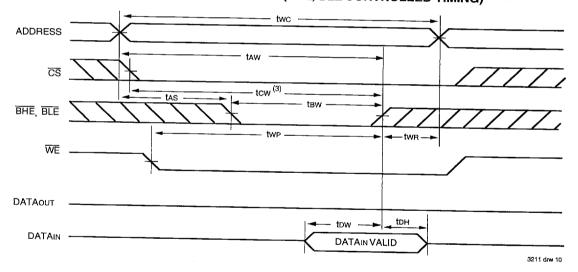
 2. A write occurs during the overlap of a LOW CS, LOW BHE or BLE, and a LOW WE.

 3. OE is continuously HIGH. If during a WE controlled write cycle OE is LOW, two must be greater than or equal to twitz + tow to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If OE is HIGH during a WE controlled write cycle, this requirement does not apply and the
- minimum write pulse is as short as the specified twp. During this period, I/O pins are in the output state, and input signals must not be applied.

 If the CS LOW or BHE and BLE LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in a high-impedance state.
- Transition is measured ±200mV from steady state.

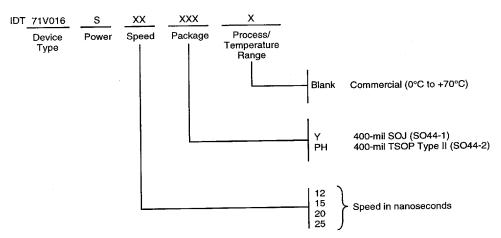

9.2

6


4825771 0023864 915

7

TIMING WAVEFORM OF WRITE CYCLE NO. 2 (CS CONTROLLED TIMING)(1,2,5)


TIMING WAVEFORM OF WRITE CYCLE NO. 3 (BHE, BLE CONTROLLED TIMING)(1,2,5)

- 1. WE, BHE and BLE, or CS must be HIGH during all address transitions.
- A write occurs during the overlap of a LOW CS, LOW BHE or BLE, and a LOW WE.
- OE is continuously HIGH. If during a WE controlled write cycle OE is LOW, two must be greater than or equal to twnz + tow to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If OE is HIGH during a WE controlled write cycle, this requirement does not apply and the minimum write pulse is as short as the specified twp.
- During this period, I/O pins are in the output state, and input signals must not be applied.
- If the CS LOW or BHE and BLE LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in a high-impedance state.
- Transition is measured ±200mV from steady state.

4825771 0023865 851 I

ORDERING INFORMATION

3211 drw 11