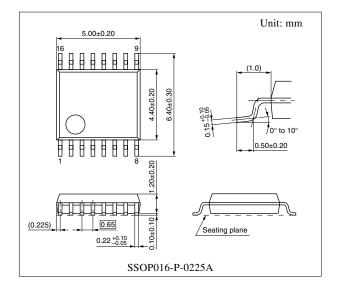
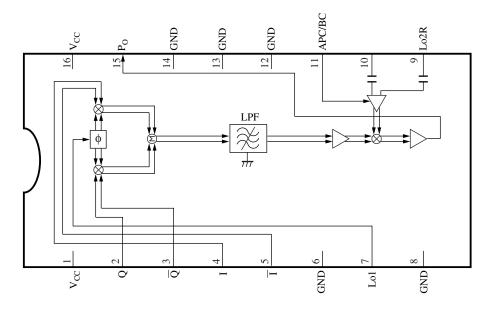
AN6091SA

Quadrature modulation IC for mobile communications

■ Overview


The AN6091SA is a quadrature modulation IC for 1.5 GHz band digital cellular telephone, and incorporates a phase shifter, up-mixer and APC function as well as a quadrature modulator.

■ Features


- Low current consumption: 27 mA at $V_{CC} = 3 \text{ V}$
- APC built-in
- Excellent modulation precision characteristic

■ Applications

• Cellular telephone

■ Block Diagram

1

■ Pin Descriptions

Pin No.	Description	Pin No.	Description
1	V _{CC} (MOD)	9	Lo2R
2	Q input	10	Lo2
3	Q input	11	APC/BS
4	I input	12	GND
5	Ī input	13	GND
6	GND	14	GND
7	Lo1	15	RF ouput
8	GND	16	V _{CC} (up-mixer)

■ Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage	V _{CC}	4.2	V
Supply current	I _{CC}	60	mA
Power dissipation *2	P_{D}	252	mW
Operating ambient temperature *1	T _{opr}	-30 to +80	°C
Storage temperature *1	T_{stg}	-55 to +125	°C

Note) *1: Except for the operating ambient temperature and storage temperature, all ratings are for $T_a = 25$ °C.

■ Recommended Operating Range

Parameter	Symbol	Range	Unit	
Supply voltage	V _{CC}	2.7 to 4.0	V	

■ Electrical Characteristics at $T_a = 25$ °C

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Outout level 1	P _{O1}	Lo1 = 178 MHz, -15 dBm	-16	-13	-10	dBm
		Lo2 = 1607 MHz, -20 dBm				
		$V_{APC} = 2.3 \text{ V}$				
Outout level 2	P _{O2}	Lo1 = 178 MHz, -15 dBm	-16	-13	-10	dBm
		Lo2 = 1631 MHz, -20 dBm				
		$V_{APC} = 2.3 \text{ V}$				
Current consumption	I _{CC}	Lo1 = 178 MHz, -15 dBm	_	27	35	mA
		Lo2 = 1619 MHz, -20 dBm				
		$V_{APC} = 2.3 \text{ V}$				
Sleep current	I_{SL}	No signal	_	0	10	μΑ
		$V_{APC} = 0 V$				

2 Panasonic

^{*2:} $T_a = 80^{\circ}C$.

■ Electrical Characteristics at T_a = 25°C (continued)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Minimum output level	P _{MIN}	Lo1 = 178 MHz, -15 dBm	_	-50	-43	dBm
		Lo2 = 1619 MHz, -20 dBm				
		$V_{APC} = 1.0 \text{ V}$				

Note) $V_{CC} = 3.0 \text{ V}$

IQ signal amplitude: 0.5 V[p-p] (single phase), DC bias: 1.7 V, $\pi/4$ QPSK-modulated

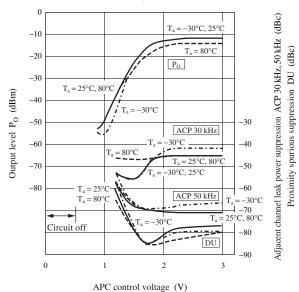
 P_{O1} output frequency: 1 429.0025 MHz P_{O2} output frequency: 1 453.0025 MHz P_{MIN} output frequency: 1 441.0025 MHz

