$< 0.5 \Omega$ CMOS 1.65 V to 3.6 V **Quad SPST Switches**

ADG811/ADG812/ADG813

FEATURES

 0.5Ω typ on resistance 0.8Ω max on resistance at 125°C 1.65 V to 3.6 V operation

Automotive temperature range: -40°C to +125°C High current carrying capability: 300 mA continuous

Rail-to-rail switching operation Fast switching times: <25 ns

Typical power consumption $< 0.1 \mu W$

APPLICATIONS

Cellular phones **MP3 players Power routing Battery-powered systems PCMCIA** cards **Modems** Audio and video signal routing **Communications systems**

GENERAL DESCRIPTION

The ADG811, ADG812, and ADG813 are low voltage CMOS devices containing four independently selectable switches. These switches offer ultralow on resistance of less than 0.8 Ω over the full temperature range. The digital inputs can handle 1.8 V logic with a 2.7 V to 3.6 V supply.

These devices contain four independent single-pole/singlethrow (SPST) switches. The ADG811 and ADG812 differ only in that the digital control logic is inverted. The ADG811 switches are turned on with a logic low on the appropriate control input, while a logic high is required to turn on the switches of the ADG812. The ADG813 contains two switches whose digital control logic is similar to the ADG811, while the logic is inverted on the other two switches.

Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. The ADG813 exhibits break-before-make switching action.

The ADG811, ADG812, and ADG813 are fully specified for 3.3 V, 2.5 V, and 1.8 V supply operation. They are available in a 16-lead TSSOP package.

FUNCTIONAL BLOCK DIAGRAMS

Figure 1.

PRODUCT HIGHLIGHTS

- <0.8 Ω over full temperature range of -40°C to +125°C.
- Single 1.65 V to 3.6 V operation.
- Operational with 1.8 V CMOS logic. 3.
- High current handling capability (300 mA continuous current at 3.3 V).
- Low THD+N (0.02% typ).

Rev. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

ADG811/ADG812/ADG813—Specifications	Typical Performance Characteristics
Absolute Maximum Ratings	Test Circuits
ESD Caution6	Outline Dimensions
Pin Configuration and Function Descriptions	Ordering Guide

REVISION HISTORY

5/04—Data Sheet Changed from Rev. 0 to Rev. A

11/03—Revision 0: Initial Version

ADG811/ADG812/ADG813—SPECIFICATIONS

Table 1. $V_{DD} = 2.7 \text{ V}$ to 3.6 V, GND = 0 V, unless otherwise noted¹

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0 V to V_{\text{DD}}$	V	
On Resistance (R _{ON})	0.5			Ω typ	$V_{DD} = 2.7 \text{ V}, V_S = 0 \text{ V to } V_{DD}, I_S = 10 \text{ mA}$
	0.65	0.75	0.8	Ω max	Figure 18
On Resistance Match between	0.04			Ω typ	$V_{DD} = 2.7 \text{ V}, V_S = 0.5 \text{ V}, I_S = 10 \text{ mA}$
Channels (ΔR_{ON})		0.075	0.08	Ω max	
On Resistance Flatness (RFLAT(ON))	0.1			Ω typ	$V_{DD} = 2.7 \text{ V}, V_S = 0 \text{ V to } V_{DD}, I_S = 10 \text{ mA}$
		0.15	0.16	Ω max	
LEAKAGE CURRENTS					$V_{DD} = 3.6 \text{ V}$
Source Off Leakage Is (OFF)	±0.2			nA typ	$V_S = 0.6 \text{ V/3.3 V}, V_D = 3.3 \text{ V/0.6 V};$
	±1	±8	±80	nA max	Figure 19
Drain Off Leakage I _D (OFF)	±0.2			nA typ	$V_S = 0.6 \text{ V/3.3 V}, V_D = 3.3 \text{ V/0.6 V};$
	±1	±8	±80	nA max	Figure 19
Channel On Leakage ID, IS (ON)	±0.2			nA typ	$V_S = V_D = 0.6 \text{ V or } 3.3 \text{ V; Figure } 20$
	±1	±15	±90	nA max	
DIGITAL INPUTS					
Input High Voltage, VINH			2	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005			μA typ	V _{IN} = V _{INL} or V _{INH}
·			±0.1	μA max	
C _{IN} , Digital Input Capacitance	6			pF typ	
DYNAMIC CHARACTERISTICS ²					
ton	21			ns typ	$R_L = 50 \Omega, C_L = 35 pF$
	25	26	28	ns max	V _s = 1.5 V/0 V; Figure 21
toff	4			ns typ	$R_L = 50 \Omega, C_L = 35 pF$
	5	6	7	ns max	V _s = 1.5 V; Figure 21
Break-Before-Make Time Delay (t _{BBM})	17			ns typ	$R_L = 50 \Omega, C_L = 35 pF$
(ADG813 only)			5	ns min	$V_{S1} = V_{S2} = 1.5 \text{ V}$; Figure 22
Charge Injection	30			pC typ	$V_S = 1.5 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$ Figure 23
Off Isolation	-67			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; Figure 24
Channel-to-Channel Crosstalk	-90			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; Figure 26
Total Harmonic Distortion (THD + N)	0.02			%	$R_L = 32 \Omega$, $f = 20 Hz$ to 20 kHz, $V_S = 2 V p-p$
Insertion Loss	-0.05			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$
-3 dB Bandwidth	90			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Figure 25
C _s (OFF)	30			pF typ	
C _D (OFF)	35			pF typ	
C _D , C _s (ON)	60			pF typ	
POWER REQUIREMENTS					$V_{DD} = 3.6 \text{ V}$
I _{DD}	0.003			μA typ	Digital inputs = 0 V or 3.6 V
		1.0	4	μA max	-

