
 TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

1POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

� Provides up to 8K-Address Matching
System

� Provides Glueless External-Address
Match (EAM) Interface to the
TNETX3150/TNETX3150A/TNETX3100

� Uses Standard Off-the-Shelf 15-ns SRAMs
� EEPROM Interface for Auto-Configuration,

No CPU Needed
� Automatic Aging Through User-Selectable

Aging (AGE) Threshold
� Fabricated in 3.3-V Low-Voltage

Technology
� Requires 3.3-V and 5-V Power Supplies
� 5-V Tolerant I/Os

� Provides Direct Input/Output (DIO) Interface
for Management Access and Control (MAC)
of the Address-Lookup Table

� Address Lookups, Adds, and Deletes Are
Automatically Performed in Hardware

� User-Selectable Interrupts Simplify the
Management Operations

� Secure Addresses From Changing Ports
� MII Data I/O (MDIO) PHY Management

Interface
� Management Access to Statistic Registers
� JTAG Compliant
� Packaged in 144-Terminal Plastic Quad

Flatpack

description

The TNETX15AE performs the address-lookup function for either the TNETX3150/TNETX3150A or the
TNETX3100 Ethernet switch. The TNETX15AE device determines the addresses to use and match from the
TNETX3150/TNETX3150A/TNETX3100 DRAM bus. The address-lookup table is maintained in external
SRAM. The frame-matching and routing information is given to the TNETX3150/TNETX3150A/TNETX3100
through the external address-matching (EAM) interface.

The TNETX15AE is designed to work in either unmanaged or managed mode. Unmanaged operation is
accomplished through EEPROM support. Startup options are auto-loaded into the TNETX15AE registers using
the EEPROM interface. If the TNETX15AE is initialized by automatic loading from the EEPROM, it begins
operation automatically.

All functions of this device are fully controllable by management through a direct input/output (DIO) interface.
In addition, this device can interrupt the external management processor with user-selectable interrupts. This
device also provides support for easy management control of IEEE Std 802.3u media-independent interface
(MII) managed devices. A typical application is shown in Figure 1.

MII-Managed Devices (Optional)

Microprocessor
(Optional)

SRAM

EEPROM

DWE

DCAS

DRAS

DD35–DD0

Address-Lookup
Device

TNETX15AE

ThunderSWITCH
TNETX3150/

TNETX3150A/
TNETX3100

EAM

DIO

EINT

MDIO

DRAM

Figure 1. TNETX15AE Typical Application

Copyright 1997, Texas Instruments IncorporatedPRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TI and ThunderSWITCH are trademarks of Texas Instruments Incorporated.
Ethernet is a trademark of Xerox Corporation.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PGE PACKAGE
(TOP VIEW)

E
A

1

D
D

2

D
D

1
D

D
0

D
R

A
S

G
N

D
E

A
8

E
A

7
E

A
6

E
A

5

E
A

3

E
A

2

E
A

0

E
A

4

C
C

V E
A

9
E

A
10

E
A

11
E

A
12

E
A

13
E

A
14

E
A

15
E

A
16

E
A

17
E

A
18

E
A

19
E

A
20

G
N

D
D

W
E

C
C

(5
V

)
V

D
D

3
D

D
4

D
D

5
D

D
6

D
D

7

S
R

N
W

G
N

D

E
S

C
S

E
A

M
0

G
N

D

S
D

A
TA

0
S

D
A

TA
1

S
D

A
TA

2
S

D
A

TA
3

S
D

A
TA

4
S

D
A

TA
5

S
D

A
TA

6
S

D
A

TA
7

S
A

D
0

S
A

D
1

S
R

D
Y

E
A

M
1

E
A

M
2

E
A

M
3

E
A

M
4

E
A

M
5

E
A

M
6

E
A

M
7

E
A

M
8

E
A

M
9

E
A

M
10

E
A

M
11

E
A

M
12

E
A

M
13

E
A

M
14

E
A

M
15

R
E

S
E

T

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37

MDIO
EDIO
GND
EINT

MDCLK
MRESET

ECLK
VCC(5V)

ED0
ED1
ED2
ED3
ED4
VCC
ED5
ED6
ED7
ED8
ED9

ED10
GND
ED11
ED12
ED13
ED14
ED15
VCC
EOE
EWE

VCC(5V)
TDI

TCLK
TMS

TRST
GND
TDO

OSCIN
DD35
DD34
DD33
GND
DD32
DD31
DD30
DD29
VCC(5V)
DD28
DD27
DD26
DD25
VCC
DD24
DD23
DD22
DD21
DD20
DD19
DD18
DD17
GND
DD16
DD15
DCAS
DD14
VCC(5V)
DD13
DD12
DD11
DD10
VCC
DD9
DD8

V
C

C

V
C

C

V
C

C
(5

V
)

V
C

C

C
C

V

10
8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

3POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Functional Block Diagram 4.
General Description 5.

