HD75153

Quadruple Differential Line Drivers With 3 State Outputs

HD75153 features line drivers which satisfy the requirements of EIA RS 422 A and Federal Standard 1020. This device is designed to provide differential signals with high current capability on bus lines. The circuit provides strobe and enable inputs to control all four drivers. The output circuit has active pull up and pull down and is capable of sinking or sourcing 40 mA .

Function Table

Input			Output	
Enable CC	Strobe S	Data A	Y	Z
L	X	X	Z	Z
H	L	X	L	H
H	X	L	L	H
H	H	H	H	L

Pin Arrangement

H: High level
L : Low level
X : Irrelevant
Z : High impedance

Absolute Maximum Ratings

Item	Symbol	Rating	Unit	
Supply Voltage	Vcc	7	V	
Input Voltage	VIN		5.5	V
Power Dissipation $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$	PT	DP	1000	mW
		FP	785	
Operating Temperature Range	Topr		0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	Tstg	-60 to +150	${ }^{\circ} \mathrm{C}$	

Note: 1. The above date were taken by the $\Delta \mathrm{V}$ BE method, mounting on a glass epoxy board (40 $\times 40 \times 1.6 \mathrm{~mm}$) of 10% wiring density.
2. The absolute maximum ratings are values which must not individually be exceeded, and furthermore, no two of which may be realized at the same time.

Recommended Operating Conditions

Item	Symbol	Min	Typ	Max	Unit
Supply Voltage	Vcc	4.75	500	5.25	V
Common Mode Output Voltage	Vout C	-0.25		6	V
Output Current	IOH	-	-	-40	mA
Output Current	IOL	-	-	40	mA
Operating Temperature	Topr	0	-	70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics ($\mathbf{T a}=0$ to $70^{\circ} \mathrm{C}$)

Item	Symbol	Conditions		Min Typ *1	Max	Unit
Input Voltage	VIH			2	-	V
	VIL			- -	0.8	
Input Clamp Voltage	VIK	$\mathrm{Vcc}=4.75 \mathrm{~V}$	CC, S	- -	-2	V
		$\mathrm{II}=-12 \mathrm{~mA}$	All Others	- -0.9	-1.5	
Output Voltage	Vон	$\mathrm{VCC}=4.75 \mathrm{~V}, \mathrm{VIL}=0.8 \mathrm{~V}$	$\mathrm{IOH}=-20 \mathrm{~mA}$	2.5	-	V
		$\mathrm{VIH}=2 \mathrm{~V}$	$\mathrm{IOH}=-40 \mathrm{~mA}$	2.4	-	
	Vol	$\mathrm{VCC}=4.75 \mathrm{~V}, \mathrm{VIL}=0.8 \mathrm{~V}$,	$\mathrm{VIH}=2 \mathrm{~V}, \mathrm{IOL}=40 \mathrm{~mA}$	- -	0.5	
Differential Output Voltage	Vod1	$\mathrm{VcC}=5.25 \mathrm{~V}, \mathrm{IO}=0$		-3.4	2 Vod 2 V	
	Vod?	$\mathrm{VcC}=4.75 \mathrm{~V}$	$\mathrm{RL}=100 \Omega^{*}$	$2 \quad 2.8$	-	
Change In Magnitude Of Differential Output Voltage	$\Delta \mathrm{Vod}^{\text {\| }}$	*2 Vcc $=4.75 \mathrm{~V}$		- 0.01	0.4	V
Common Mode Output Voltage	Voc*3	$\mathrm{Vcc}=5.25 \mathrm{~V}$		-1.8	3	V
		$\mathrm{Vcc}=4.75 \mathrm{~V}$		-1.6	3	
Change In Magnitude Of Common Mode Output Voltage	$\Delta\|\mathrm{Voc}\|$	*2 Vcc $=4.75 \mathrm{~V}$ or 5.25 V		- 0.02	0.4	V
Off State (High	loz	$\mathrm{Vcc}=5.25 \mathrm{~V}$	$\mathrm{Vo}=0.5 \mathrm{~V}$	-	-20	$\mu \mathrm{A}$
Impedance State)		Enable $=0.8 \mathrm{~V}$	$\mathrm{Vo}=2.5 \mathrm{~V}$	- -	20	
Output Current			$\mathrm{Vo}=\mathrm{Vcc}$	- -	20	

