FEATURES

0.5Ω typ on resistance
 0.8Ω max on resistance at $125^{\circ} \mathrm{C}$
 1.65 V to 3.6 V operation

Automotive temperature range: $-\mathbf{4 0 ^ { \circ }} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
High current carrying capability: $\mathbf{3 0 0} \mathbf{~ m A}$ continuous
Rail-to-rail switching operation
Fast switching times: <25 ns
Typical power consumption < $0.1 \mu \mathrm{~W}$

APPLICATIONS

Cellular phones

MP3 players
Power routing
Battery-powered systems
PCMCIA cards
Modems
Audio and video signal routing
Communications systems

GENERAL DESCRIPTION

The ADG811, ADG812, and ADG813 are low voltage CMOS devices containing four independently selectable switches.
These switches offer ultralow on resistance of less than 0.8Ω over the full temperature range. The digital inputs can handle 1.8 V logic with a 2.7 V to 3.6 V supply.

These devices contain four independent single-pole/singlethrow (SPST) switches. The ADG811 and ADG812 differ only in that the digital control logic is inverted. The ADG811 switches are turned on with a logic low on the appropriate control input, while a logic high is required to turn on the switches of the ADG812. The ADG813 contains two switches whose digital control logic is similar to the ADG811, while the logic is inverted on the other two switches.

Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. The ADG813 exhibits break-before-make switching action.

The ADG811, ADG812, and ADG813 are fully specified for $3.3 \mathrm{~V}, 2.5 \mathrm{~V}$, and 1.8 V supply operation. They are available in a 16-lead TSSOP package.

Rev. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAMS

PRODUCT HIGHLIGHTS

1. $<0.8 \Omega$ over full temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
2. Single 1.65 V to 3.6 V operation.
3. Operational with 1.8 V CMOS logic.
4. High current handling capability (300 mA continuous current at 3.3 V).
5. Low THD $+\mathrm{N}(0.02 \%$ typ $)$.

ADG811/ADG812/ADG813

TABLE OF CONTENTS

ADG811/ADG812/ADG813-Specifications 3	Typical Performance Characteristics 8
Absolute Maximum Ratings.. 6	Test Circuits... 11
ESD Caution.. 6	Outline Dimensions ... 13
Pin Configuration and Function Descriptions......................... 7	Ordering Guide .. 13
REVISION HISTORY	
5/04-Data Sheet Changed from Rev. 0 to Rev. A	
Updated Format..Universal	
Updated Package Choices.......................................Universal	

