TOSHIBA TLP599A

TOSHIBA PHOTOCOUPLER PHOTO RELAY

TLP599A

TELECOMMUNICATION

DATA ACQUISITION

MEASUREMENT INSTRUMENTATION

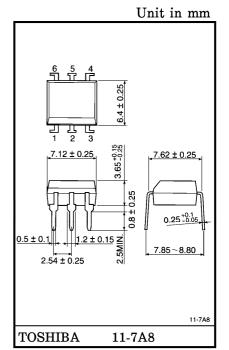
The TOSHIBA TLP599A consists of a gallium arsenide infrared emitting diode optically coupled to a photo-MOS FET in a six lead plastic DIP package (DIP6).

The TLP599A is a bi-directional switch which can replace mechanical relays in many applications.

Peak Off-State Voltage : 60 V (MIN.)

On-State Current : 300 mA (MAX.) (A Connection) On-State Resistance : 2Ω (MAX.) (A Connection)

Insulation Thickness : 0.4 mm (MAX.) Isolation Voltage : 2500 Vrms (MIN.)

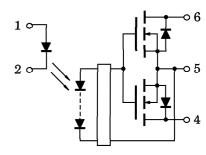

UL Recognized : UL1577, File No. E67349

Trigger LED Current ($Ta = 25^{\circ}C$)

CLASSIFICATION	Trigger LE (m		MARKING OF
(Note 1)	@I _{ON} =	300 mA	CLASSIFICATION
	Min.	Max.	
(IFT2)	_	2	T2
Standard	_	5	T2, blank


(Note 1): Application type name for certification test, please use standard product type name, i.e.

TLP599A (IFT2): TLP599A



Weight: 0.4 g

PIN CONFIGURATION (TOP VIEW)

SCHEMATIC

980910EBC2

- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

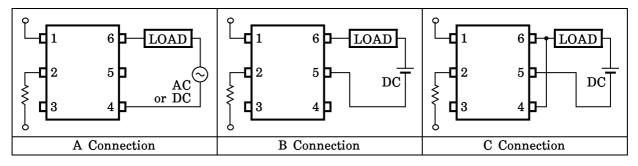
 Callium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with domestic garbage.
- pulverize the product, or use chemicals to dissolve them. When disposing of the products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with domestic garbage.

 The products described in this document are subject to the foreign exchange and foreign trade laws.

 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

 The information contained herein is subject to change without notice.

MAXIMUM RATINGS (Ta = 25°C)


	CHARACTER	LISTIC	SYMBOL	RATING	UNIT	
	Forward Current		$I_{\mathbf{F}}$	50	mA	
LED	Forward Current 1 $(Ta \ge 25^{\circ}C)$	Derating	ΔI _F /°C	-0.5	mA/°C	
TI	Peak Forward Cur (100 µs pulse, 100	I_{FP}	1	A		
	Reverse Voltage		$v_{ m R}$	5	V	
	Junction Temperat	ture	$T_{ m j}$	125	°C	
R	Off-State Output T Voltage	Terminal	V _{OFF}	60	v	
0	O CL L DMG	A Connection		300		
$^{\rm CL}$	On-State RMS	B Connection 1		450	mA	
ΤE	Current	C Connection		600		
囝	On-State Current	Current A Connection		-3		
	Derating	B Connection	$\Delta I_{ON} / ^{\circ}C$	-4.5	mA/°C	
	$(Ta \ge 25^{\circ}C)$	C Connection		-6		
	Junction Temperat	ture	$T_{ m j}$	125	°C	
Sto	rage Temperature	$\mathrm{T_{stg}}$	-55~125	°C		
Op	erating Temperatui	$T_{ m opr}$	-40~85	°C		
Lea	ad Soldering Tempe	$T_{ m sol}$	260	°C		
	lation Voltage (AC, $ m H. \le 60\%$)	$BV_{\mathbf{S}}$	2500	Vrms		

(Note 2): Device considered a two-terminal device: Pins 1, 2 and 3 shorted together, and pins 4, 5 and 6 shorted together.