Bus Watcher 5.
DIO Interface 5.
EEPROM Interface 5.
Arbiter 5.
SRAM Address/Data Multiplexer (MUX) 5.
TNETX15AE Logic Operations 5.
IEEE Std 1149.1 Test Port (JTAG) 5.

Terminal Functions 6.
Register Description 11.

General Notation Notes 11.
Node Address Format (Ethernet Native Data Format) 11. . . .
DIO Register Access 11.
DIO Address Register DIOADR 12.
DIO Data Register DIODATA 12.
DIO Address Auto-Increment Register 12.

Internal Register Map 13.
Default Register Values at Reset 14.
EEPROM Auto-Configuration
From an External x24C02 EEPROM 14.
Internal Register Descriptions 17.

Revision Register 17.
SRAM Size-Select Register 17.
Age-Deletion Time-Select Register 18.
Unknown Unicast Port-Routing Register 18.
Unknown Multicast Port-Routing Register 19.
Mode Control Status Register 19.
Serial Interface I/O Register 21.
Management-Table Lookup Interface 22.
Lookup-Node Address Register 22.
Lookup Routing-Code Register 23.
Node Age-Stamp Register 24.
Lookup Table Search Control Register 24.
Statistics Registers 25.
SRAM Address Register 25.
Manufacturing Test Register 26.
SRAM Data Register 26.
Interrupt Register 27.
Interrupt Masking Register 28.

New-Add Aged-Del Register Set 29.
New-Node/Port-Change/Security-Violation
Interrupt Interface 29.
Agednode Interrupt Interface Group 30.
Management Add/Edit Address Interface Group 31.
Management Delete Address Interface Group 33.
Uplink Routing Register 34.

Principles of Operation 34.
Internal Operation 34.

EAM Codings and In-Order Broadcasts (IOB) 34.
TNETX15AE DRAM and EAM Interface 35.
Decoding the Destination Address (DA)
and Source Address (SA) From the DRAM Bus 36.
CRC Checking and Valid Frames 37.
Operating Logic Arbitration 37.
Lookup Algorithm 38.

A Graphical Example of the Lookup Algorithm 40.
SRAM Data Storage 42.

Lookup Table SRAM Allocation 42.
RAMsize and Number of Nodes Supported 44.
Register Spaces/External Devices
Accessible Through the TNETX15AE 44.

DIO Interface 45.
DIO Write Cycle 46.
DIO Read Cycle 47.

Host (Access) Register Space 47.
Internal Registers 49.

Initialization 50.
TNETX3150/TNETX3150A/TNETX3100 Initialization 50. . . .

Resetting the TNETX15AE 50.
Hardware Reset 50.
Software Reset 51.

EEPROM Initialization/Automatic Loading (LOAD) 51.
TNETX15AE Operational Modes 53.

NAUTO mode 53.
NCRC mode 53.
NRLN0 mode 53.

Lookup Table SRAM Initialization (START) 54.
Frame-Forwarding LKUP Logic Operation 54.
Management-Based Lookups (FIND) 54.
FIND, FINDFIRST, and FINDNEXT Commands 55.

Summary of FIND Operations Supported 56.
Adding an Address 56.

Interrupts Available to Support Both Wire ADDs
and Host ADDs 56.

Management Address Adding 57.
Adding Unicast and Multicast Addresses 58.

Deleting an Address 58.
Aging (AGE Logic Operation) 58.
DEL Logic Operation (Management Address Deletions) 60. .

Interrupts 60.
Masking Interrupts 61.
Test Interrupts (INT) 61.
ADD Interrupts 61.
Aging Interrupts (AGE, AGEM) 62.
Statistic Interrupt (STAT) 62.

