HD74AC123A

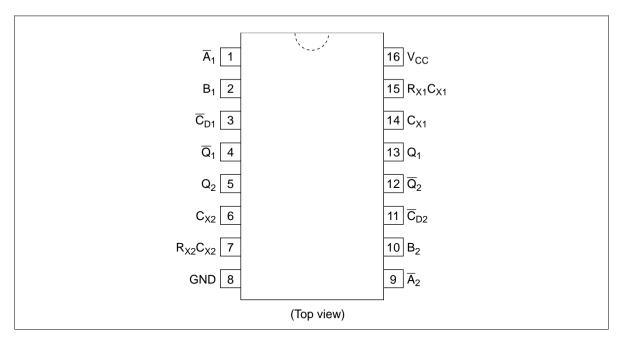
Dual Retriggerable Resettable Multivibrator

HITACHI

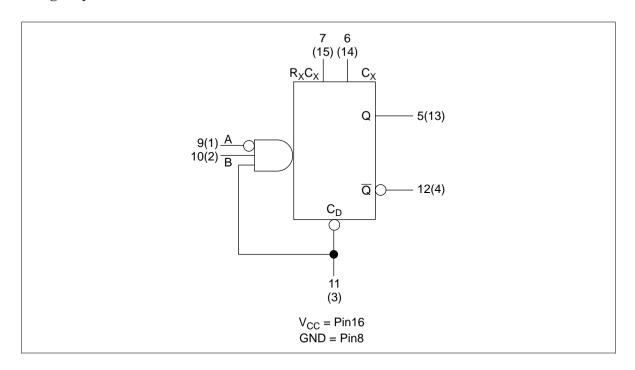
Description

Each half of the HD74AC123A features retriggerable capability, complementary dc level triggering and overriding Direct Clear. When a circuit is in the quasi-stable (delay) state, another trigger applied to the inputs (per the Truth Table) will cause the delay period to start again, without disturbing the outputs. By repeating this process, the output pulse period (Q High, \overline{Q} Low) can be made as long as desired. Alternatively, a delay period can be terminated at any time by a Low signal on \overline{C}_D , which also inhibits triggering. An internal connection from \overline{C}_D to the input gate makes it possible to trigger the circuit by a positive-going signal on \overline{C}_D , as shown in the Truth Table. For timing capacitor values greater than 1000 pF, the output pulse width is defined as follows.

Where t_w is in ns, R_X is in k and C $_X$ is in pF. $t_w = R_X C_X$


Feature

Outputs Source/Sink 24 mA



HD74AC123A

Pin Arrangement

Logic Symbol

HITACHI

Pin Names

 $\overline{A}_1, \overline{A}_2$ Trigger Inputs (Active Falling Edge) B_1, B_2 Trigger Inputs (Active Rising Edge)

 $\overline{C}_{D1}, \overline{C}_{D2}$ Direct Clear Inputs (Active Low)

 Q_1, Q_2 Positive Pulse Outputs $\overline{Q}_1, \overline{Q}_2$ Negative Pulse Outputs

Triggering Truth Table

Inputs

A	В	$\overline{\mathbf{C}}_{\mathtt{D}}$	Response
X	X	L	No trigger
	L	X	No trigger
	Н	Н	Trigger
Н		X	No trigger
L		Н	Trigger
L	Н		Trigger

High Voltage Level H : Low Voltage Level

X : Immaterial

Low-to-High Transition High-to-Low Transition

DC Characteristics (unless otherwise specified)

Item	Symbol	Max	Unit	Condition
Maximum quiescent supply current	I _{cc}	80	μΑ	$V_{IN} = V_{CC}$ or ground, $V_{CC} = 5.5 \text{ V}$, Ta = Worst case
Maximum quiescent supply current	I _{cc}	8.0	μΑ	$V_{IN} = V_{CC}$ or ground, $V_{CC} = 5.5 \text{ V}$, Ta = 25°C

HD74AC123A

AC Characteristics: HD74AC123A

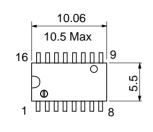
			Ta = +25°C C _∟ = 50 pF		Ta = −40°C to +85°C C _L = 50 pF				
Item	Symbol	V _{cc} (V)*1	Min	Тур	Max	Min	Max	Unit	Condition
Propagation delay	t _{PLH}	3.3	1.0	_	19.0	1.0	22.0	ns	Cext = 0 pF
\overline{A} or B to Q		5.0	1.0	_	15.0	1.0	17.0		Rest = $5 \text{ k}\Omega$
Propagation delay	t _{PHL}	3.3	1.0	_	19.0	1.0	22.0	ns	_
\overline{A} or B to \overline{Q}		5.0	1.0	_	15.0	1.0	17.0		
Propagation delay	t _{PLH}	3.3	1.0	_	15.0	1.0	18.0	ns	_
\overline{C}_{Dn} to \overline{Q}		5.0	1.0	_	12.0	1.0	13.5		
Propagation delay	t _{PHL}	3.3	1.0	_	15.0	1.0	18.0	ns	_
\overline{C}_{Dn} to Q		5.0	1.0	_	12.0	1.0	13.5		

