

Programmable DC Power Supplies 750W/1500W in 1U Built in RS232 & RS485 Interface GPIB (IEEE488/488.2 SCPI) optional.

*The Genesys*TM family of programmable power supplies sets a new standard for flexible, reliable, AC/DC power systems in OEM, Industrial and Laboratory applications.

Features include:

- Highest Power Density available 1500W in 1U
- Wide Range Input 85 265Vac Continuous, single phase, 47/63Hz
- Active Power Factor Correction 0.99
- Output up to 600V, Current up to 200A
- Built in RS232/RS485 Interface
- Software Calibration
- Last Setting Memory
- High Resolution 16 bits ADCs & DACs
- Reliable Encoders for Voltage and Current Adjustment
- Constant Voltage/Constant Current auto crossover
- Parallel Operation with Active Current Sharing
- Independent Remote ON/OFF and Remote Enable/Disable
- External Analog Programming and Monitoring
- Reliable Modular and SMT Design
- 19" Rack Mounted ATE and OEM applications
- Five Year Warranty
- Optional Isolated Analog Programming and Monitoring
- Optional GPIB (SCPI) Interface
- LabView® drivers (LabView® is registered trademark of National Instruments Corporation)

Worldwide Safety Agency Approvals CE Mark for LVD and EMC Regulation

Applications

Genesys[™] power supplies have been designed to meet the demands of a wide variety of applications.

Test and Measurement

Last setting memory simplifies test design and requires no battery backup. Built in RS232/RS485 gives maximum system flexibility along with 0-5V and 0-10V, selectable analog programming Wide range of available inputs allows testing of many different devices.

Semiconductor Burn-in

Safe Start may be enabled to restart at zero output to protect load.

Wide range input (85-265VAC) with Active Power Factor correction rides through input transients easily.

Component Test

High power density, zero stacking and single wire parallel operation give maximum system flexibility

Laser Diode

OVP is directly set on Voltage Meter, assuring accurate protection settings.

Current Limit Fold Back assures load is protected from current surges.

Heater Supplies

Smooth, reliable encoders enhance front panel control. Remote analog programming is user selectable 0-5V or 0-10V.

RF Amplifiers and Magnets

Robust design assures stable operation under a wide variety of loads. Excellent linearity in voltage and current mode.

1 Genesys[™] 750W/1500W-1U

Front Panel Description

- 1. AC On/Off
- 2. Air Intake allows zero stacking for maximum system flexibility and power density
- 3. Reliable encoder controls Output Voltage and sets Address.
- 4. Volt Meter shows Output Voltage and directly displays OVP, UVL and Address settings.
- 5. Amp Meter also displays baud rate.
- 6. Reliable encoder controls Output Current and sets baud rate.
- 7. Function/Status LED's
 - Alarm
 Foldback Mode
 - Fine Control
- Remote Mode
- Preview Settings
 Output On
- 8. Pushbuttons allow flexible user configuration

Coarse and Fine Voltage and Current Adjustment of Output Preview Settings and Set Voltage while in Current Mode or with Output OFF Set OVP and UVL Limits Set Current Foldback Local/Remote Mode and select Address and Baud Rate Output ON/OFF and Auto Start/Safe Start Mode

Rear Panel Description

- 1. Remote/Local Output Voltage Sense Connections
- 2. DIP Switches select 0-5V or 0-10V Programming and other functions.
- 3. DB25 (Female) connector allows (Non-isolated) Analog Program and Monitor as well as other functions.
- 4. RS485 Out to other Genesys Power Supplies
- 5. RS232/RS485 IN Remote Serial Programming
- 6. Output Terminals are rugged bus bars for 6-60V Output, higher output voltage models have terminal block connector.
- 7. Exit air assures reliable operation when zero stacked
- 8. Wide-Range Input 85-265VAC continuous, 47/63Hz with Active Power Factor Correction (0.99) AC Input Connector 750W: IEC320, 1500W: Screw terminal Model Shown
- 9. Position for Optional Isolated Analog Programming or GPIB Digital Interface model shown