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	$v_{ m DD}$	_	_	48	V
Forward Current	$_{ m I_F}$	7.5	15	25	mA
On-State Current	ION	_	_	300	mA
Operating Temperature	$T_{ m opr}$	-20	_	80	°C

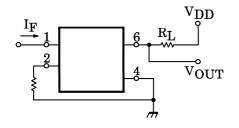
CIRCUIT CONNECTIONS

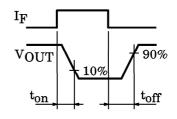
INDIVIDUAL ELECTRICAL CHARACTERISTICS (Ta = 25°C)

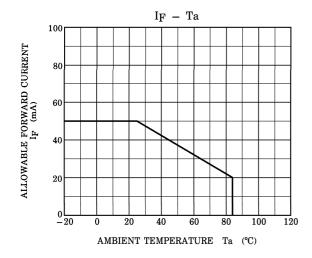
	CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
	Forward Voltage	$ m V_{f F}$	$I_{ m F}=10{ m mA}$	1.0	1.15	1.3	V
ED	Reverse Current	$I_{\mathbf{R}}$	$V_{R} = 5 V$	_	_	10	μ A
Г	Capacitance	C_{T}	V = 0, f = 1 MHz	_	30	_	рF
TOR	Off-State Current	I_{OFF}	$V_{OFF} = 60 V$	_	_	1	μ A
DETEC	Capacitance	c_{OFF}	$V=0, f=1 \mathrm{MHz}$		_	_	pF

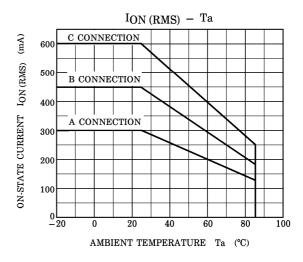
COUPLED ELECTRICAL CHARACTERISTICS (Ta = 25°C)

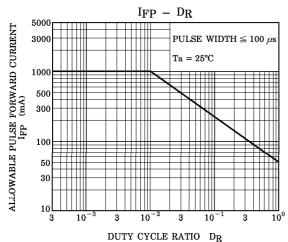
CHARACT	ERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Trigger LED Cur	rent	I_{FT}	$I_{ON} = 300 \text{mA}$	_	1	5	mA
0 94-4-	A Connection		$I_{ m ON} = 300 { m mA}, \ I_{ m F} = 10 { m mA}$	_	1.4	2	
On-State Resistance	B Connection	R_{ON}	$I_{ON} = 450 \text{mA}, I_{F} = 10 \text{mA}$	_	0.7	1	Ω
Resistance	C Connection		$I_{ m ON} = 600 { m mA}, \ I_{ m F} = 10 { m mA}$	_	0.35	0.5	


ISOLATION CHARACTERISTICS ($Ta = 25^{\circ}C$)


CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Capacitance Input to Output	c_{S}	$V_S = 0$, $f = 1 MHz$	_	0.8	_	рF
Isolation Resistance	$R_{\mathbf{S}}$	$V_{S} = 500 \text{ V}, \text{ R.H.} \le 60\%$	$5 imes 10^{10}$	10^{14}	_	Ω
Isolation Voltage		AC, 1 minute	2500 — —	_	1 7	
	$BV_{\mathbf{S}}$	AC, 1 second (in oil)	_	5000	_	Vrms
		DC, 1 minute (in oil)	_	5000	_	Vdc


SWITCHING CHARACTERISTICS (Ta = 25°C)


CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Turn-on Time	t_{on}	$R_{L} = 200 \Omega, V_{DD} = 20 V$		_	2	ms
Turn-off Time	$t_{ m off}$	$I_{ m F}=10{ m mA}$		_	2	1115


SWITCHING TIME TEST CIRCUIT