IEEE Std 1149.1 Test-Access Port (JTAG) 63.
Absolute Maximum Ratings 64.
Recommended Operating Conditions 64.
Electrical Characteristics 65.
Timing Requirements, External SRAM Read Cycle 65.
Operating Characteristics, External SRAM Read Cycle 65.
Timing Requirements, External SRAM Write Cycle 66.
Operating Characteristics, External SRAM Write Cycle 66.
Operating Characteristics, EAM Routing Code 67.
Timing Requirements, DRAM Interface 68.
Timing Requirements, DIO Read Cycle 69.
Operating Characteristics, DIO Read Cycle 69.
Timing Requirements, DIO Write Cycle 70.
Operating Characteristics, DIO Write cycle 70.
Timing Requirements, OSCIN clock 71.
Timing Requirements, Power-On Reset 71.
Timing Requirements, RESET (Software) Timing 72.
Operating Characteristics 73.

EEPROM and MDIO (MII) Interfaces 73.
EEPROM Interface Timing 73.

Parameter Measurement Information 74.
Test Measurement 74.

Application Information 75.
TNETX15AE/TNETX3150/TNETX3150A
Stand-Alone Applications 75.

Unmanaged Switch 75.
Managed Switch 75.

Mechanical Data 77.

Table of Contents

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

functional block diagram

DRAM
Bus

Watcher

DD35–DD0

DRAS
DCAS
DWE

DIO
Interface

EAM15–EAM0

SDATA7–SDATA0
SAD1–SAD0

SRNW
SRDY
ESCS
EINT

MDIO
MDCLK

MRESET

IEEE
Std

1149.1
(JTAG)

TRST

TMS
TCLK

TDI
TDO

Control
Logic

OSCIN

RESET

EEPROM
Interface

EDIO
ECLK

Logic
Arbiter

Grants

Data Routing
Logic Operations

LOOKUP
(Wire Address Lookups)

DELETE
(AGE and Management

Deletes)

ADD
(Wire and Management

Adds)

FIND
(Management-Address

Lookups)

AGE
(Deletes Due to Inactivity)

MUX

Requests

EA20–EA0

ED15–ED0

EOE

EWE

16

16

48

State Machines

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

5POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

general description

bus watcher

The bus watcher interfaces to the TNETX3150/TNETX3150A/TNETX3100 DRAM interface and extracts
destination, source addresses, and the originating port number. The bus watcher is responsible for identifying
the frame’s start-of-frame and end-of-frame tags. It also interfaces to the arbiter and the TNETX15AE logic to
perform off-the-wire address LOOKUPs and ADDs.

DIO interface

The DIO interface enables an attached microprocessor to access the TNETX15AE internal registers. The DIO
interface is used to select control modes, read statistics, receive interrupts, read/write to attached MII devices,
read/write to an attached EEPROM, and perform management LOOKUPs, ADDs, and DELETEs.

EEPROM interface

The EEPROM interface allows accesses to the EEPROM. It also interfaces with the EEPROM for automatic
loading of selected registers from the EEPROM at startup or reset.

arbiter

The arbiter manages the SRAM access for the TNETX15AE logic operations by assigning priorities to the logic
operations. Wire lookups have the highest priority, followed by DELETEs, ADDs, management LOOKUPs, and
AGEs. The individual logic operations request the bus by asserting a request signal. The arbiter grants the
SRAM bus by controlling the SRAM-bus address/data multiplexer.

SRAM address/data multiplexer (MUX)

The address/data MUX is controlled by the arbiter and selects the logic operation that has ownership of the
SRAM bus.

TNETX15AE logic operations

The TNETX15AE logic operations consist of LOOKUP, DELETE, ADD, FIND, and AGE operations. Each logic
operation is assigned a priority on the SRAM bus and is controlled by the arbiter. The LOOKUP operation has
the highest priority and is responsible for wire lookups. The DELETE operation is responsible for either deletes
from the AGE operation or for management-delete requests. The ADD operation is responsible for wire adds
as well as for management-add requests. The FIND operation is responsible for management searches of the
lookup table. The AGE operation is responsible for deleting addresses that have no activity in a fixed time period.

IEEE Std 1149.1 test port (JTAG)

The test-access port is composed of five terminals that are used to interface serially with the device and the
board on which it is installed for boundary-scan testing. The TNETX15AE is fully JTAG compliant, with the
exception of requiring external pullup resistors on terminals TDI, TMS, and TRST.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Terminal Functions

EAM interface

TERMINAL
I/O DESCRIPTION

NAME NO.
I/O DESCRIPTION

†

External address match single-/multiple-port routing code select. When EAM15 is high, the EAM-interface terminals
contain a single-port routing code. When EAM15 is low, the EAM-interface terminals contain a multiple-port routing
code.

