

# **CZ80PIO** Peripheral Device Megafunction

#### **General Description**

The CZ80PIO, hereinafter referred to as PIO, is a dual-port device which can be programmed by the system software to function as a broad range of peripheral devices that are compatible with the Z80CPU such as most keyboards, printers etc.

System design is simplified because the PIO connects directly to the Z80CPU with no additional logic. In larger systems, address decoders and buffers may be required.

The CZ80PIO is a microcode-free design developed for reuse in ASIC and FPGA implementations. The design is strictly synchronous, with no internal tri-states and a synchronous reset.



#### **Features**

- Provides a direct interface between Z80 microprocessor systems and peripheral devices
- Two ports with interrupt-driven handshake for fast response
- Four programmable operating modes:
  - Output Mode (both ports)
  - Input Mode (both ports)
  - Bi-directional (Port A only)
  - Bit Control Mode (both ports)
- Programmable interrupts on peripheral status conditions

#### **Applications**

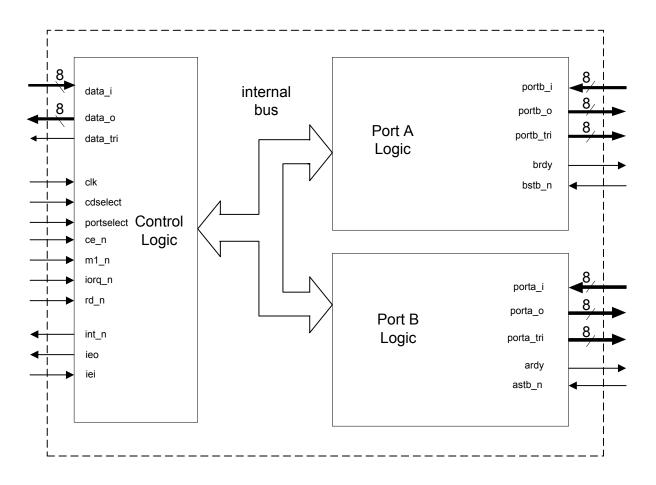
- Programmable, dual port device
- Interface for a wide range of peripheral devices such as:
  - Keyboards
  - Printers
  - Paper table readers
  - PROM programmers etc.

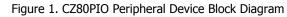
### **Pin Description**

| Name                      | Туре | Description                                 |  |  |  |  |
|---------------------------|------|---------------------------------------------|--|--|--|--|
| Clock                     |      |                                             |  |  |  |  |
| clk                       | In   | System Clock                                |  |  |  |  |
| Interface to Processor    |      |                                             |  |  |  |  |
| data_tri                  | Out  | Tristate controller for buffer for data bus |  |  |  |  |
| data i                    | In   | Data bus input                              |  |  |  |  |
| data_o                    | Out  | •                                           |  |  |  |  |
| rd_n                      | In   | •                                           |  |  |  |  |
| iorq_n                    | In   |                                             |  |  |  |  |
| ce_n                      | In   | Chip Enable                                 |  |  |  |  |
|                           |      | Control / Data select                       |  |  |  |  |
|                           | In   | Port B / A select                           |  |  |  |  |
| m1_n                      | In   | Machine Cycle One                           |  |  |  |  |
| Interrupt Service Routine |      |                                             |  |  |  |  |
| int_n                     | In   | Interrupt Request                           |  |  |  |  |
| iei                       | In   | Interrupt Enable Input                      |  |  |  |  |
| ieo                       | Out  | Interrupt Enable Output                     |  |  |  |  |
| Control                   |      |                                             |  |  |  |  |
| porta_tri                 | In   | Tristate controller for buffer for data bus |  |  |  |  |
| porta_i                   | In   | Port B bus input                            |  |  |  |  |
| porta_o                   | Out  | Port B bus output                           |  |  |  |  |
| portb_tri                 | In   | Tristate controller for buffer for data bus |  |  |  |  |
| portb_i                   | In   | Port B bus input                            |  |  |  |  |
| portb_o                   | Out  | Port B bus output                           |  |  |  |  |
| ardy                      | Out  | Register A ready                            |  |  |  |  |
| brdy                      | Out  | Register B ready                            |  |  |  |  |
| astb_n                    | In   | Port A strobe pulse from peripheral device  |  |  |  |  |
| bstb_n                    | In   | Port B strobe pulse from peripheral device  |  |  |  |  |

### **Functional Description**

The CZ80PIO megafunction is partitioned into modules as shown in figure 1 and described below.