ADG811/ADG812/ADG813—SPECIFICATIONS

Table 1. $\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted ${ }^{1}$

[^0]
ADG811/ADG812/ADG813

Table 2. $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted ${ }^{1}$

Parameter	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On Resistance Match between Channels (Δ Ron) On Resistance Flatness (Rflation)	$\begin{aligned} & 0.65 \\ & 0.72 \\ & 0.04 \\ & \\ & 0.16 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.08 \\ & 0.23 \end{aligned}$	0 V to V_{DD} 0.88 0.085 0.24	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA} ;$ Figure 18 $\begin{aligned} & V_{D D}=2.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{s}}=0.55 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=2.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{s}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{s}}=10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage Is (OFF) Drain Off Leakage I_{D} (OFF) Channel On Leakage $I_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathrm{ON})$	$\begin{aligned} & \pm 0.2 \\ & \pm 1 \\ & \pm 0.2 \\ & \pm 1 \\ & \pm 0.2 \\ & \pm 1 \end{aligned}$	± 6 ± 6 ± 11	$\begin{aligned} & \pm 35 \\ & \pm 35 \\ & \pm 70 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V} \mathrm{VD}_{\mathrm{D}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=0.6 \mathrm{~V} / 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=2.4 \mathrm{~V} / 0.6 \mathrm{~V} ; \end{aligned}$ Figure 19 $\mathrm{V}_{\mathrm{S}}=0.6 \mathrm{~V} / 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=2.4 \mathrm{~V} / 0.6 \mathrm{~V} ;$ Figure 19 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=0.6 \mathrm{~V} \text { or } 2.4 \mathrm{~V} \text {; Figure } 20$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, $\mathrm{V}_{\mathrm{INL}}$ Input Current, I_{NL} or $\mathrm{I}_{\mathrm{INH}}$ CIN, Digital Input Capacitance	0.005 6		$\begin{gathered} 1.7 \\ 0.7 \\ \pm 0.1 \end{gathered}$	\vee min V max μA typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
```DYNAMIC CHARACTERISTICS² ton toff Break-Before-Make Time Delay ( tввм ) (ADG813 only) Charge Injection Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion (THD + N) Insertion Loss -3 dB Bandwidth \(\mathrm{C}_{s}\) (OFF) \(C_{D}\) (OFF) \(\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}(\mathrm{ON})\)```	$\begin{aligned} & 22 \\ & 27 \\ & 4 \\ & 6 \\ & 18 \\ & 25 \\ & \\ & -67 \\ & \\ & -90 \\ & \\ & 0.022 \\ & -0.06 \\ & 90 \\ & 32 \\ & 37 \\ & 60 \end{aligned}$	29 7	30 8 5	ns typ ns max ns typ ns max ns typ ns min pC typ   dB typ   dB typ   \%   dB typ   MHz typ   pF typ   pF typ   pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} / 0 \mathrm{~V} ; \text { Figure } 21 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} ; \text { Figure } 21 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=1.5 \mathrm{~V} ; \text { Figure } 22 \\ & \mathrm{~V}_{\mathrm{S}}=1.25 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ; \end{aligned}$   Figure 23 $\mathrm{RL}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} ;$   Figure 24 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} ;$   Figure 26 $\mathrm{R}_{\mathrm{L}}=32 \Omega, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz},$ $V_{s}=1.5 \vee p-p$ $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz}$ $R \mathrm{~L}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \text {; Figure } 25$
POWER REQUIREMENTS ldD	0.003		4	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \text { VDD }=2.7 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 2.7 \mathrm{~V} \end{aligned}$

[^1]Table 3. $\mathrm{V}_{\mathrm{DD}}=1.65 \mathrm{~V}$ to $1.95 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted ${ }^{1}$

Parameter	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH   Analog Signal Range On Resistance (Ron)   On Resistance Match between Channels ( $\Delta$ Ron)	$\begin{aligned} & 1 \\ & 1.4 \\ & 2.5 \\ & 0.1 \end{aligned}$	2.2 4	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 2.2 \\ & 4 \end{aligned}$	V   $\Omega$ typ   $\Omega$ max   $\Omega$ max   $\Omega$ typ	$\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA} ;$   Figure 18 $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=1.65 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{s}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=1.65 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0.7 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS   Source Off Leakage Is (OFF)   Drain Off Leakage $\mathrm{I}_{\mathrm{D}}$ (OFF)   Channel On Leakage $I_{\mathrm{D},} \mathrm{I}_{\mathrm{s}}(\mathrm{ON})$	