Genesvs ™ 750W/1500W Specifications

Ochesys 7007	1100		Opt		ica		13							750W	1500W
1.0 MODEL	GEN	6-200	8-180	12.5-120	20-76	30-50	40-38	60-25	80-19	100-15	150-10	300-5	600-2.6		Х
1.Rated output voltage(*1)	V	6	8	12.5	20	30	40	60	80	100	150	300	600		Х
2.Rated Output Current(*2)	A	200	180	120	76	50	38	25	19	15	10	5	2.6		Х
3.Rated Output Power	W	1200	1440	1500	1520	1500	1520	1500	1520	1500	1500	1500	1560		Х
4.Efficiency at 100/200Vac (*3)	%	77/80	78/81	81/84	83/86	83/86	84/88	84/88	84/88	84/88	84/88	83/87	83/87	X	X
	GEN	6-100	8-90	12.5-60	20-38	30-25	40-19	60-12.5	80-9.5	100-7.5	150-5	300-2.5	600-1.3	x	
1.Rated output voltage (*1)		6	8	12.5	20	30	40	60	80	100	150	300	600	X	
2.Rated Output Current (*2)	A	100	90	60	38	25	19	12.5	9.5	7.5	5	2.5	1.3	X	
3.Rated Output Power	W	600	720	750	760	750	760	750	760	750	750	750	780	X	
1 Max line regulation (0.01% of Vo+ 2mV)(*	4) mV	2.6	2.8	33	4	5	6	8	10	12	17	32	62	Y	Y
2 Max load regulation (0.01% of Vo+2mV)(*	5) mV	2.0	2.8	33	4	5	6	8	10	12	17	32	62	× ×	x x
3.Ripple and noise p-p 20MHz		60	60	60	60	60	60	60	80	80	100	125	300	X	X
4.Ripple r.m.s. 5Hz~1MHz	mV	8	8	8	8	8	8	8	8	8	10	25	60	x	x
5.Remote sense compensation/line	V	1	1	1	1	1.5	2	3	4	5	5	5	5	X	x
6.Temp. coefficient	PPM/°C	: 100PPN	/°C from ra	ated outp	ut voltag	e.followin	na 30 mii	nutes wa	rm up					X	X
7.Up-prog. response time, 0~Vomax	mS	80mS	. N.L/F.L .	resistive	load		0		150mS	. N.L/F.L	. resistive	load		X	X
8.Down-prog response time full-load	mS	10	((50			80				150			X	X
9.Down-prog response time no-load	mS	500	600	700	800	900	1000	1100	1200	1500	2000	2500	4000	х	х
10.Transient response time (*8)		Less that	n 1mSec f	or model	s up to a	nd includ	ing 100\	/. 2msec	for mod	els above	e 100V			Х	Х
1 2 CONSTANT CURPENT MODE															
1 May line regulation (0.01% of lot 2mA)(*4)	mA	10	11	8	5.9	15	3.0	3.25	2.05	2 75	25	2.25	2 12	v I	
2 Max load regulation (0.01% of lo+2mA)(*4)	mA	12	1/	0	J.0 8 0	4.0	<u>3.9</u>	5.20 6.25	2.90	2.10 5.75	2.0	2.20 5.25	5 12	÷	
3 Ripple r m s 5Hz_1MHz /*7)	mA	200	190	120	76	1.0	10.3	30	2.90	22	10	12	0.10	- 	
1 Max line regulation (0.01% of lot 2mA)(*4)	m A	200	2	2	2	200	2	2	29	23	2	2	2		y
2 Max load regulation (0.01% of lo+5mA)(*e)	m^	5	5	5	5	5	5	5	5	5	5	5			×
3 Ripple r m s 5Hz~1MHz (*7)	mΔ	400	360	240	152	125	95	75	57	45	35	25	12		^ ¥
4 Temp coefficient	PPM/ºC	100PPM	/°C from r		ut voltan	e followin	a 30 mi	nutes wa	rm un	чJ	55	20	14	y I	- <u>v</u>
	1 1 1 1 1 1 1 1	1.001-11		u uup	arvonay	5,10110WII	.g oo mii		up						^
1.3 PROTECTIVE FUNCTIONS		10 4050	0	0											
		0~105%	Constant	Current				1						<u>X</u>	X
2. OCP Foldback		Output s	hut down v	when pov	ver suppl	y change	from C	V to CC.	User sel	ectable.				<u>X</u>	X
3. OVP type		Inverter	shut-down	, manual	reset by	AC input	recycle	or by OU	JI button				1	<u>X</u>	X
4. OVP trip point		0.5~7.5	<u> 0.5~10V </u>	<u>1~15V</u>	1~24V	2~36V	2~44V	5~66V	5~88V	5~110V	5~165V	5~330V	5~660V	<u> </u>	<u>X</u>
5. Over Temp. Protection		User sel	ectable , la	tched or	non latch	ned								<u> </u>	<u> </u>
1.4 ANALOG PROGRAMMING AND MONITO	RING														
1.Vout Voltage Programming		0~100%	, 0~5V or	0~10V, u	ser selec	t. Accura	cy and li	nearity:+	/-0.5% o	f rated Vo	out.			Х	Х
2.Iout Voltage Programming		0~100%	, 0~5V or (0~10V, u	ser selec	t. Accura	cy and li	nearity:+/	/-1% of r	ated lout				Х	Х
3.Vout Resistor Programming		0~100%	, 0~5/10Ko	ohm full s	cale,use	r select.,/	Accuracy	/ and line	arity:+/-	1% of rate	ed Vout.			Х	х
4. lout Resistor Programming		0~100%	, 0~5/10Ko	ohm full s	cale,use	r select. A	Accuracy	/ and line	arity:+/-1	1.5% of ra	ated lout.			Х	Х
5.On/Off control (rear panel)		By elect	rical. Volta	ge: 0~0.6	6V/2~15V	,or dry co	ontact ,u	ser selec	table log	jic				Х	Х
6.Output Current monitor		0~5V or	0~10V, ad	ccuracy:1	%, user	selectab	le							Х	Х
7.Output Voltage monitor		0~5V or	0~10V ,ac	curacy:19	% ,user s	electable)							Х	Х
8.Power Supply OK signal		5V-OK,	0V-Fail 50	0ohm im	pedance									Х	Х
9. CV/CC indicator		CV: TTL	high (4~5)	V) source	e: 10mA,	CC: TTL	low (0~0	0.4V):10r	nA					Х	Х
10. Enable/Disable		Dry cont	act. Open:	off, Shor	t: on. Ma	x. voltag	e at Ena	ble/Disat	ole in: 6V	/				Х	х
1.5 FRONT PANEL															
1 Control functions		Vout/ Io	it manual a	adiust by	separate	encode	rs (coars	e and fin	e adiusti	ment sele	ctable)			x	X
		OVP/U	L manual	adjust by	Volt. Adi	ust enco	der		o aajaoa		otabloj			X	x
		AC on/o	ff Output o	on/off Re	-start mo	des (aut	o safe)	Foldback	k control	(CV to C	C) Go to	local con	trol	X	X
		Address	selection	by Voltag	e (or cur	rent) adii	ust enco	der. No o	f addres	ses:31	0/, 00 10	100001 0011		X	X
		RS232/4	85 and IEI	EE488.2	selection	by IEEE	enable	switch ar	nd DIP s	witch				X	X
		Baud rat	e selection	n: 1200.2	400,4800	,9600 ar	nd 19.20	0 bps						х	Х
2.Display		Voltage	4 digits .	accuracy	: 0.5%+/	-1 count	., .								v
		Current	4 digits, a	accuracy:	0.5%+/-	4								X	
3.Indications						1 count								X	X
		Voltage,	Current, A	<u>larm, Fin</u>	<u>e, Previ</u> e	v, Foldba	ack, Loc	al, Outpu	t On					X X X	X X X
4 6 Intertees DC0000 DC40F 6	mtlanal	Voltage,	Current, A	larm, Fin	e, Previe	w, Foldba	ack, Loc	al, Outpu	t On					X X X	X X
1.6 Interface RS232&RS485 or C	optional	Voltage, GPIB In	Current, A terface	larm, Fin	e, Previe	w, Foldba	ack, Loc	al, Outpu	t On					X X X 750W	x x 1500W
1.6 Interface RS232&RS485 or C Model)ptional	Voltage, GPIB In 6	Current, A terface 8	larm, Fin 12.5	e, Previe 20	1 count w, Foldba 30	ack, Loc 40	al, Outpu 60	t On 80	100	150	300	600	X X 750W X	X X 1500W X