Note: 1. Voltage Range 3.3 is $3.3 \text{ V} \pm 0.3 \text{ V}$ Voltage Range 5.0 is $5.0 \text{ V} \pm 0.5 \text{ V}$

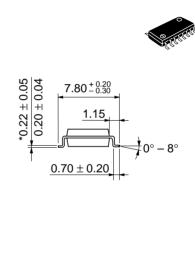
AC Operating Requirements: HD74AC123A

			Ta = +25°C C _L = 50 pF		Ta = −40 to +85°C C _L = 50 pF	_	
Item	Symbol	V _{cc} (V)*1	Тур	Guarante	ed Minimum	Unit	Condition
Pulse width	t _w	3.3	_	5.0	7.0	ns	Cext = 0 pF
\overline{A} or B or \overline{C}_{Dn}		5.0	_	4.5	5.0		Rext = $5 \text{ k}\Omega$
Recovery time	t _{rec}	3.3	_	2.0	2.0	ns	_
\overline{C}_{Dn} to \overline{A} or B		5.0	_	2.0	2.0	_	

Note: 1. Voltage Range 3.3 is $3.3 \text{ V} \pm 0.3 \text{ V}$ Voltage Range 5.0 is $5.0 \text{ V} \pm 0.5 \text{ V}$


			Ta = +25°C C _L = 50 pF		Ta = -40°C to +85°C C _L = 50 pF				
Item	Symbol	V _{cc} (V)*1	Min	Тур	Max	Min	Max	Unit	Condition
Output pulse width	T_{WQ}	3.3	_	_	_	_	_	ms	Cext = 0.1 μF
		5.0	0.90	_	1.10	0.85	1.15		Rext = 10 $k\Omega$
Minimum output	$T_{WQ(min)}$	3.3	190	_	350	170	380	ns	Cext = 28 pF
pulse width		5.0	160	_	300	140	330		Rext = $2 k\Omega$

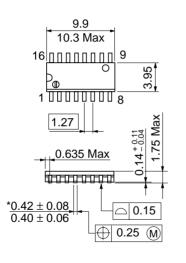
Note: 1. Voltage Range 3.3 is $3.3 \text{ V} \pm 0.3 \text{ V}$ Voltage Range 5.0 is $5.0 \text{ V} \pm 0.5 \text{ V}$

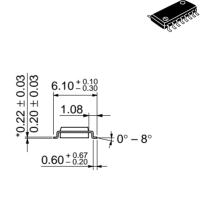

Cext and Rext should be connected as close to the IC terminals as possible, in order to prevent malfunction.

Unit: mm 19.20 20.00 Max 16 7.40 Max 6.30 1.3 1.11 Max 7.62 5.06 Max 2.54 Min 0.51 Min $0.25^{+0.13}_{-0.05}$ 0.48 ± 0.10 2.54 ± 0.25 $0^{\circ} - 15^{\circ}$ Hitachi Code DP-16 **JEDEC** Conforms EIAJ Conforms Weight (reference value) 1.07 g

Unit: mm

*Dimension including the plating thickness
Base material dimension


EIAJ Conforms
Weight (reference value) 0.24 g


FP-16DA

Hitachi Code

JEDEC

Unit: mm

*Dimension including the plating thickness
Base material dimension

Hitachi Code	FP-16DN
JEDEC	Conforms
EIAJ	Conforms
Weight (reference value)	0.15 g

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

HTACHI

Hitachi, Ltd.

Semiconductor & Integrated Circuits.

Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

NorthAmerica URL Europe

http://www.hitachi-eu.com/hel/ecg http://www.has.hitachi.com.sg/grp3/sicd/index.htm http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (Singapore) Asia (Taiwan) Asia (HongKong) http://www.hitachi.com.hk/eng/bo/grp3/index.htm

http:semiconductor.hitachi.com/

http://www.hitachi.co.jp/Sicd/indx.htm Japan

For further information write to:

Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Stra§e 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0

Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park

Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000

Fax: <44> (1628) 778322

Lower Cookham Road

Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533

Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666

Fax: <886> (2) 2718-8180

7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX

Hitachi Asia (Hong Kong) Ltd.

Group III (Electronic Components)

Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.