$\begin{aligned} & \pm 0.2 \\ & \pm 1 \\ & \pm 0.2 \\ & \pm 1 \\ & \pm 0.2 \\ & \pm 1 \\ & \hline \end{aligned}$	$\pm 5$   $\pm 5$   $\pm 9$	$\begin{aligned} & \pm 30 \\ & \pm 30 \\ & \pm 60 \end{aligned}$	nA typ   nA max   nA typ   nA max   nA typ   nA max	$\begin{aligned} & \mathrm{V} \mathrm{~V}_{\mathrm{DD}}=1.95 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=0.6 \mathrm{~V} / 1.65 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1.65 \mathrm{~V} / 0.6 \mathrm{~V} ; \end{aligned}$   Figure 19 $\mathrm{V}_{\mathrm{S}}=0.6 \mathrm{~V} / 1.65 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1.65 \mathrm{~V} / 0.6 \mathrm{~V} ;$   Figure 19 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=0.6 \mathrm{~V} \text { or } 1.65 \mathrm{~V} \text {; Figure } 20$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VinL Input Current, $\mathrm{I}_{\mathrm{NL}}$ or $\mathrm{I}_{\mathrm{INH}}$   CIN, Digital Input Capacitance	$0.005$   6		$\begin{aligned} & 0.65 \mathrm{~V}_{\mathrm{DD}} \\ & 0.35 \mathrm{~V}_{\mathrm{DD}} \\ & \pm 0.1 \end{aligned}$	$V$ min   V max   $\mu A$ typ   $\mu \mathrm{A}$ max   pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$   ton   toff   Break-Before-Make Time Delay ( $\mathrm{t}_{\text {ввм }}$ )   (ADG813 only)   Charge Injection   Off Isolation   Channel-to-Channel Crosstalk   Total Harmonic Distortion (THD + N)   Insertion Loss   -3 dB Bandwidth   $\mathrm{C}_{\mathrm{s}}$ (OFF)   $C_{D}$ (OFF)   $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}(\mathrm{ON})$	$\begin{aligned} & 27 \\ & 35 \\ & 6 \\ & 8 \\ & 20 \\ & 15 \\ & -67 \\ & \\ & -90 \\ & \\ & 0.14 \\ & -0.08 \\ & 90 \\ & 32 \\ & 38 \\ & 60 \end{aligned}$	36 9	37 10 5	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ \%   dB typ   MHz typ   pF typ   pF typ   pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} / 0 \mathrm{~V} ; \text { Figure } 21 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} ; \text { Figure } 21 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=1 \mathrm{~V} ; \text { Figure } 22 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ; \end{aligned}$   Figure 23 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} ;$   Figure 24 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} ;$   Figure 26 $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=32 \Omega, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{S}}=1.2 \mathrm{~V} \mathrm{p}-\mathrm{p} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \text { Figure } 25 \end{aligned}$
POWER REQUIREMENTS IDD	0.003		4	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=1.95 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 1.95 \mathrm{~V} \end{aligned}$

[^2]
## ADG811/ADG812/ADG813

## ABSOLUTE MAXIMUM RATINGS

Table 4. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted

Parameter	Rating
VDD to GND	-0.3 V to +4.6 V
Analog Inputs ${ }^{1}$	-0.3 V to $\mathrm{V} D+0.3 \mathrm{~V}$
Digital Inputs ${ }^{1}$	GND - 0.3 V to 4.6 V or 10 mA , whichever occurs first
Peak Current, S or D	(Pulsed at 1 ms , 10\% Duty Cycle Max)
3.3V Operation	500 mA
2.5 V Operation	460 mA
1.8 V Operation	420 mA
Continuous Current, S or D	
3.3 V Operation	300 mA
2.5 V Operation	275 mA
1.8 V Operation	250 mA
Operating Temperature Range Automotive (Y Version)	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
TSSOP Package	
$\theta_{\mathrm{JA}}$ Thermal Impedance	$150^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {лc }}$ Thermal Impedance	$27^{\circ} \mathrm{C} / \mathrm{W}$
IR Reflow, Peak Temperature $<20 \mathrm{sec}$	$235^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

[^3]
## ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Table 5. ADG811/ADG812 Truth Table

ADG811 IN	ADG812 IN	Switch Condition
0	1	On
1	0	Off

Table 6. ADG813 Truth Table

Logic	Switch 1, Switch 4	Switch 2, Switch 3
0	Off	On
1	On	Off

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS



Figure 2.
Table 7. Terminology

Term	Definition
$\mathrm{V}_{\mathrm{DD}}$	Most positive power supply potential.
ldo	Positive supply current.
GND	Ground (0 V) reference.
S	Source terminal. May be an input or output.
D	Drain terminal. May be an input or output.
IN	Logic control input.
$V_{D}, V_{s}$	Analog voltage on Terminals D, S.
Ron	Ohmic resistance between D and S.
Rflat (on)	Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.
$\Delta$ Ron	On resistance match between any two channels, i.e., Ron max - Ron min.
$\mathrm{I}_{5}$ (OFF)	Source leakage current with the switch off.
ld (OFF)	Drain leakage current with the switch off.
$\mathrm{ld}_{\mathrm{L}} \mathrm{Is}^{\text {(ON }}$ )	Channel leakage current with the switch on.