External address match port routing code select. When EAM15 is high, the EAM14–EAM0 terminals are placed in
the single-port mode. In this mode EAM14–EAM0 terminals encode a single port to which the frame is routed.

EAM14–EAM5 are don’t-care bits and are set to 0. The single-port codes (EAM15–EAM0 terminals) are shown in
the following:

EAM15†

EAM14
EAM13
EAM12
EAM11
EAM10
EAM09
EAM08

106
105
104
103
102
101
99
98

O

TNETX3150/TNETX3100 EAM15–EAM0

Port 00 (uplink)
Port 01
Port 02
Port 03
Port 04
Port 05
Port 06
Port 07
Port 08
Port 09
Port 10
Port 11
Port 12
Port 13
Port 14
Reserved
No-operation code

15
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

14
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
x

13
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
x

12
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
x

11
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
x

10
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
x

9
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
x

8
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
x

7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
x

6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
x

5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
x

4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
x

2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
x

1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
x

0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
x

b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b

EAM07
EAM06
EAM05
EAM04
EAM03
EAM02
EAM01
EAM00‡

97
96
95
94
93
91
90
89

O
The no-operation code signals that the EAM device does not take part in forwarding decisions on this packet. The
TNETX15AE does not put out this code in normal operations. To successfully disable the TNETX15AE, it is reset and
not started. This causes the EAM interface to float, and external pullup resistors on EAM15 and EAM04 (minimally)
to supply the no-operation code to the TNETX3150/TNETX3150A/TNETX3100 device. Erratic operation occurs if the
TNETX3150/TNETX3150A/TNETX3100 address matching is not enabled when the TNETX15AE is disabled. The
TNETX15AE, when enabled, overrides the operations of the TNETX3150/TNETX3150A/TNETX3100 matching
circuitry; but, it is strongly advised to disable the TNETX3150/TNETX3150A/TNETX3100 address matching if the
TNETX15AE is active. This prevents two logic blocks from attempting to control port suspension and other functions.

When EAM15 is low, the EAM14–EAM0 terminals encode the multiple ports to which the data frame is routed. Each
bit on the EAM14–EAM0 bus is coded as follows:

– 1 on the bit signifies that the data frame is routed to that port.
– 0 on the bit signifies that the data frame is not routed to that port.

Terminal number assignments have a one-to-one correspondence to the port numbers as shown in the following:

01020304050708091011121314 06 00

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0EAM Bus Bit

Port Number

For example, to multicast a frame to ports 08, 05, 02, and 00 a multiport code of 0000 0001 0010 0101 or 0x0125
is sent.

All multicast packets and unknown unicast packets are forwarded by multiport code (EAM15 = 0) even if only one
bit is set.

To discard a frame, a code of 0x0000 is output (multiple routing code with no ports selected):

EAM14–EAM0TNETX3150/TNETX3100
0Discard frame 0 0 0 0 0 0 0 0 0 0 0 0 0 0

† Most-significant bit
‡ Least-significant bit

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

7POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Terminal Functions (Continued)

DRAM interface

TERMINAL
I/O DESCRIPTION

NAME NO.
I/O DESCRIPTION

DD35†

DD34
DD33
DD32
DD31
DD30
DD29
DD28
DD27
DD26
DD25
DD24
DD23
DD22
DD21
DD20
DD19
DD18
DD17
DD16
DD15
DD14
DD13
DD12
DD11
DD10
DD9
DD8
DD7
DD6
DD5
DD4
DD3
DD2
DD1
DD0‡

71
70
69
67
66
65
64
62
61
60
59
57
56
55
54
53
52
51
50
48
47
45
43
42
41
40
38
37
36
35
34
33
32
31
29
28

I DRAM data bus. Data bus is sourced by the TNETX3150/TNETX3150A or the TNETX3100.

DCAS 46 I DRAM column address select. DCAS is sourced by the TNETX3150/TNETX3150A or the TNETX3100.

DRAS 27 I DRAM row address select. DRAS is sourced by the TNETX3150/TNETX3150A or the TNETX3100.