 $^{^1\!}T\!$ emperature range for the Y version is –40°C to +125°C.

²Guaranteed by design, not subject to production test.

Table 2. V_{DD} = 2.5 V \pm 0.2 V, GND = 0 V, unless otherwise noted¹

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0V$ to V_{DD}	V	
On Resistance (R _{ON})	0.65			Ω typ	$V_{DD} = 2.3 \text{ V}, V_S = 0 \text{ V to } V_{DD}, I_S = 10 \text{ mA}$
	0.72	0.8	0.88	Ω max	Figure 18
On Resistance Match between	0.04			Ωtyp	$V_{DD} = 2.3 \text{ V}; V_S = 0.55 \text{ V}, I_S = 10 \text{ mA}$
Channels (ΔR _{ON})		0.08	0.085	Ω max	
On Resistance Flatness (RFLAT(ON))	0.16			Ωtyp	$V_{DD} = 2.3 \text{ V}; V_S = 0 \text{ V to } V_{DD}, I_S = 10 \text{ mA}$
		0.23	0.24	Ω max	
LEAKAGE CURRENTS					$V_{DD} = 2.7 \text{ V}$
Source Off Leakage Is (OFF)	±0.2			nA typ	$V_S = 0.6 \text{ V}/2.4 \text{ V}, V_D = 2.4 \text{ V}/0.6 \text{ V};$
-	±1	±6	±35	nA max	Figure 19
Drain Off Leakage I _D (OFF)	±0.2			nA typ	$V_S = 0.6 \text{ V}/2.4 \text{ V}, V_D = 2.4 \text{ V}/0.6 \text{ V};$
_	±1	±6	±35	nA max	Figure 19
Channel On Leakage ID, IS (ON)	±0.2			nA typ	$V_S = V_D = 0.6 \text{ V or } 2.4 \text{ V; Figure } 20$
_	±1	±11	±70	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			1.7	V min	
Input Low Voltage, V _{INL}			0.7	V max	
Input Current, I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
,			±0.1	μA max	
C _{IN} , Digital Input Capacitance	6			pF typ	
DYNAMIC CHARACTERISTICS ²				1 71	
t _{on}	22			ns typ	$R_L = 50 \Omega, C_L = 35 pF$
	27	29	30	ns max	$V_S = 1.5 \text{ V/ 0 V; Figure 21}$
t _{OFF}	4			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
-511	6	7	8	ns max	$V_S = 1.5 \text{ V}$; Figure 21
Break-Before-Make Time Delay (t _{BBM})	18	•		ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
(ADG813 only)			5	ns min	$V_{S1} = V_{S2} = 1.5 \text{ V}$; Figure 22
Charge Injection	25		3	pC typ	$V_S = 1.25 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$
charge injection				Petyp	Figure 23
Off Isolation	-67			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; Figure 24
Channel-to-Channel Crosstalk	-90			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; Figure 26
Total Harmonic Distortion (THD + N)	0.022			%	$R_L = 32 \Omega$, $f = 20 \text{ Hz to } 20 \text{ kHz}$, $V_S = 1.5 \text{ V p-p}$
Insertion Loss	-0.06			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$
-3 dB Bandwidth	90			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Figure 25
C _s (OFF)	32			pF typ	
C _D (OFF)	37			pF typ	
C _D , C _s (ON)	60			pF typ	
POWER REQUIREMENTS				1 71	$V_{DD} = 2.7 \text{ V}$
I _{DD}	0.003			μΑ typ	Digital inputs = 0 V or 2.7 V
==		1.0	4	μA max	

 $^{^1}$ Temperature range for the Y version is –40°C to +125°C. 2 Guaranteed by design, not subject to production test.