1.6 Interface RS232&RS485 or C Model Remote Voltage Programming (16 bit) Besolution (0.013% of Venerit))ptional	Voltage, GPIB In 6	Current, A terface 8	12.5	e, Previe 20	30	40	al, Outpu 60	t On 80	100	150	300	600	X X 750W X	X X 1500W X
1.6 Interface RS232&RS485 or C Model Remote Voltage Programming (16 bit) Resolution (0.012% of Vomax)	Detional V	Voltage, GPIB In 6 0.72	Current, A terface 8 0.96	12.5	e, Previe 20 2.40	30 3.60	40 40	60 7.2	t On 80 9.6	100 12	150	300	600 72	X X 750W X X	x x 1500W x x
1.6 Interface RS232&RS485 or C Model Remote Voltage Programming (16 bit) Resolution (0.012% of Vomax) Accuracy (0.05%Vomax+0.05% of Vo Actual Ou	Detional V mV utput) mV	Voltage, GPIB In 6 0.72 6.0	Current, A terface 8 0.96 8.0	larm, Fin 12.5 1.50 12.5	e, Previe 20 2.40 20	30 3.60 3.0	40 40 4.80 40	60 7.2 60	t On 80 9.6 80	100 12 100	150 18 150	300 36 300	600 72 600	X X 750W X X X X X	x x 1500W X x x x x
1.6 Interface RS232&RS485 or C Model Remote Voltage Programming (16 bit) Resolution (0.012% of Vomax) Accuracy (0.05%Vomax+0.05% of Vo Actual Ou Remote Current Programming (16 bit)	Detional V mV utput) mV	Voltage, GPIB In 6 0.72 6.0	Current, A terface 8 0.96 8.0	larm, Fin 12.5 1.50 12.5	e, Previe 20 2.40 20	30 3.60 3.0	40 4.80 40	60 7.2 60	t On 80 9.6 80	100 12 100	150 18 150	300 36 300	600 72 600	X X 750W X X X X	X X 1500W X X X X
1.6 Interface RS232&RS485 or C Model Remote Voltage Programming (16 bit) Resolution (0.012% of Vomax) Accuracy (0.05%Vomax+0.05% of Vo Actual Ou Remote Current Programming (16 bit) Resolution (0.012% of Iomax)	ptional V mV utput) mV mA	Voltage, GPIB In 6 0.72 6.0 12	Current, A terface 8 0.96 8.0 10.8	12.5 1.50 12.5 7.2	e, Previe 20 2.40 20 4.56	30 3.60 3.0 3.0	40 4.80 40 2.28	60 7.2 60 1.50	t On 80 9.6 80 1.14	100 12 100	150 18 150 0.60	300 36 300 0.30	600 72 600 0.16	X X 750W X X X X X X	x x 1500W x x x x x
1.6 Interface RS232&RS485 or C Model Remote Voltage Programming (16 bit) Resolution (0.012% of Vomax) Accuracy (0.05% Vomax+0.05% of Vo Actual Ou Remote Current Programming (16 bit) Resolution (0.012% of Iomax) Accuracy (0.05% of Iomax+0.05% of Io Actual Ou	Deptional V mV utput) mV mA utput) mA	Voltage, GPIB In 6 0.72 6.0 12 10	Current, A terface 8 0.96 8.0 10.8 9	larm, Fin 12.5 1.50 12.5 7.2 6	e, Previe 20 2.40 20 4.56 3.8	30 3.60 3.0 3.0 2.5	40 4.80 40 2.28 1.9	60 7.2 60 1.50 1.25	80 9.6 80 1.14 0.95	100 12 100 0.90 0.75	150 18 150 0.60 0.5	300 36 300 0.30 0.25	600 72 600 0.16 0.13	X X 750W X X X X X X X	x x 1500W x x x x x
1.6 Interface RS232&RS485 or C Model Remote Voltage Programming (16 bit) Resolution (0.012% of Vomax) Accuracy (0.05%Vomax+0.05% of Vo Actual Ou Remote Current Programming (16 bit) Resolution (0.012% of Iomax) Accuracy (0.05% of Iomax+0.05% of Io Actual Ou Resolution (0.012% of Iomax)	pptional V mV utput) mV mA utput) mA mA	Voltage, GPIB In 6 0.72 6.0 12 10 24	Current, A terface 8 0.96 8.0 10.8 9 21.6	larm, Fin 12.5 1.50 12.5 7.2 6 14.4	20 2.40 2.40 4.56 3.8 9.12	30 3.60 3.0 3.0 2.5 6	40 4.80 40 2.28 1.9 4.56	60 7.2 60 1.50 1.25 3.0	t On 80 9.6 80 1.14 0.95 2.28	100 12 100 0.90 0.75 1.80	150 18 150 0.60 0.5 1.20	300 36 300 0.30 0.25 0.60	600 72 600 0.16 0.13 0.32	X X 750W X X X X X X X	x x 1500W x x x x x x
1.6 Interface RS232&RS485 or C Model Remote Voltage Programming (16 bit) Resolution (0.012% of Vomax) Accuracy (0.05% Vomax+0.05% of Vo Actual Ou Remote Current Programming (16 bit) Resolution (0.012% of Iomax+0.05% of Io Actual Ou Resolution (0.012% of Iomax+0.05% of Io Actual Ou Accuracy (0.05% of Iomax+0.05% of Io Actual Ou	ptional V mV utput) mV mA utput) mA mA utput) mA	Voltage, GPIB In 6 0.72 6.0 12 10 24 20	Current, A terface 8 0.96 8.0 10.8 9 21.6 18	larm, Fin 12.5 1.50 12.5 7.2 6 14.4 12	20 2.40 20 4.56 3.8 9.12 7.6	30 3.60 3.60 3.0 2.5 6 5	40 4.80 40 2.28 1.9 4.56 3.8	60 7.2 60 1.50 1.25 3.0 2.5	t On 80 9.6 80 1.14 0.95 2.28 1.9	100 12 100 0.90 0.75 1.80 1.50	150 18 150 0.60 0.5 1.20 1	300 36 300 0.30 0.25 0.60 0.5	600 72 600 0.16 0.13 0.32 0.26	X X 750W X X X X X X X	x x 1500W x x x x x x x x
1.6 Interface RS232&RS485 or C Model Remote Voltage Programming (16 bit) Resolution (0.012% of Vomax) Accuracy (0.05% Vomax+0.05% of Vo Actual Ou Remote Current Programming (16 bit) Resolution (0.012% of Iomax) Accuracy (0.05% of Iomax+0.05% of Io Actual Ou Resolution (0.012% of Iomax) Accuracy (0.05% of Iomax+0.05% of Io Actual Ou	Pptional V mV utput) mV mA utput) mA mA utput) mA	Voltage, GPIB In 6 0.72 6.0 12 10 24 20	Current, A terface 8 0.96 8.0 10.8 9 21.6 18	larm, Fin 12.5 1.50 12.5 7.2 6 14.4 12	20 2.40 20 4.56 3.8 9.12 7.6	30 3.60 3.0 2.5 6 5	40 4.80 40 2.28 1.9 4.56 3.8	60 7.2 60 1.50 1.25 3.0 2.5	80 9.6 80 1.14 0.95 2.28 1.9	100 12 100 0.90 0.75 1.80 1.50	150 18 150 0.60 0.5 1.20 1	300 36 300 0.30 0.25 0.60 0.5	600 72 600 0.16 0.13 0.32 0.26	X X 750W X X X X X X	x x 1500W x x x x x x x x x x
1.6 Interface RS232&RS485 or C Model Remote Voltage Programming (16 bit) Resolution (0.012% of Vomax) Accuracy (0.05% Vomax+0.05% of Vo Actual Ou Remote Current Programming (16 bit) Resolution (0.012% of Iomax) Accuracy (0.05% of Iomax+0.05% of Io Actual Ou Resolution (0.012% of Iomax) Accuracy (0.05% of Iomax+0.05% of Io Actual Ou Resolution (0.012% of Iomax) Accuracy (0.05% of Iomax+0.05% of Io Actual Ou Readback Voltage	Pptional V mV utput) mV mA utput) mA mA utput) mA	Voltage, GPIB In 6 0.72 6.0 12 10 24 20	Current, A terface 8 0.96 8.0 10.8 9 21.6 18	larm, Fin 12.5 1.50 12.5 7.2 6 14.4 12 12	20 2.40 20 4.56 3.8 9.12 7.6	30 3.60 3.0 2.5 6 5	40 4.80 40 2.28 1.9 4.56 3.8	60 7.2 60 1.50 1.25 3.0 2.5	t On 80 9.6 80 1.14 0.95 2.28 1.9	100 12 100 0.90 0.75 1.80 1.50	150 18 150 0.60 0.5 1.20 1	300 36 300 0.30 0.25 0.60 0.5	600 72 600 0.16 0.13 0.32 0.26	X X X 750W X X X X X X X	x x 1500W x x x x x x