DWE 26 I DRAM write enable. DWE is sourced by the TNETX3150/TNETX3150A or the TNETX3100.

† Most-significant bit
‡ Least-significant bit

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Terminal Functions (Continued)

external SRAM interface

TERMINAL
I/O DESCRIPTION

NAME NO.
I/O DESCRIPTION

EA20†

EA19
EA18
EA17
EA16
EA15
EA14
EA13
EA12
EA11
EA10
EA9
EA8
EA7
EA6
EA5
EA4
EA3
EA2
EA1
EA0‡

24
23
22
21
20
19
17
16
15
14
13
12
10
9
8
7
6
5
3
2
1

O External address bus. EA20–EA0 is the external SRAM address bus.

ED15†

ED14
ED13
ED12
ED11
ED10
ED9
ED8
ED7
ED6
ED5
ED4
ED3
ED2
ED1
ED0‡

134
133
132
313
130
128
127
126
125
124
123
121
120
119
118
117

I/O External data bus. ED15–ED0 is the external SRAM data bus.

EOE 136 O External output enable. EOE is the active-low external SRAM output-enable signal.

EWE 137 O External write enable. EWE is the active-low external SRAM write-enable signal.

† Most-significant bit
‡ Least-significant bit

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

9POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Terminal Functions (Continued)

DIO interface-statistics

TERMINAL
I/O DESCRIPTION

NAME NO.
I/O DESCRIPTION

EINT 112 0

TNETX15AE interrupt. EINT is an interrupt request from the TNETX15AE to an optional attached
microprocessor. Its purpose is to reduce the polling that is required for the processor to be current on the
operational states of the TNETX15AE. The interrupt cause is determined by reading the interrupt register
(0x28, 0x29). It is not required to acknowledge or act on the interrupts (unmanaged operation). EINT is
active high and level sensitive; it is high when any of the interrupt triggers are active.

ESCS 86 I
TNETX15AE chip select. When ESCS is active (low), a port access is valid for the TNETX15AE device.
ESCS must not be tied to any other chip-select signal (such as the TNETX3150/TNETX3150A SCS or the
TNETX3100 SCS).

SAD1
SAD0

85
84

I

DIO address bus. SAD1–SAD0 selects the TNETX15AE host registers.
SAD1 SAD0 Description

0 0 DIO address low
0 1 DIO address high
1 0 DIO data
1 1 DIO data auto increment

SDATA7†

SDATA6
SDATA5
SDATA4
SDATA3
SDATA2
SDATA1
SDATA0‡

81
80
79
78
76
75
74
73

I/O DIO data bus. SDATA7–SDATA0 is a byte-wide bidirectional DIO bus.

SRDY 88 O

DIO ready. When SRDY is active low, the following conditions occur:
– When SRNW = 1, the interface host is told that data is valid for reading by the host.
– When SRNW = 0, the interface host is told that data has been received by the TNETX15AE.
When ESCS is inactive high, SRDY is disabled [high-impedance (Z) state].

SRNW 83 I
DIO read/not write. SRNW is a read- or write-select signal.

– When SRNW is high, the read operation is performed by the host.
– When SRNW is low, the write operation is performed by the host.

† Most-significant bit
‡ Least-significant bit

DIO interface-MII

TERMINAL
I/O DESCRIPTION

NAME NO.
I/O DESCRIPTION

MDCLK 113 O
MII management data clock. MDCLK is a clock from the TNETX15AE for the serial MII management data MDIO.
MDCLK can be disabled [high-impedance (Z) state] by MDIOEN [a bit in the SIO register at 0x0A (DIO)].

MDIO 109 I/O
MII management data input/output. MDIO is the data terminal for serial MII management data. MDIO requires
an external pullup resistor for proper operation. MDIO can be disabled [high-impedance (Z) state] by MDIOEN
[a bit in the SIO register at 0x0A (DIO)].

MRESET 114 O
MII management reset. MRESET is a reset signal for the serial MII management interface. MRESET can be
disabled [high-impedance (Z) state] by MDIOEN [a bit in the SIO register at 0x0A (DIO)].

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Terminal Functions (Continued)

DIO interface-EEPROM

TERMINAL
I/O DESCRIPTION

NAME NO.
I/O DESCRIPTION

ECLK 115 O
EEPROM clock. ECLK is the serial EEPROM data clock and is implemented as a 3.3-V totem-pole output cell.
Because of the active pullup, and since most EEPROMs use CMOS logic levels, it may be difficult to use 5-V
EEPROMs.