$\mathrm{V}_{\text {INL }}$	Maximum input voltage for Logic 0.
$\mathrm{V}_{\text {INH }}$	Minimum input voltage for Logic 1.
Inct (linh)	Input current of the digital input.
$\mathrm{C}_{S}$ (OFF)	Off switch source capacitance. Measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}$ (OFF)	Off switch drain capacitance. Measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{S}(\mathrm{ON})$	On switch capacitance. Measured with reference to ground.
$\mathrm{Cin}^{\text {a }}$	Digital input capacitance.
ton	Delay time between the $50 \%$ and the $90 \%$ points of the digital input and switch on condition.
toff	Delay time between the $50 \%$ and the $90 \%$ points of the digital input and switch off condition.
tввм $^{\text {d }}$	On or off time measured between the $80 \%$ points of both switches, when switching from one to another.
Charge Injection	A measure of the glitch impulse transferred from the digital input to the analog output during on-to-off switching.
Off Isolation	A measure of unwanted signal coupling through an off switch.
Crosstalk	A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.
-3 dB Bandwidth	The frequency at which the output is attenuated by 3 dB .
On Response	The frequency response of the on switch.
Insertion Loss	The loss due to the on resistance of the switch.
THD + N	The ratio of the harmonic amplitudes plus noise of a signal to the fundamental.

TYPICAL PERFORMANCE CHARACTERISTICS


Figure 3. On Resistance vs. $V_{D}\left(V_{S}\right), V_{D D}=2.7 \mathrm{~V}$ to 3.6 V


Figure 4. On Resistance vs. $V_{D}\left(V_{s}\right), V_{D D}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$


Figure 5. On Resistance vs. $V_{D}\left(V_{S}\right), V_{D D}=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$


Figure 6. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperatures, $V_{D D}=3.3 \mathrm{~V}$


Figure 7. On Resistance vs. $V_{D}\left(V_{s}\right)$ for Different Temperatures, $V_{D D}=2.5 \mathrm{~V}$


Figure 8. On Resistance vs. $V_{D}\left(V_{s}\right)$ for Different Temperatures, $V_{D D}=1.8 \mathrm{~V}$


Figure 9. Leakage Currents vs. Temperature, $V_{D D}=3.3 \mathrm{~V}$


Figure 10. Leakage Currents vs. Temperature, $V_{D D}=2.5 \mathrm{~V}$


Figure 11. Leakage Currents vs. Temperature, $V_{D D}=1.8 \mathrm{~V}$


Figure 12. Charge Injection vs. Source Voltage


Figure 13. ton/toff Times vs. Temperature


Figure 14. Bandwidth

## ADG811/ADG812/ADG813



Figure 15. Crosstalk vs. Frequency


Figure 16. Off Isolation vs. Frequency


Figure 17. Total Harmonic Distortion

## ADG811/ADG812/ADG813

## TEST CIRCUITS



Figure 18. On Resistance


Figure 19. Off Leakage


Figure 20. On Leakage


Figure 21. Switching Times


Figure 22. Break-Before-Make Time Delay, $t_{B B M}$ (ADG813)


Figure 23. Charge Injection

## ADG811/ADG812/ADG813



Figure 24. Off Isolation


Figure 25. Bandwidth


Figure 26. Channel-to-Channel Crosstalk

## ADG811/ADG812/ADG813

## OUTLINE DIMENSIONS



Figure 27. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16)
Dimensions shown in millimeters

ORDERING GUIDE	Temperature Range	Package Description	Package Option
Model	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline (TSSOP)	RU-16
ADG811YRU	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline (TSSOP)	RU-16
ADG811YRU-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline (TSSOP)	RU-16
ADG811YRU-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline (TSSOP)	RU-16
AADG812YRU	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline (TSSOP)	RU-16
ADG812YRU-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline (TSSOP)	RU-16
ADG812YRU-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline (TSSOP)	RU-16
ADG813YRU	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline (TSSOP)	RU-16
ADG813YRU-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline (TSSOP)	RU-16
ADG813YRU-REEL7			

## ADG811/ADG812/ADG813

## NOTES

NOTES

## ADG811/ADG812/ADG813

## NOTES


[^0]:    ${ }^{1}$ Temperature range for the Y version is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
    ${ }^{2}$ Guaranteed by design, not subject to production test.

[^1]:    ${ }^{1}$ Temperature range for the Y version is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
    ${ }^{2}$ Guaranteed by design, not subject to production test.

[^2]:    ${ }^{1}$ Temperature range for the Y version is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
    ${ }^{2}$ Guaranteed by design, not subject to production test.

[^3]:    ${ }^{1}$ Overvoltages at $\mathrm{IN}, \mathrm{S}$, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

