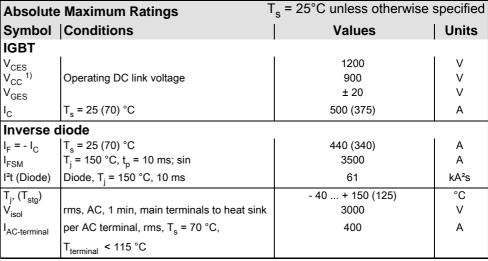
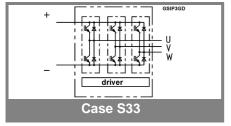

SKiiP 513GD122-3DUL


6-pack-integrated intelligent Power System

Power section SKiiP 513GD122-3DUL


Preliminary Data

Features

- SKiiP technology inside
- SPT (Soft Punch Through) IGBTs
- CAL diode technology
- · Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 3 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized file no. E63532
- with assembly of suitable MKP capacitor per terminal (SEMIKRON type is recommended)

Characteristics			$T_s = 25$ °C unless otherwise specified					
Symbol Conditions			min.	typ.	max.	Units		
IGBT								
V _{CEsat}	I _C = 300 A, T _j = 25 measured at terminal	(125) °C;			2,3 (2,5)	2,6	V	
V_{CEO}	$T_i = 25 (125) ^{\circ}C; a$	t terminal			1,1 (1)	1,3 (1,2)	V	
r_{CE}	$T_i = 25 (125) ^{\circ}C; a$	t terminal			3,8 (5)	4,5 (5,6)	mΩ	
I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CE}$ $T_{i} = 25 (125) \text{ °C}$	CES,			1,2 (36)		mA	
E _{on} + E _{off}	$I_{\rm C}^{\rm J}$ = 300 A, $V_{\rm CC}$ =	600 V			90		mJ	
	T _j = 125 °C, V _{CC} =	900 V			159		mJ	
R _{CC+EE}	terminal chip, T _i =	25 °C			0,5		mΩ	
L _{CE}	top, bottom				12		nH	
C _{CHC}	per phase, AC-sid	е			1,7		nF	
Inverse o								
$V_F = V_{EC}$	I _F = 300 A, T _j = 25 measured at terminal	(125) °C			1,8 (1,5)	2,3	V	
V_{TO}	T _j = 25 (125) °C				1 (0,7)	1,2 (0,9)	V	
r _T	T _i = 25 (125) °C				2,6 (2,8)	3,5 (3,7)	mΩ	
E _{rr}	$I_{\rm C} = 300 \text{ A}, V_{\rm CC} =$	600 V			24		mJ	
	$T_j = 125 ^{\circ}\text{C}, V_{CC} =$	900 V			31		mJ	
Mechani	Mechanical data							
M_{dc}	DC terminals, SI U	Inits		6		8	Nm	
M_{ac}	AC terminals, SI U			13	2,4	15	Nm	
W	SKiiP® 3 System w/o heat sink				kg			
W	heat sink	heat sink			7,5			
	characteristics e to heat sink; 5)							
$R_{th(j-s)l}$	per IGBT					0,059	K/W	
R _{th(j-s)D}	per diode					0,115	K/W	
Z _{th}	R _i (mK/W) (max. v	R _i (mK/W) (max. values)			tau _i (s)			
	1 2	3	4	1	2	3	4	
$Z_{th(j-r)I}$	10,2 28,8	21	0	363	0,18	0,04	1	
$Z_{th(j-r)D}$	36 36	54	60	30	5	0,25	0,04	

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

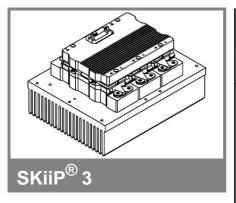
1,4

210

85

11

0,4


20

5,5

2,1

 $Z_{th(r-a)}$

SKiiP 513GD122-3DUL

6-pack-integrated intelligent Power System

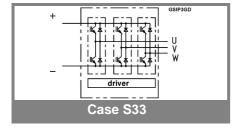
6-pack integrated gate driver SKiiP 513GD122-3DUL

Preliminary Data

Gate driver features

- · CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and

DC-bus voltage (option)


- Short circuit protection
- Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- Isolation by transformer
- IEC 60068-1 (climate) 40/85/56
- UL recognized file no. 242581

Absolute Maximum Ratings		T _a = 25 °C unless otherwise specified		
Symbol	Conditions	Values	Units	
V_{S2}	unstabilized 24 V power supply	30	V	
V_{i}	input signal voltage (high)	15 + 0,3	V	
dv/dt	secondary to primary side	75	kV/μs	
V_{isollO}	input / output (AC, rms, 2 s)	3000	V	
V _{isoIPD}	partial discharge extinction voltage, rms, $Q_{PD} \le 10 \text{ pC}$;	1170	V	
V _{isol12}	output 1 / output 2 (AC, rms, 2 s)	1500	V	
f _{sw}	switching frequency	15	kHz	
f _{out}	output frequency for I=I _C ; sin.	1	kHz	
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C	

Characte	eristics	(T _a			= 25 °C)
Symbol	Conditions	min.	typ.	max.	Units
V_{S2}	supply voltage non stabilized	13	24	30	V
I _{S2}	V _{S2} = 24 V	365+30*f/kHz+0,00111*(I _{AC} /A) ²		mA	
V _{iT+}	input threshold voltage (High)			12,3	V
V_{iT-}	input threshold voltage (Low)	4,6			V
R _{IN}	input resistance		10		kΩ
C _{IN}	input capacitance		1		nF
t _{d(on)IO}	input-output turn-on propagation time		1,3		μs
t _{d(off)IO}	input-output turn-off propagation time		1,3		μs
t _{pERRRESET}	error memory reset time		9		μs
t _{TD}	top / bottom switch interlock time		3,3		μs
I _{analogOUT}	max. 5 mA; 8 V corresponds to 15 V supply voltage for external components		500		Α
I _{s1out}	max. load current			50	mA
I _{TRIPSC}	over current trip level (I _{analog} OUT = 10 V)		625		Α
T_tp	over temperature protection	110		120	°C
UDCTRIP	U _{DC} -protection (U _{analog OUT} = 9 V); (option for GB types)		900		V

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