#### **Port Logic**


Each port contains separate input and output registers, handshake control logic and the control registers. All data transfers between the peripheral unit and the CPU use the data input and output registers. The handshake logic associated with each port controls the data transfers through the input and the output registers. The mode control register (two bits) selects one of the four programmable operating modes. The Bit Control mode (mode 3) uses the remaining registers. The input/output control register specifies which of the eight data bits in the port are to be outputs and enables these bits; the remaining bits are inputs. The mask register specifies which of the bits in the port are masked.

#### **Control logic**

The control logic consists of the CPU bus interface logic, interrupt control logic and internal control logic. The CPU bus interface logic interfaces the CZ80PIO directly to the CZ80CPU, so no external logic is necessary. For large systems, however, address decoders and/or buffers may be necessary. The interrupt control logic section handles all CPU interrupt protocol for nested-priority interrupt structures. Any device's physical location in a daisy-chain configuration determines its priority. Two lines (IEO and IEI) are provided in each PIO to form this daisy chain. The device closest to the CPU has the highest priority. Within a PIO, port A interrupts have higher priority then those of port B. In the byte input, byte output or bi-directional modes, an interrupt can be generated whenever the peripheral requests a new byte transfer. In the bit control mode, an interrupt can be generated when the peripheral status matches a programmed value.

## **Block Diagram**





### **Device Utilization & Performance**

| Supported  | Device      | Utili | Performance |         |
|------------|-------------|-------|-------------|---------|
| Family     | Tested      | LEs   | Memory      | (MHz)   |
| Flex       | EPF10KE30-1 | 733   | -           | 67 MHz  |
| Acex       | EP1K30-1    | 731   | -           | 67 MHz  |
| Apex       | EP20KE30-1  | 748   | -           | 70 MHz  |
| Apex2      | EP2A15-7    | 763   | -           | 95 MHz  |
| Cyclone    | EP1C3-6     | 583   | -           | 120 MHz |
| Stratix    | EP1S10-5    | 583   | -           | 132 MHz |
| Stratix-II | EP2S15-3    | 561   | -           | 218 MHz |

#### Notes:

1. Optimized for speed

2. Assumes all I/O is routed off-chip

### Deliverables

#### **Netlist License**

- Post-synthesis EDIF netlist
- Testbench (self checking)
- Vectors for testing the functionality of the megafunction
- Place & Route Script
- Constraint file
- Simulation script
- Documentation

#### **HDL Source License**

- VHDL or Verilog RTL source code
- Testbench (self checking)
- Vectors for testing the functionality of the megafunction
- Simulation scripts
- Synthesis scripts
- Documentation

### **Verification Methods**

The CZ80PIO megafunction's functionality was verified by means of a proprietary hardware modeler. The same stimulus was applied to a hardware model that contained the original Zilog Z80PIO chip, and the results compared with the megafunction's simulation outputs.

### **Megafunction Modifications**

The CZ80PIO megafunction can be modified to include additional new ports. Please contact CAST, Inc. directly for any required modifications.

#### **Contact Information**

CAST, Inc. 11 Stonewall Court Woodcliff Lake, New Jersey 07677 USA Phone: +1 201-391-8300 Fax: +1 201-391-8694 E-Mail: info@cast-inc.com URL: www.cast-inc.com



This megafunction developed by peripheral controller experts at Evatronix SA

Copyright © CAST, Inc. 2004, All Rights Reserved. Contents subject to change without notice