EDIO 110 I/O
EEPROM data input/output. EDIO is the serial EEPROM data I/O signal. This terminal requires an external pullup
(see EEPROM data sheet) for EEPROM operation.

control logic interface

TERMINAL
I/O DESCRIPTION

NAME NO.
I/O DESCRIPTION

OSCIN 72 I
Oscillator input. OSCIN is the clock input that drives the internal state machines. For no-glue interface to the
TNETX3150/TNETX3150A/TNETX3100, OSCIN is connected to the TNETX3150/TNETX3150A/TNETX3100
OSCIN terminal.

RESET 108 I
Reset. RESET (active low) resets the TNETX15AE. RESET must remain active for at least 25 ms after power
and the clocks have stabilized on power up. After the power-up cycle, RESET must remain active for a minimum
of 3 µs for recognition.

JTAG interface

TERMINAL
I/O DESCRIPTION

NAME NO.
I/O DESCRIPTION

TCLK 140 I Test clock. TCLK clocks state information and test data into and out of the device during operation of the test port.

TDI 139 I Test data input. TDI serially shifts test data and test instructions into the device during operation of the test port.

TDO 144 O Test data out. TDO serially shifts test data and test instructions out of the device during operation of the test port.

TMS 141 I Test mode select. TMS controls the state of the test-port controller.

TRST 142 I Test reset. TRST asynchronously resets the test-port controller when set low.

power interface

TERMINAL
DESCRIPTION

NAME NO.
DESCRIPTION

GND
11, 25, 49, 68, 82,
100, 111, 129, 143

Ground. GND is the 0-V reference for the device.

VCC
4, 18, 39, 58, 77,
92, 107, 122, 135,

Supply voltage. VCC = 3.3 ± 0.3 V. VCC is the main-logic power supply.

VCC(5V)
30, 44, 63, 87,

116, 138
Supply voltage. VCC(5V) = 5 ± 0.5 V. VCC(5V) is the clamp rail voltage on I/O terminals that gives TTL
capability.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

11POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

register description

general notation notes

Hexadecimal notation: Leading zero, followed by lower-case x, then hex digits, with space or punctuation
delimiters on both ends. A . . . F are equivalent to a . . . f (example: 0x12bc, 0x12BC0

Binary notation: Trailing lower-case b after string composed of only 1 or 0, with space or punctuation
delimiters on both ends (example: 101011b).

Decimal notation: A number composed of 0 . . . 9 digits with no prefix or suffix, with a space or
punctuation delimiters on both ends (example: 23965)

The least-significant bit in a register is the lowest number.

The least-significant byte of a multibyte value is the lowest number.

node address format (Ethernet native data format)

The node addresses are kept inside the TNETX15AE in Ethernet native data format. This is the same format
used when the address appears in the frame transmitted on the wire. Ethernet first transmits the least-significant
bit of a data byte on the wire. This makes the group/specific address appear in bit 40 (least-significant bit of
most-significant byte). The TNETX15AE address storage format is shown in the following:

BIT

BYTE (most-significant byte) BYTE BYTE BYTE BYTE BYTE

47 42 41 40 39 32 31 24 23 16 15 8 7 0

Local/Universal
Address

Group/Specific
Address

DIO register access

There are only four byte-wide DIO registers that are hardware interfaced to the DIO interface. These registers
are treated like a pointer structure to locate internal registers, some of which are interfaced to external terminals
of the device (see Figure 2). The small number of registers actually on the DIO interface give the TNETX15AE
a small I/O map requirement when designing systems; also, it allows additional registers to be defined without
requiring the hardware interface to change.

SAD0–SAD1

SRNW

ESCS

SRDY
Auto-Increment

Register

Internal
Registers

Internal RAM

MII Interface

EEPROM Interface

TNETX15AE

Access Register

SRAM Interface

Address-High
Register

Address-Low
Register

Data Register

2

Figure 2. DIO Access (Pointer) Registers

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

DIO register access (continued)

To access an internal register, post both halves of the address to the DIO address-low and DIO address-high
registers and read or write the DIO data register. The DIO access register code is given in Table 1. If the host
performs a read, the internal state machine enables the internal register at the posted address to drive the bus
when the read cycle is active. If the host performs a write to a TNETX15AE register, the value written to the data
register address is transferred to the posted address in the DIO address-low and DIO address-high registers.
SRDY (on a host read) indicates that the internal fetch was accomplished. A delay of up to 60 ns after cycle start
is encountered if the resource being requested is currently being used by an internal state machine. There are
dedicated cycles for DIO to prevent lockout, but they are allocated as 2 of 5, and DIO is asynchronous to internal
processes. SRDY (on a host write) indicates that the value written to the data register is captured and is written
to the resource addressed. For maximum throughput, SRDY should be part of the interface; if not, add 60 ns
to the minimum DIO cycle times.