Table 3. V_{DD} = 1.65 V to 1.95 V, GND = 0 V, unless otherwise noted¹

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0\ V\ to\ V_{DD}$	V	
On Resistance (Ron)	1			Ω typ	$V_{DD} = 1.8 \text{ V}, V_S = 0 \text{ V to } V_{DD}, I_S = 10 \text{ mA};$
	1.4	2.2	2.2	Ω max	Figure 18
	2.5	4	4	Ω max	$V_{DD} = 1.65 \text{ V}, V_S = 0 \text{ V to } V_{DD}, I_S = 10 \text{ m/s}$
On Resistance Match between Channels (ΔR_{ON})	0.1			Ωtyp	$V_{DD} = 1.65 \text{ V}, V_S = 0.7 \text{ V}, I_S = 10 \text{ mA}$
LEAKAGE CURRENTS					$V_{DD} = 1.95 \text{ V}$
Source Off Leakage I _s (OFF)	±0.2			nA typ	$V_S = 0.6 \text{ V}/1.65 \text{ V}, V_D = 1.65 \text{ V}/0.6 \text{ V};$
	±1	±5	±30	nA max	Figure 19
Drain Off Leakage I _D (OFF)	±0.2			nA typ	$V_S = 0.6 \text{ V}/1.65 \text{ V}, V_D = 1.65 \text{ V}/0.6 \text{ V};$
	±1	±5	±30	nA max	Figure 19
Channel On Leakage ID, IS (ON)	±0.2			nA typ	$V_S = V_D = 0.6 \text{ V or } 1.65 \text{ V; Figure } 20$
	±1	±9	±60	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			$0.65V_{DD}$	V min	
Input Low Voltage, V _{INL}			$0.35V_{\text{DD}}$	V max	
Input Current, I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL}$ or V_{INH}
			±0.1	μA max	
CIN, Digital Input Capacitance	6			pF typ	
DYNAMIC CHARACTERISTICS ²					
ton	27			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
	35	36	37	ns max	V _s = 1.5 V/ 0 V; Figure 21
t _{OFF}	6			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
	8	9	10	ns max	V _S = 1.5 V; Figure 21
Break-Before-Make Time Delay (t _{bbm})	20			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
(ADG813 only)			5	ns min	$V_{S1} = V_{S2} = 1 \text{ V; Figure 22}$
Charge Injection	15			pC typ	$V_S = 1 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$ Figure 23
Off Isolation	-67			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; Figure 24
Channel-to-Channel Crosstalk	-90			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; Figure 26
Total Harmonic Distortion (THD + N)	0.14			%	$R_L = 32 \Omega$, $f = 20 Hz$ to 20 kHz, $V_S = 1.2 V p-p$
Insertion Loss	-0.08			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$
–3 dB Bandwidth	90			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Figure 25
C _s (OFF)	32			pF typ	
C _D (OFF)	38			pF typ	
C_D , C_S (ON)	60			pF typ	
POWER REQUIREMENTS					V _{DD} = 1.95 V
I _{DD}	0.003			μA typ	Digital inputs = 0 V or 1.95 V
		1.0	4	μA max	

 $^{^1}Temperature$ range for the Y version is $-40^\circ C$ to $+125^\circ C.$ 2Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

Table 4. $T_A = 25^{\circ}C$, unless otherwise noted

Table 4. 1A – 23 C, umess other wise noted						
Parameter	Rating					
V _{DD} to GND	-0.3 V to +4.6 V					
Analog Inputs ¹	$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$					
Digital Inputs ¹	GND – 0.3 V to 4.6 V or 10 mA, whichever occurs first					
Peak Current, S or D	(Pulsed at 1 ms, 10% Duty Cycle Max)					
3.3 V Operation	500 mA					
2.5 V Operation	460 mA					
1.8 V Operation	420 mA					
Continuous Current, S or D						
3.3 V Operation	300 mA					
2.5 V Operation	275 mA					
1.8 V Operation	250 mA					
Operating Temperature Range Automotive (Y Version)	−40°C to +125°C					
Storage Temperature Range	–65°C to +150°C					
Junction Temperature	150°C					
TSSOP Package						
θ_{JA} Thermal Impedance	150°C/W					
θ_{JC} Thermal Impedance	27°C/W					
IR Reflow, Peak Temperature <20 sec	235°C					

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

Table 5. ADG811/ADG812 Truth Table

ADG811 IN	ADG812 IN	Switch Condition
0	1	On
1	0	Off

Table 6. ADG813 Truth Table

Logic	Switch 1, Switch 4	Switch 2, Switch 3
0	Off	On
1	On	Off

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

¹ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2.