Design reference data

Note) The characteristics listed below are theoretical values based on the IC design and are not guaranteed.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Carrier leak suppression $(f_{LO2} - f_{LO1})$	CL	Lo1 = 178 MHz, -15 dBm Lo2 = 1619 MHz, -20 dBm $V_{APC} = 2.3$ V, IQ: DC offset adjustment	_	-35	_	dBc
Image leak suppression	IL	Lo1 = 178 MHz, -15 dBm Lo2 = 1 619 MHz, -20 dBm $V_{APC} = 2.3$ V, IQ: Level adjustment		-40	_	dBc
Proximity spurious suppression	DU	Lo1 = 178 MHz, -15 dBm Lo2 = 1 619 MHz, -20 dBm $V_{APC} = 2.3 \text{ V}$		-70	-65	dBc
Base band distortion suppression	BD	ditto	_	-40	_	dBc
Adjacent channel leak power suppression (30 kHz detuning)	BL1	ditto		-45	-38	dBc
Adjacent channel leak power suppression (50 kHz detuning)	BL2	ditto	_	-70	-60	dBc
Adjacent channel leak power suppression (100 kHz detuning)	BL3	ditto	_	_	-65	dBc
APC variable width	L _{APC}	Lo1 = 178 MHz, -15 dBm Lo2 = 1619 MHz, -20 dBm $V_{APC} = 1.0 \text{ V to } 2.3 \text{ V}$	30	37	_	dB
APC output level control sensitivity	S _{APC}	Lo1 = 178 MHz, -15 dBm Lo2 = 1 619 MHz, -20 dBm V _{APC} = 1.0 V/1.6 V	_	46	_	dB/0.1 V
In-band output level deviation	ΔΡ	Lo1 = 178 MHz, -15 dBm Lo2 = 1607 MHz to 1631 MHz, -20 dBm $V_{APC} = 2.3 \text{ V}$	-1.5	_	+1.5	dB
Modulation precision	EVM	Lo1 = 178 MHz, -15 dBm Lo2 = 1619 MHz, -20 dBm $V_{APC} = 2.3 \text{ V}$	_	2.0		%[rms]

Note) Unless otherwise specified, $V_{CC} = 3.0 \text{ V}$


IQ signal: 0.5 V[p-p] (single phase), DC bias: 1.7 V

BL1, BL2, BL3, EVM: $\pi/4$ QPSK-modulated CL, IL, DU, BD, L_{APC} , S_{APC} , ΔP : PN9 stages

Panasonic 3

■ Technical Data

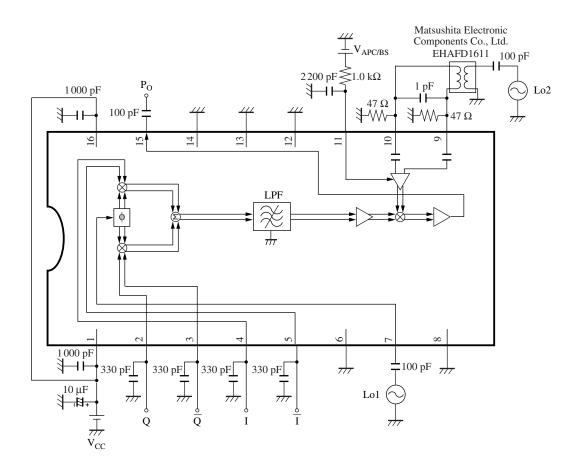
Test circuit: "■ Application Circuit Example"

 $V_{CC} = 3.0 \text{ V}$

 $T_a = -30^{\circ}C, 25^{\circ}C, 80^{\circ}C$

Lo1: 178 MHz, -15 dBm

Lo2: 1619 MHz, -20 dBm


IQ: 0.5 V[p-p] (single phase), 1.7 V_{DC}

 $\pi/4$, using PN9 stage continuous wave

Note) 1. Unless otherwise specified, the test conditions are same as the electrical characteristics.

2. The above characteristics are theoretical values based on the IC design and are not guaranteed.

■ Application Circuit Example

Request for your special attention and precautions in using the technical information and semiconductors described in this material

- (1) An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technologies described in this material and controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan.
- (2) The technical information described in this material is limited to showing representative characteristics and applied circuit examples of the products. It does not constitute the warranting of industrial property, the granting of relative rights, or the granting of any license.
- (3) The products described in this material are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
 - Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - Any applications other than the standard applications intended.
- (4) The products and product specifications described in this material are subject to change without notice for reasons of modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the guaranteed values, in particular those of maximum rating, the range of operating power supply voltage and heat radiation characteristics. Otherwise, we will not be liable for any defect which may arise later in your equipment. Even when the products are used within the guaranteed values, redundant design is recommended, so that such equipment may not violate relevant laws or regulations because of the function of our products.
- (6) When using products for which dry packing is required, observe the conditions (including shelf life and after-unpacking standby time) agreed upon when specification sheets are individually exchanged.
- (7) No part of this material may be reprinted or reproduced by any means without written permission from our company.

Please read the following notes before using the datasheets

- A. These materials are intended as a reference to assist customers with the selection of Panasonic semiconductor products best suited to their applications.
 - Due to modification or other reasons, any information contained in this material, such as available product types, technical data, and so on, is subject to change without notice.
 - Customers are advised to contact our semiconductor sales office and obtain the latest information before starting precise technical research and/or purchasing activities.
- B. Panasonic is endeavoring to continually improve the quality and reliability of these materials but there is always the possibility that further rectifications will be required in the future. Therefore, Panasonic will not assume any liability for any damages arising from any errors etc. that may appear in this material.
- C. These materials are solely intended for a customer's individual use. Therefore, without the prior written approval of Panasonic, any other use such as reproducing, selling, or distributing this material to a third party, via the Internet or in any other way, is prohibited.