If a range of consecutive (rising in order) accesses is needed, reading or writing to the DIO data auto-increment
register causes a post increment of the DIO address low and DIO address high registers after each access.
Reads and writes can be mixed in a string of accesses; the post increment is by one after each cycle.

All registers are set to their default values on a hardware reset (setting the RESET terminal low, then high). All
registers, except the control register, also are set to their default values on a software reset (setting the RESET
bit high in the control register).

Table 1. DIO Access Register Code

SAD1 SAD0 DESCRIPTION

0 0 DIO address low

0 1 DIO address high

1 0 DIO Data

1 1 DIO data auto-increment

DIO address register DIOADR at SAD1–SAD0 = 00b and 01b (host)

DIO ADDRESS HIGH DIO ADDRESS LOW

15† 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0‡

DIOADR

† Most-significant bit
‡ Least-significant bit

BIT NAME FUNCTION

15–0 DIOADR
DIO address. DIOADR contains the internal DIO address used on subsequent accesses to the DIO data or DIO data
auto-increment registers. This field auto-increments (by one) on all accesses to the DIO data auto-increment register.

DIO data register DIODATA at SAD1–SAD0 = 10b (DIO)

The DIO data register address allows indirect access to internal TNETX15AE registers. This is a temporary
staging register for data being written through to an internal register (write) or fetched from an internal
register (read).

DIO address auto-increment register DIOADDRINC at SAD1–SAD0 = 11b (DIO)

The DIO address auto-increment register address allows indirect access to internal TNETX15AE registers. This
is a temporary staging register for data being written through to an internal register (write) or fetched from an
internal register (read). Accesses to this register cause a post increment of the DIO address register.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

13POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

internal register map

The DIO addresses for the internal registers are shown in Table 2.

Table 2. DIO Internal Register Address Map

BYTE 3 BYTE 2 BYTE 1 BYTE 0
DIO

ADDRESS

Agingtimer (see Note 1) RAMsize (see Note 1) Revision 0x00

Unkmultiports (see Note 1) Unkuniports (see Note 1) 0x04

SIO Control (see Note 1) 0x08

Findnode23–Findnode16 Findnode31–Findnode24 Findnode39–Findnode32 Findnode47–Findnode40 0x0C

Findport Findnode7–Findnode0 Findnode15–Findnode8 0x10

SECVIOctr Findcontrol Findnodeage 0x14

Unkmultictr Unkunictr 0x18

Numnodes 0x1C

MANtest RAMaddr 0x20

RAMdata 0x24

Intmask Int 0x28

Adddelcontrol 0x2C

Newnode23–Newnode16 Newnode31–Newnode24 Newnode39–Newnode32 Newnode47–Newnode40 0x30

Newport Newnode7–Newnode0 Newnode15–Newnode8 0x34

Addnode23–Addnode16 Addnode31–Addnode24 Addnode39–Addnode32 Addnode47–Addnode40 0x38

Addport Addnode7–Addnode0 Addnode15–Addnode8 0x3C

Agednode23–Agednode16 Agednode31–Agednode24 Agednode39–Agednode32 Agednode47–Agednode40 0x40

Agedport Agednode7–Agednode0 Agednode15–Agednode8 0x44

Delnode23–Delnode16 Delnode31–Delnode24 Delnode39–Delnode32 Delnode47–Delnode40 0x48

Delnode7–Delnode0 Delnode15–Delnode8 0x4C

Manufacturer test (see Note 1) 0x50

Manufacturer test (see Note 1) 0x54

Manufacturer test (see Note 1) 0x58

Manufacturer test (see Note 1) 0x5C

Manufacturer test (see Note 1) 0x60

Manufacturer test (see Note 1) 0x64

Manufacturer test (see Note 1) 0x68

Uplinkport Manufacturer test (see Note 1) 0x6C

NOTE 1: These registers are automatically loaded from the attached EEPROM when the LOAD bit in the control register is set, or when the
TNETX15AE is hardware reset by deasserting the RESET terminal and an external EEPROM is detected.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

default register values at reset

The reset values for the default registers are shown in Table 3.