1.6 Interface RS232&RS485 or C Model Remote Voltage Programming (16 bit) Resolution (0.012% of Vomax) Accuracy (0.05%Vomax+0.05% of Vo Actual Ou Remote Current Programming (16 bit) Resolution (0.012% of Iomax) Accuracy (0.05% of Iomax+0.05% of Io Actual Ou Resolution (0.012% of Iomax) Accuracy (0.05% of Iomax+0.05% of Io Actual Ou Readback Voltage Resolution (0.012% of Vomax) Accuracy (0.040//orem.0.05% (1// Actual Ou	Pptional V mV utput) mV mA utput) mA mA utput) mA mV utput) mA	Voltage, GPIB In 6 0.72 6.0 12 10 24 20 0.72 6.0	Current, A terface 8 0.96 8.0 10.8 9 21.6 18 0.96 18	larm, Fin 12.5 1.50 12.5 7.2 6 14.4 12 1.50 0 25	2.40 20 4.56 3.8 9.12 7.6 2.40	30 3.60 3.60 3.0 2.5 6 5 3.60 3.0 2.5 6 5	40 4.80 40 2.28 1.9 4.56 3.8 4.80	60 7.2 60 1.50 1.25 3.0 2.5 7.2	t On 80 9.6 80 1.14 0.95 2.28 1.9 9.6 4.02	100 12 100 0.90 0.75 1.80 1.50 12 200	150 18 150 0.60 0.5 1.20 1 1 8	300 36 300 0.25 0.60 0.5 36	600 72 600 0.16 0.13 0.32 0.26	X X X 750W X X X X X X X X	x x 1500W x x x x x x x x
1.6 Interface RS232&RS485 or C Model Remote Voltage Programming (16 bit) Resolution (0.012% of Vomax) Accuracy (0.05% Vomax+0.05% of Vo Actual Ou Remote Current Programming (16 bit) Resolution (0.012% of Iomax) Accuracy (0.05% of Iomax+0.05% of Io Actual Ou Resolution (0.012% of Iomax+0.05% of Io Actual Ou Resolution (0.012% of Iomax) Accuracy (0.05% of Iomax+0.05% of Io Actual Ou Resolution (0.012% of Vomax) Accuracy (0.1% Vomax+0.1% of Vo Actual Ou	Pptional V mV utput) mV mA utput) mA utput) mA utput) mA mV utput) mV	Voltage, GPIB In 6 0.72 6.0 12 10 24 20 0.72 12	Current, A terface 8 0.96 8.0 10.8 9 21.6 18 21.6 18	larm, Fin 12.5 1.50 12.5 7.2 6 14.4 12 1.50 25	e, Previe 20 2.40 20 4.56 3.8 9.12 7.6 2.40 40	30 3.60 3.60 3.0 2.5 6 5 3.60 60	40 4.80 40 2.28 1.9 4.56 3.8 4.80 80	60 7.2 60 1.50 1.25 3.0 2.5 7.2 120	t On 80 9.6 80 1.14 0.95 2.28 1.9 9.6 160	100 12 100 0.90 0.75 1.80 1.50 12 200	150 18 150 0.60 0.5 1.20 1 1 18 300	300 36 300 0.25 0.60 0.5 36 600	600 72 600 0.16 0.13 0.32 0.26 72 1200	X X 750W X X X X X X X X X X X X	x x 1500W x x x x x x x x x x x x x
1.6 Interface RS232&RS485 or C Model Remote Voltage Programming (16 bit) Resolution (0.012% of Vomax) Accuracy (0.05% Vomax+0.05% of Vo Actual Outor (0.012% of Iomax) Resolution (0.012% of Iomax) Accuracy (0.05% of Iomax+0.05% of Io Actual Outor (0.012% of Iomax) Accuracy (0.05% of Iomax+0.05% of Io Actual Outor (0.012% of Iomax) Accuracy (0.05% of Iomax+0.05% of Io Actual Outor (0.012% of Iomax) Accuracy (0.05% of Iomax) Accuracy (0.05% of Iomax) Accuracy (0.05% of Iomax) Accuracy (0.12% of Vomax) Accuracy (0.12% of Vomax) Accuracy (0.1% Vomax+0.1% of Vo Actual Outor (0.012% of Vomax))	pptional V mV utput) mV mA utput) mA mA utput) mA mV utput) mV	Voltage, GPIB In 6 0.72 6.0 12 12 12 0.72 12 0.72 12	Current, A terface 8 0.96 8.0 10.8 9 21.6 18 0.96 16	larm, Fin 12.5 1.50 12.5 7.2 6 14.4 12 1.50 25	20 2.40 20 4.56 3.8 9.12 7.6 2.40 40	30 3.60 30 3.0 2.5 6 5 3.60 60	40 4.80 40 2.28 1.9 4.56 3.8 4.80 80	60 7.2 60 1.50 1.25 3.0 2.5 7.2 120	t On 80 9.6 80 1.14 0.95 2.28 1.9 9.6 160	100 12 100 0.90 0.75 1.80 1.50 12 200	150 18 150 0.60 0.5 1.20 1 1 8 300	300 36 300 0.30 0.25 0.60 0.5 36 600	600 72 600 0.16 0.32 0.32 0.26 72 1200	X X X 750W X X X X X X X X X X X X	x x 1500W x x x x x x x x x x x
1.6 Interface RS232&RS485 or C Model Remote Voltage Programming (16 bit) Resolution (0.012% of Vomax) Accuracy (0.05% Vomax+0.05% of Vo Actual Ou Remote Current Programming (16 bit) Resolution (0.012% of Iomax) Accuracy (0.05% of Iomax+0.05% of Io Actual Ou Resolution (0.012% of Iomax) Accuracy (0.05% of Iomax+0.05% of Io Actual Ou Readback Voltage Resolution (0.012% of Vomax) Accuracy (0.1% Vomax+0.1% of Vo Actual Ou Readback Current Resolution (0.012% of Iomax)	pptional (V mV utput) mV mA mA utput) mA mA mV utput) mV mA	Voltage, GPIB In 6 0.72 6.0 12 10 24 20 0.72 12 12 12 12 12 12 12 12 12 1	Current, A terface 8 0.96 8.0 10.8 9 21.6 18 0.96 16 10.8	larm, Fin 12.5 1.50 12.5 7.2 6 14.4 1.50 25 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2	20 2.40 20 4.56 3.8 9.12 7.6 2.40 40	30 3.60 30 3.60 30 2.5 6 5 3.60 60 3.0	40 4.80 40 2.28 1.9 4.56 3.8 4.80 80 2.28	al, Outpu 60 7.2 60 1.50 1.25 3.0 2.5 7.2 120 1.50	t On 80 9.6 80 1.14 0.95 2.28 1.9 9.6 160 114	100 12 100 0.90 0.75 1.80 1.50 1.50 12 200	150 18 150 0.60 0.5 1.20 1 1 18 300 0.60	300 36 300 0.30 0.25 0.60 0.5 36 600 0.30	600 72 600 0.16 0.13 0.32 0.26 72 1200 72 1200	X X X 750W X X X X X X X X X X X X X X X	x x 1500W x x x x x x x x x x x x x