Item	Symbol	Conditions		Min	Typ *1	Max	Unit
Output Current With Power Off	10	$\mathrm{Vcc}=0 \mathrm{~V}$	$\mathrm{Vo}=6 \mathrm{~V}$	-	0.1	100	$\mu \mathrm{A}$
			$\mathrm{Vo}=-0.25 \mathrm{~V}$	-	-0.1	-100	
			$\mathrm{Vo}=-0.25 \mathrm{~V}$ to 6	-	-	± 100	
Input Current	11	$\mathrm{Vcc}=5.25 \mathrm{~V}, \mathrm{VI}=5.5 \mathrm{~V}$		-	-	0.1	mA
	IH	$\begin{aligned} & \mathrm{Vcc}=5.25 \mathrm{~V} \\ & \mathrm{~V}=2.4 \mathrm{~V} \end{aligned}$	A	-	-	20	$\mu \mathrm{A}$
			CC, S	-	-	80	
	IIL	$\mathrm{Vcc}=5.25 \mathrm{~V}$	A	-	-	-0.36	mA
		$\mathrm{V}=0.4 \mathrm{~V}$	CC,S	-	-	-1.6	
Short Circuit Output Current	los *4	$\mathrm{Vcc}=5.25 \mathrm{~V}$		-50	-90	-150	mA
Supply Current	IcC	Vcc = 5.25 V No Load	Outputs Disabled	-	30	60	mA
			Outputs Enabled	-	60	84	

Notes: 1. All typical values are at $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$.
$\Delta \mathrm{VOD}$ and $\Delta \mathrm{VOC} \mid$ are the changes in magnitudes of V OD and Voc , respectively, that occur when the input is changed from a high level to a low level.
2. In EIA standard RS-422A, V oc, which is the average of the two output voltages with respect to ground, is called output offset voltage, V os.
3. Only one output should be shorted at a time, and duration of the short circuit should not exceed one second.
4. Differential and common mode output voltages.

Switching Characteristics (Vcc $=\mathbf{5 . 0} \mathrm{V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)

Item	Symbol	Conditions	Min	Typ	Max	Unit
Propagation Delay Time	tPLH	$\mathrm{CL}=30 \mathrm{pF}, \mathrm{RL}=100 \Omega$ Termination A	-	15	30	ns
	tPHL		-	15	30	
	tPLH	$\begin{aligned} & \mathrm{CL}=30 \mathrm{pF} \\ & \text { Termination } \mathrm{B} \end{aligned}$	-	13	25	
	tPHL		-	13	25	
Transition Time	tTLH	$\mathrm{CL}=30 \mathrm{pF}, \mathrm{RL}=100 \Omega$Termination A	-	12	20	ns
	tTHL		-	12	20	
Output Enable Time	tz	$\mathrm{CL}=30 \mathrm{pF}, \mathrm{RL}=60 \Omega$	-	18	35	ns
	tzL	$\mathrm{CL}=30 \mathrm{pF}, \mathrm{RL}=111 \Omega$	-	20	35	
Output Disable Time	thz	$\mathrm{CL}=30 \mathrm{pF}, \mathrm{RL}=60 \Omega$	-	19	30	ns
	tLz	$\mathrm{CL}=30 \mathrm{pF}, \mathrm{RL}=111 \Omega$	-	13	30	
Overshoot Factor		$\begin{aligned} & \mathrm{RL}=100 \Omega \\ & \text { Termination C } \end{aligned}$	-	-	10	\%

Switching Time Test Method

- Test circuit

1. tPLH, tPhe, ttle, tehl, and overshoot factor

Termination A

Termination B

Termination C

Notes: 1. The pulse generator has the following characteristics:

$$
\text { Zout }=50 \Omega, \text { PRR }=10 \mathrm{MHz}
$$

2. CL includes probe and jig capacitance.

2. tzh, thZ

3. tzL, tLZ

Notes: 1. The pulse generator has the following characteristics:
Zout $=50 \Omega$, PRR $=500 \mathrm{kHz}$
2. CL includes probe and jig capacitance.