Table 7. Terminology

Term	Definition
V_{DD}	Most positive power supply potential.
I _{DD}	Positive supply current.
GND	Ground (0 V) reference.
S	Source terminal. May be an input or output.
D	Drain terminal. May be an input or output.
IN	Logic control input.
V_D , V_S	Analog voltage on Terminals D, S.
Ron	Ohmic resistance between D and S.
R _{FLAT} (ON)	Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.
ΔR_{ON}	On resistance match between any two channels, i.e., Ron max – Ron min.
I _s (OFF)	Source leakage current with the switch off.
I _D (OFF)	Drain leakage current with the switch off.
I _D , I _S (ON)	Channel leakage current with the switch on.
V_{INL}	Maximum input voltage for Logic 0.
V _{INH}	Minimum input voltage for Logic 1.
I _{INL} (I _{INH})	Input current of the digital input.
C _s (OFF)	Off switch source capacitance. Measured with reference to ground.
C _D (OFF)	Off switch drain capacitance. Measured with reference to ground.
C_D , C_S (ON)	On switch capacitance. Measured with reference to ground.
C _{IN}	Digital input capacitance.
ton	Delay time between the 50% and the 90% points of the digital input and switch on condition.
toff	Delay time between the 50% and the 90% points of the digital input and switch off condition.
t _{BBM}	On or off time measured between the 80% points of both switches, when switching from one to another.
Charge Injection	A measure of the glitch impulse transferred from the digital input to the analog output during on-to-off switching.
Off Isolation	A measure of unwanted signal coupling through an off switch.
Crosstalk	A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.
–3 dB Bandwidth	The frequency at which the output is attenuated by 3 dB.
On Response	The frequency response of the on switch.
Insertion Loss	The loss due to the on resistance of the switch.
THD + N	The ratio of the harmonic amplitudes plus noise of a signal to the fundamental.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. On Resistance vs. V_D (V_S), $V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$

Figure 4. On Resistance vs. V_D (V_S), V_{DD} = 2.5 $V \pm 0.2 V$

Figure 5. On Resistance vs. V_D (V_S), V_{DD} = 1.8 V ± 0.15 V

Figure 6. On Resistance vs. V_D (V_S) for Different Temperatures, $V_{DD} = 3.3 \text{ V}$

Figure 7. On Resistance vs. V_D (V_S) for Different Temperatures, $V_{DD} = 2.5 \text{ V}$

Figure 8. On Resistance vs. V_D (V_S) for Different Temperatures, $V_{DD} = 1.8 \text{ V}$

Figure 9. Leakage Currents vs. Temperature, $V_{DD} = 3.3 \text{ V}$

Figure 10. Leakage Currents vs. Temperature, $V_{DD} = 2.5 V$

Figure 11. Leakage Currents vs. Temperature, $V_{DD} = 1.8 \text{ V}$

Figure 12. Charge Injection vs. Source Voltage

Figure 13. ton/toff Times vs. Temperature

Figure 14. Bandwidth

04306-A-014

04306-A-011

Figure 15. Crosstalk vs. Frequency

Figure 16. Off Isolation vs. Frequency

Figure 17. Total Harmonic Distortion

04306-A-017

TEST CIRCUITS

Figure 18. On Resistance

Figure 19. Off Leakage

Figure 20. On Leakage

Figure 21. Switching Times

Figure 22. Break-Before-Make Time Delay, tbbm (ADG813)

Figure 23. Charge Injection

Figure 24. Off Isolation

Figure 25. Bandwidth

Figure 26. Channel-to-Channel Crosstalk

OUTLINE DIMENSIONS

Figure 27. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16)

Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option				
ADG811YRU	-40°C to +125°C	Thin Shrink Small Outline (TSSOP)	RU-16				
ADG811YRU-REEL	-40°C to +125°C	Thin Shrink Small Outline (TSSOP)	RU-16				
ADG811YRU-REEL7	-40°C to +125°C	Thin Shrink Small Outline (TSSOP)	RU-16				
AADG812YRU	-40°C to +125°C	Thin Shrink Small Outline (TSSOP)	RU-16				
ADG812YRU-REEL	-40°C to +125°C	Thin Shrink Small Outline (TSSOP)	RU-16				
ADG812YRU-REEL7	-40°C to +125°C	Thin Shrink Small Outline (TSSOP)	RU-16				
ADG813YRU	-40°C to +125°C	Thin Shrink Small Outline (TSSOP)	RU-16				
ADG813YRU-REEL	-40°C to +125°C	Thin Shrink Small Outline (TSSOP)	RU-16				
ADG813YRU-REEL7	-40°C to +125°C	Thin Shrink Small Outline (TSSOP)	RU-16				

NOTES

NOTES

ADG811/ADG812/ADG813	
----------------------	--

NOTES