1.6 Interface RS232&RS485 or C Model Remote Voltage Programming (16 bit) Resolution (0.012% of Vomax) Accuracy (0.05% Vomax+0.05% of Vo Actual Ou Remote Current Programming (16 bit) Resolution (0.012% of Iomax) Accuracy (0.05% of Iomax+0.05% of Io Actual Ou Resolution (0.012% of Iomax+0.05% of Io Actual Ou Resolution (0.012% of Iomax+0.05% of Io Actual Ou Readback Voltage Resolution (0.012% of Vomax) Accuracy (0.1%Vomax+0.1% of Vo Actual Ou Readback Current Resolution (0.012% of Iomax) Accuracy (0.1% of Iomax+0.3% of Io Actual Ou Readback Current Resolution (0.012% of Iomax) Accuracy (0.1% of Iomax+0.3% of Io Actual Ou	Pptional (V mV utput) mV mA utput) mA mA utput) mV utput) mV mA utput) mA	Voltage, GPIB In 6 0.72 6.0 12 10 24 20 0.72 12 12 12 12 12 12 12 12 12 1	Current, A terface 8 0.96 8.0 10.8 9 21.6 18 0.96 16 16 10.8 360	larm, Fin 12.5 1.50 12.5 7.2 6 14.4 12 1.50 25 7.2 240	20 2.40 20 4.56 3.8 9.12 7.6 2.40 40 40 4.56 152	I count I count w, Foldba 30 3.60 30 3.60 30 3.60 30 3.60 3.60 3.60 3.60 3.60 3.60 3.60 3.60 3.60 100	40 4.80 40 2.28 1.9 4.56 3.8 4.56 3.8 4.80 80 2.28 76	al, Outpu 60 7.2 60 1.50 1.25 3.0 2.5 7.2 120 1.50 50	t On 80 9.6 80 1.14 0.95 2.28 1.9 9.6 160 1.14 38	100 12 100 0.90 0.75 1.80 1.50 12 200 0.9 30	150 18 150 0.60 0.5 1.20 1 18 300 0.60 20	300 36 300 0.25 0.60 0.5 36 600 0.30 10	600 72 600 0.16 0.13 0.32 0.26 72 1200 72 1200	X X X 750W X X X X X X X X X X X X X X X X X	x x 1500W x x x x x x x x x x x x x
1.6 Interface RS232&RS485 or C Model Remote Voltage Programming (16 bit) Resolution (0.012% of Vomax) Accuracy (0.05% Vomax+0.05% of Vo Actual Ou Remote Current Programming (16 bit) Resolution (0.012% of Iomax) Accuracy (0.05% of Iomax+0.05% of Io Actual Ou Resolution (0.012% of Iomax+0.05% of Io Actual Ou Resolution (0.012% of Iomax) Accuracy (0.05% of Iomax+0.05% of Io Actual Ou Readback Voltage Resolution (0.012% of Iomax) Accuracy (0.1% Vomax+0.1% of Vo Actual Ou Readback Current Resolution (0.012% of Iomax) Accuracy (0.1% of Iomax+0.3% of Io Actual Ou Resolution (0.012% of Iomax)	Pptional V mV utput) mV mA utput) mA mA utput) mA utput) mV utput) mV mA utput) mA	Vottage, GPIB In 6 0.72 6.0 12 10 24 20 0.72 12 0.72 12 0.72 12 0.72 12 0.72 12 0.72 12 0.72 10 0.72 10 0.72 10 0.72 10 0.72 10 0.72 10 0.72 10 0.72 10 0.72 10 0.72 10 0.72 10 0.72 10 0.72 10 0.72 10 0.72 10 0.72 10 0.72 10 0.72 12 10 0.72 12 10 0.72 12 10 0.72 12 10 0.72 12 10 0.72 12 12 12 0.72 12 12 12 12 12 12 12 12 12 1	Current, A terface 8 0.96 8.0 10.8 9 21.6 18 0.96 16 10.8 360 21.6	larm, Fin 12.5 1.50 12.5 7.2 6 14.4 12 1.50 25 7.2 240 14.4	20 2.40 20 4.56 3.8 9.12 7.6 2.40 40 4.56 152 9.12	30 3.60 30 3.60 30 3.60 30 3.60 3.60 6 5 3.60 60 3.60 60 3.60 60 60 60 60 60 60 60 60	40 4.80 40 2.28 1.9 4.56 3.8 4.80 80 2.28 76 4.56	al, Outpu 60 7.2 60 1.50 1.25 3.0 2.5 7.2 120 1.50 50 3.0	t On 80 9.6 80 1.14 0.95 2.28 1.9 9.6 160 1.14 38 2.28	100 12 100 0.90 0.75 1.80 1.50 12 200 0.9 30 1.80	150 18 150 0.60 0.5 1.20 1 1 18 300 0.60 0.60 20 1.20	300 36 300 0.25 0.60 0.5 36 600 0.30 0.30 10 0.60	600 72 600 0.16 0.13 0.32 0.26 72 1200 0.16 5.2 0.32	X X X 750W X X X X X X X X X X X X X X X X	x x 1500W x x x x x x x x x x
1.6 Interface RS232&RS485 or C Model Remote Voltage Programming (16 bit) Resolution (0.012% of Vomax) Accuracy (0.05% Vomax+0.05% of Vo Actual Outor Remote Current Programming (16 bit) Resolution (0.012% of Iomax) Accuracy (0.05% of Iomax+0.05% of Io Actual Outor Resolution (0.012% of Iomax) Accuracy (0.05% of Iomax+0.05% of Io Actual Outor Resolution (0.012% of Iomax) Accuracy (0.05% of Iomax+0.05% of Io Actual Outor Readback Voltage Resolution (0.012% of Iomax+0.1% of Vo Actual Outor Readback Current Resolution (0.012% of Iomax+0.3% of Io Actual Outor Readback Current Resolution (0.012% of Iomax+0.3% of Io Actual Outor Resolution (0.012% of Iomax+0.3% of Io Actual Outor	pptional (V mV utput) mV mA utput) mA mA utput) mA mV utput) mV mA utput) mA mA utput) mA	Voltage, GPIB In 6 0.72 6.0 12 10 24 20 0.72 12 0.72 12 10 24 20 0.72 12 0.72 400 24 800	Current, A terface 8 0.96 8.0 10.8 9 21.6 18 0.96 16 10.8 360 21.6 720	larm, Fin 12.5 1.50 12.5 7.2 6 14.4 12 1.50 25 7.2 240 14.4 4.80	20 2.40 20 4.56 3.8 9.12 7.6 2.40 40 4.56 152 9.12 3.04	I count w, Foldba 30 3.60 30 3.60 30 3.60 30 3.60 3.0 2.5 6 5 3.60 60 3.0 3.0 3.0 3.0 3.0 3.0 100 6 200	4.80 40 4.80 40 2.28 1.9 4.56 3.8 4.80 80 2.28 76 4.56 152	al, Outpu 60 7.2 60 1.50 1.25 3.0 2.5 7.2 120 1.50 50 3.0 1.00	t On 80 9.6 80 1.14 0.95 2.28 1.9 9.6 160 1.14 38 2.28 76	100 12 100 0.90 0.75 1.80 1.50 12 200 0.9 30 1.80 60	150 18 150 0.60 0.5 1.20 1 18 300 0.60 20 1.20 40	300 36 300 0.25 0.60 0.5 36 600 0.30 10 0.60 20	600 72 600 0.16 0.13 0.32 0.26 72 1200 0.16 5.2 0.32 10.4	X X X 750W X X X X X X X X X X X X	x x 1500W x x x x x x x x x x x x x x x
1.6 Interface RS232&RS485 or C Model Remote Voltage Programming (16 bit) Resolution (0.012% of Vomax) Accuracy (0.05% Vomax+0.05% of Vo Actual Ou Remote Current Programming (16 bit) Resolution (0.012% of Iomax) Accuracy (0.05% of Iomax+0.05% of Io Actual Ou Resolution (0.012% of Iomax) Accuracy (0.05% of Iomax+0.05% of Io Actual Ou Resolution (0.012% of Iomax) Accuracy (0.1% Vomax+0.1% of Vo Actual Ou Resolution (0.012% of Iomax) Accuracy (0.1% of Iomax+0.3% of Io Actual Ou Resolution (0.012% of Iomax) Accuracy (0.1% of Iomax+0.3% of Io Actual Ou Resolution (0.012% of Iomax) Accuracy (0.1% of Iomax+0.3% of Io Actual Ou Resolution (0.012% of Iomax) Accuracy (0.1% of Iomax+0.3% of Io Actual Ou	pptional V mV utput) mV mA mA utput) mA mA utput) mV utput) mV mA utput) mA mA utput) mA mA utput) mA	Voltage, GPIB In 6 0.72 6.0 12 10 24 20 0.72 12 12 12 400 24 800	Current, A terface 8 0.96 8.0 10.8 9 21.6 18 0.96 16 10.8 360 21.6 720	larm, Fin 12.5 1.50 12.5 7.2 6 14.4 12 1.50 25 7.2 240 14.4 480	e, Previe 20 2.40 20 4.56 3.8 9.12 7.6 2.40 40 40 4.56 152 9.12 304	30 3.60 3.60 3.0 2.5 6 5 3.60 60 3.0 100 6 200	4.80 4.80 4.0 2.28 1.9 4.56 3.8 4.80 80 2.28 76 4.56 152	al, Outpu 60 7.2 60 1.50 1.25 3.0 2.5 7.2 120 1.50 50 3.0 100	t On 80 9.6 80 1.14 0.95 2.28 1.9 9.6 160 1.14 38 2.28 76	100 12 100 0.90 0.75 1.80 1.50 12 200 0.9 30 1.80 60	150 18 150 0.60 0.5 1.20 1 18 300 0.60 20 1.20 40	300 36 300 0.25 0.60 0.5 36 600 0.30 10 0.60 20	600 72 600 0.16 0.13 0.32 0.26 72 1200 72 1200 0.16 5.2 0.32 10.4	X X X 750W X X X X X X X X X X X X	X X 1500W X X X X X X X X X X X X X X
1.6 Interface RS232&RS485 or C Model Remote Voltage Programming (16 bit) Resolution (0.012% of Vomax) Accuracy (0.05% Vomax+0.05% of Vo Actual Ou Remote Current Programming (16 bit) Resolution (0.012% of Iomax) Accuracy (0.05% of Iomax+0.05% of Io Actual Ou Resolution (0.012% of Iomax) Accuracy (0.05% of Iomax+0.05% of Io Actual Ou Resolution (0.012% of Iomax) Accuracy (0.05% of Iomax+0.05% of Io Actual Ou Readback Voltage Resolution (0.012% of Vomax) Accuracy (0.1% Vomax+0.1% of Vo Actual Ou Readback Current Resolution (0.012% of Iomax) Accuracy (0.1% of Iomax+0.3% of Io Actual Ou Resolution (0.012% of Iomax) Accuracy (0.1% of Iomax+0.3% of Io Actual Ou Resolution (0.012% of Iomax) Accuracy (0.1% of Iomax+0.3% of Io Actual Ou	Pptional V mV utput) mV mA utput) mA mA utput) mA mV utput) mV mA utput) mA mA utput) mA	Voltage, GPIB In 6 0.72 6.0 12 10 24 20 0.72 12 12 12 12 12 12 12 12 12 1	Current, A terface 8 0.96 8.0 10.8 9 21.6 18 0.96 16 10.8 360 21.6 720	larm, Fin 12.5 1.50 12.5 7.2 6 14.4 12 1.50 25 7.2 240 14.4 480	e, Previe 20 2.40 20 4.56 3.8 9.12 7.6 2.40 40 4.56 152 9.12 304	30 30 3.60 30 3.60 3.0 2.5 6 5 3.60 60 3.0 100 6 200	40 4.80 40 2.28 1.9 4.56 3.8 4.56 3.8 4.80 80 2.28 76 4.56 152	al, Outpu 60 7.2 60 1.50 1.50 3.0 2.5 7.2 120 1.50 50 3.0 100	t On 80 9.6 80 1.14 0.95 2.28 1.9 9.6 160 1.14 38 2.28 76	100 12 100 0.90 0.75 1.80 1.50 12 200 0.9 30 1.80 60	150 18 150 0.60 0.5 1.20 1 18 300 0.60 20 1.20 40	300 36 300 0.30 0.25 0.60 0.5 36 600 0.30 10 0.60 20	600 72 600 0.16 0.13 0.32 0.26 72 1200 72 1200 0.16 5.2 0.32 10.4	X X X 750W X X X X X X X X X X X X X X X	x x 1500W x x x x x x x x x x x x x x x x x x
1.6 Interface RS232&RS485 or C Model Remote Voltage Programming (16 bit) Resolution (0.012% of Vomax) Accuracy (0.05% Vomax+0.05% of Vo Actual Ou Remote Current Programming (16 bit) Resolution (0.012% of Iomax) Accuracy (0.05% of Iomax+0.05% of Io Actual Ou Resolution (0.012% of Iomax+0.05% of Io Actual Ou Resolution (0.012% of Iomax) Accuracy (0.05% of Iomax+0.05% of Io Actual Ou Readback Voltage Resolution (0.012% of Iomax) Accuracy (0.1% Vomax+0.1% of Vo Actual Ou Resolution (0.012% of Iomax) Accuracy (0.1% of Iomax+0.3% of Io Actual Ou Resolution (0.012% of Iomax) Accuracy (0.1% of Iomax+0.3% of Io Actual Ou Resolution (0.012% of Iomax) Accuracy (0.1% of Iomax+0.3% of Io Actual Ou OVP Programming Resolution (0.1% of Vomax)	pptional (V mV utput) mV mA mA utput) mA mA utput) mA mV utput) mA mA utput) mA mA utput) mA mA	Voltage, GPIB In 6 0.72 0.72 12 10 24 20 0.72 12 12 12 12 12 12 12 400 24 800 6	Current, A terface 8 0.96 8.0 10.8 9 21.6 18 0.96 16 10.8 360 21.6 720 8	larm, Fin 12.5 1.50 12.5 7.2 6 14.4 12 1.50 25 7.2 240 1.4.4 480 12	2.40 20 4.56 3.8 9.12 7.6 2.40 40 40 40 4.56 152 9.12 304 20	30 3.60 30 3.60 30 3.60 30 3.60 30 3.60 6 5 3.60 60 3.00 100 6 200 29	40 40 4.80 40 2.28 1.9 4.56 3.8 4.80 80 2.28 76 4.56 152 39	al, Outpu 60 7.2 60 1.50 1.25 3.0 2.5 7.2 120 1.50 50 3.0 1.50 59	t On 80 9.6 80 1.14 0.95 2.28 1.9 9.6 160 1.14 38 2.28 76 78	100 12 100 0.90 0.75 1.80 1.50 12 200 0.9 30 1.80 60 98	150 18 150 0.60 0.5 1.20 1 1 18 300 0.60 20 1.20 40 	300 36 300 0.25 0.60 0.5 36 600 0.30 10 0.60 20 293	600 72 600 0.16 0.13 0.32 0.26 72 1200 0.16 5.2 0.32 10.4	X X X 750W X X X X X X X X X X X X X X X X X X X	x x x x x x x x x x x x x x x x x x x
1.6 Interface RS232&RS485 or C Model Remote Voltage Programming (16 bit) Resolution (0.012% of Vomax) Accuracy (0.05% Vomax+0.05% of Vo Actual Ou Remote Current Programming (16 bit) Resolution (0.012% of Iomax) Accuracy (0.05% of Iomax+0.05% of Io Actual Ou Resolution (0.012% of Iomax) Accuracy (0.05% of Iomax+0.05% of Io Actual Ou Resolution (0.012% of Iomax) Accuracy (0.05% of Iomax+0.05% of Io Actual Ou Readback Voltage Resolution (0.012% of Vomax) Accuracy (0.1% of Iomax+0.1% of Vo Actual Ou Readback Current Resolution (0.012% of Iomax) Accuracy (0.1% of Iomax+0.3% of Io Actual Ou Resolution (0.012% of Iomax) Accuracy (0.1% of Iomax-0.3% of Io Actual Ou Resolution (0.012% of Iomax) Accuracy (0.1% of Iomax-0.3% of Io Actual Ou Resolution (0.01% of Iomax) Accuracy (1% of Vomax) Accuracy (1% of Vomax)	Detional of V wv wv wv wv wv wv wv wv wv wv	Voltage, GPIB In 6 0.72 0.72 12 10 24 20 0.72 12 12 400 24 800 6 6 6 6	Current, A terface 8 0.96 8.0 10.8 9 21.6 18 0.96 16 10.8 360 21.6 720 8 8 8	larm, Fin 12.5 1.50 12.5 7.2 6 14.4 12 1.50 25 7.2 240 14.4 480 12 12 125	e, Previe 20 2.40 2.0 4.56 3.8 9.12 7.6 2.40 40 40 40 40 40 40 40 2.40 2.0 200 200	Count 30 3.60 30 3.60 30 3.60 30 3.60 6 5 3.60 60 3.00 3.00 2.5 6 5 3.60 60 3.00 3.00 200 29 300	4.80 40 4.80 40 2.28 1.9 4.56 3.8 4.80 80 2.28 76 4.56 152 39 400	al, Outpu 60 7.2 60 1.50 1.25 3.0 2.5 7.2 120 7.2 120 50 3.0 1.50 50 3.0 1.50 50 600	t On 80 9.6 80 1.14 0.95 2.28 1.9 9.6 160 1.14 38 2.28 76 78 800	100 12 100 0.90 0.75 1.80 1.50 12 200 0.9 30 1.80 60 98 1000	150 18 150 0.60 0.5 1.20 1 1 18 300 0.60 20 1.20 40 1.20 40 1.20 1.	300 36 300 0.25 0.60 0.5 36 600 0.30 10 0.60 20 293 3000	600 72 600 0.16 0.13 0.32 0.26 72 1200 0.16 5.2 0.32 10.4 586 6000	X X X 750W X X X X X X X X X X X X X X X X X	x x 1500W x x x x x x x x x x x x x x x x x x

*1: Minimum voltage is guaranteed to maximum 0.2% of Vomax.
*3: At maximum output power.
*2: Minimum current is guaranteed to maximum 0.4% of Iomax.
*4: 85–132Vac or 170–265Vac, constant load.
*5: From No-load to Full-load, constant input voltage.
*7: For 6V models the ripple is measured at 2–6V output voltage and full output current. For other models, the ripple is measured at 10–100% output voltage and full output current.
*8: Time for the output voltage to recover within 0.5% of its rated for a load change 10–90% of rated output, Output set-point:10–100%. Accuracy -Values have been calculated at Vomax & Io max

General Specifications Genesys™ 750W/1500W

2.1 INPUT CHARACTERISTICS							
1. Input voltage/freq. (*1)	85~265Vac continuous, 47~63Hz, single phase						
2. Power Factor	0.99 @100/200Vac, rated output power.						
3. EN61000-3-2,3 compliance	Complies with EN61000-3-2 class A and EN61000-3-3 at 20~100% output power.						
4. Input current 100/200Vac	750W :10.5A / 5A, 1500W :21A / 11A						
5. Inrush current 100/200Vac	750W :Less than 25A, 1500W :Less than 50A						
6. Hold-up time	More than 20mS , 100Vac , at 100% load.						
2.2 POWER SUPPLY CONFIGURATION							
1. Parallel Operation	Up to 4 units in master/slave mode with single wire current balance connection						
2. Series Operation	Up to 2 units. with external diodes. 600V Max to Chassis ground						
2.3 ENVIRONMENTAL CONDITIONS							
1. Operating temp	0~50 °C. 100% load.						
2. Storage temp	-20~70°C						
3. Operating humidity	30~90% RH (no condensation).						
4. Storage humidity	10~95% RH (no condensation).						
5. Vibration	MIL-810E, method 514.4, test cond. I-3.3.1. The EUT is fixed to the vibrating surface.						
6. Shock	Less than 20G, half sine, 11mSec. Unit is unpacked.						
7. Altitude	Operating: 10000ft (3000m), Non operating: 40000ft (12000m).						
2.4 EMC							
1.Applicable standards:	EN55024						
2.ESD	IEC1000-4-2. Air-disch8KV, contact disch4KV						
3.Fast transients	IEC1000-4-4. 2KV						
4.Surge immunity	IEC1000-4-5. 1KV line to line, 2KV line to ground						
5.Conducted immunity	IEC1000-4-6, 3V						
6.Radiated immunity	IEC1000-4-3, 3V/m						
7.Conducted emission	EN55022B,FCC part 15J-B,VCCI-2						
8.Radiated emission	EN55022A,FCC part 15-A,VCCI-1						
9. Voltage dips	EN61000-4-11						
10. Conducted emission	EN55022B, FCC part 15-B, VCCI-2.						
11. Radiated emission	EN55022A, FCC part 15-A, VCCI-1.						
2.5 SAFETY							
1.Applicable standards:	CE Mark, UL60950,EN60950 listed. Vout<60V:Output is SELV, IEEE/Isolated analog are SELV.						
	60 <vout<400v: analog="" are="" hazardous,="" ieee="" is="" isolated="" output="" selv.<="" td=""></vout<400v:>						
	400-Vout-600V:Output is hazardous, IEEE/Isolated analog are not SELV.						
2.Withstand voltage	Vout<60V models :Input-Outputs (SELV): 3.0KVrms 1min, Input-Ground: 2.0KVrms 1min.						
	60 <vout<600v 1min,="" 1min.<="" 2.5kvrms="" 3kvrms="" input-haz.="" input-selv:="" models:="" output:="" td=""></vout<600v>						
	Hazardous Output-SELV: 1.9KVrms 1min, Hazardous Output-Ground:1.9KVrms 1min.						
	Input-Ground: 2KVrms 1min.						
3.Insulation resistance	More than 100Mohm at 25°C , 70% RH.						
2.6 MECHANICAL CONSTRUCTION							
1. Cooling	Forced air flow: from front to rear. No ventilation holes at the top or bottom of the chassis Variable fan speed.						
2. Dimensions (WxHxD)	W: 422.8mm, H: 43.6mm, D: 432.8mm (excluding connectors, encoders, handles etc)						
3. Weight	750W: 7Kg (15.4 Lbs) 1500W: 8.5Kg (18.7 Lbs)						
4. AC Input connector	750W: AC Inlet IEC320.						

 1500W: screw terminal block, Phoenix P/N: FRONT-4-H-7.62, with strain relief

 5.Output connectors
 6V to 60V models: bus-bars (hole Ø 8.5mm).
 80V to 600V models :terminal block, Phoenix P/N: FRONT-4-H-7.62

2.7 RELIABILITY SPECS
1. Warranty

*1: For cases where conformance to various safety standards (UL, IEC etc.) is required, to be described as 100-240Vac (50/60Hz).

Outline Drawing Genesys[™] 750W/1500W Units

5 years

NOTE

1. PLUG CONNECTORS INCLUDED WITH THE POWER SUPPLY 2. CHASSIS SLIDES MOUNTING HOLES #10-32 MARKED "A"

GENERAL DEVICES P/N: CC301-00-S160 OR EQUIVALENT

Genesys[™] Power Parallel and Series Configurations

Parallel operation - Master/ Slave:

Active current sharing allows up to 4 units to be connected in an auto parallel configuration for four times the output power.

Series operation

Up to two units may be connected in series to increase the output voltage or to provide bipolar output. (Max 600V to Chassis Ground)

Remote Programming via RS232&RS485 Interface

Standard Serial Interface allows chain control of up to 31 power supplies on the same bus with built in RS232&485 Interface

Programming Options (Factory installed)

Digital Programming via IEEE Interface

- IEEE 488.2 Compliant
- Program Voltage
- Measure Voltage
- Over Voltage setting and shutdown
- Error and Status Messages

Isolated Analog Programming

P/N: IEEE

- SCPI Compliant
- Program Current
- Measure Current
- Current Foldback shutdown

Four Channels to Program and Monitor Voltage and Current Isolation allows operation with floating references and difficult electrical environments. Choose between programming with Voltage or Current. Connection via Removable terminal block P/N: Phoenix MC1,5/8-ST-3.81

P/N: IS510 - Voltage Programming, user selectable 0-5V or 0-10V signal
Power supply Voltage and Current Programming accuracy +/-1%
Power supply Voltage and Current Monitoring accuracy +/-1.5%
P/N: IS420 - Current Programming with 4-20mA signal
Power supply Voltage and Current Programming accuracy +/-1%
Power supply Voltage and Current Monitoring accuracy +/-1.5%

5 Genesys TM 750W/1500W-1U

Power Supply Identification / Accessories How to order

	GEN	600	- 2.6	-			-		
				-	Fact	ory Options	AC Cab	le option is 750)W only
	Series	Output	Out	put	Opt	ion: IEEE	Regio	n: E - Euror	be
	Name	Voltage	Cur	rent		IS510		J - Japai	n
		(0~600V)	(0~	2.6A)		IS420		I - Middl	e Fast
750/	1500W	,	,	,		10120		U - North	America
		Output	Output	Output	1		Output	Output	Output
	Model	Voltage	Current	Power		Model	Voltage	Current	Power
	modol	VDC	(A)	(W)		model	VDC	(A)	(W)
	GEN6-100		0~100	600	1	GEN60-12.5		0~12.5	750
	GEN6-200	0~6V	0~200	1200	1	GEN60-25	0~60V	0~25	1500
	GEN8-90		0~90	720		GEN80-9.5		0~9.5	760
	GEN8-180	0~8V	0~180	1440		GEN80-19	0~80V	0~19	1520
	GEN12.5-60		0~60	750	1	GEN100-7.5		0~7.5	750
	GEN12.5-120	0~12.5V	0~120	1500	1	GEN100-15	0~100V	0~15	1500
	GEN20-38		0~38	760		GEN150-5		0~5	750
	GEN20-76	0~20V	0~76	1520		GEN150-10	0~150V	0~10	1500
	GEN30-25		0~25	750		GEN300-2.5		0~2.5	750
	GEN30-50	0~30V	0~50	1500		GEN300-5	0~300V	0~5	1500
	GEN40-19		0~19	760		GEN600-1.3		0~1.3	780
	GEN40-38	0~40V	0~38	1520		GEN600-2.6	0~600V	0~2.6	1560
E	actory o	otion			_	P/N	1		
R	S232/485 I	nterface hu	ilt in Stand	ard		_	-		
	DIP Interfe			aru		IEE	_		
G									
V	oltage Prog	Iramming Is	olated and	alog interfa	ce	1857	10		
С	urrent Prog	ramming Is	olated and	alog interfa	ce	IS42	20		
	ats (750W	(only)							

AC Cords sets (750W only)

Region	Europe	Japan	Middle East	North America
Output Power	750W	750W	750W	750W
AC Cords	10A/250 Vac L=2m	13A/125 Vac L=2m	10A/250 Vac L=2m	13A/125 Vac L=2m
Wall Plug	INT'L 7/VII		SI-32	NEMA 5-15P
Power Supply	IEC320-C13	IEC320-C13	IEC320-C13	IEC320-C13
Connector			۲	
Part Number	P/N: GEN/E	P/N: GEN/J	P/N: GEN/I	P/N : GEN/U

Accessories

Models

1.Communication cable

RS232/RS485 Cable is used to connect the power supply to the PC Controller

Mode	RS485	RS232	RS232
PC Connector Communication Cable Power Supply Connector	DB-9F Shield Ground L=2m EIA/TIA-568A (RJ-45)	DB-9F Shield Ground L=2m EIA/TIA-568A (RJ-45)	DB-25F FShield Ground L=2m EIA/TIA-568A (RJ-45)
P/N	GEN/485-9	GEN/232-9	GEN/232-25

Serial link cable*

Chaining Power Supply to Power Supply up to 31 GEN units

Mode	Power Supply Connector	Communication Cable	P/N
RS485	EIA/TIA-568A (RJ-45)	Shield Ground L=50cm	GEN/RJ45
El a altra de altra 2016, ella se accoración accoración el			

* Included with the power supply