Table 3. Default Registers Reset Values

BYTE 3 BYTE 2 BYTE 1 BYTE 0
DIO

ADDRESS

0x0000 0x80 0x10 0x00

0x7FFF 0x7FFF 0x04

0x00 MDIO*(0x10) + EDIO*(0x01) 0x0000 0x08

0x00 0x00 0x00 0x00 0x0C

0x0000 0x00 0x00 0x10

0x0000 0x0000 0x14

0x0000 0x0000 0x18

0x0000 0x0000 0x1C

0x00 0x000000 0x20

0x0000 SRAM data at address 0 0x24

0x0000 0x0000 0x28

0x0000 0x00 0x00 0x2C

0x00 0x00 0x00 0x00 0x30

0x0000 0x00 0x00 0x34

0x00 0x00 0x00 0x00 0x38

0x0000 0x00 0x00 0x3C

0x00 0x00 0x00 0x00 0x40

0x00 0x00 0x00 0x00 0x44

0x00 0x00 0x00 0x00 0x48

0x00 0x00 0x00 0x00 0x4C

0x7FFD 0x7FFE 0x50

0x7FF7 0x7FFB 0x54

0x7FDF 0x7FEF 0x58

0x7F7F 0x7FBF 0x5C

0x7DFF 0x7EFF 0x60

0x77FF 0x7BFF 0x64

0x5FFF 0x6FFF 0x68

0x00 0x00 0x3FFF 0x6C

EEPROM auto-configuration from an external x24C02 EEPROM

The flash EEPROM interface is provided so the system-level manufacturers can provide an optional
preconfigured system to their customers. Customers can change or reconfigure their system and retain their
preferences between system power downs.

The flash EEPROM contains configuration and initialization information, which is accessed infrequently
(typically at power up and reset).

The TNETX15AE uses the 24C02 serial EEPROM device (2048 bits organized as 256 × 8). This device uses
a two-wire serial interface for communications.

EEPROM programming can be done while in the system through the TNETX15AE EDIO port using suitable
driver software.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

15POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

EEPROM auto-configuration from an external x24C02 EEPROM (continued)

The organization of the EEPROM data is shown in Table 4. The last register loaded is the control register. This
allows a complete initialization by downloading the contents of the EEPROM into the TNETX15AE. During the
download, no DIO operations are permitted. The LOAD and RESET bits in the control register cannot be set
during a download, preventing a download loop.

The TNETX15AE has reserved space in the register map with corresponding reserved space in the EEPROM.
This is to support additional features in future revisions of the device with minimal impact on software drivers
written for this device. Although the TNETX15AE does not use the values in the reserved EEPROM locations
to load the reserved locations in the register map, the auto-loader reads every address from the beginning of
the EEPROM to the CRC to calculate the CRC. That is, changing a loaded value or a reserved value requires
a new CRC for the EEPROM.

The TNETX15AE detects the presence/absence of the EEPROM. If it is not installed, the EDIO terminal should
be tied low. For EEPROM operation, the terminal requires an external pullup (see EEPROM data sheet). When
no EEPROM is detected, the TNETX15AE assumes default register values at power up and is halted.
Downloading a configuration from the EEPROM terminals is disabled when no EEPROM is present.

The first bit written to or read from the EEPROM is the most-significant bit of the byte, i.e., data (7). Therefore,
writing the address 0xC0 is accomplished by writing a 1 and then 1, 0, 0, 0, 0, 0, 0. For details of reading, writing,
or programming a 24C02 device, refer to the device data sheet.

The TNETX15AE causes data to be stored in the EEPROM in a specific format. The range from 0x00 to 0x2A
in the EEPROM is reserved for use by the adapter. The contents of the remaining bytes are undefined. The
EEPROM can be read/written by driver software through the SIO register.

A 32-bit CRC value must be calculated from the EEPROM data and placed in the EEPROM in the location
following the bytes loaded into the internal registers. The TNETX15AE uses this 32-bit CRC to validate the
EEPROM data. If the CRC fails, the TNETX15AE registers are set to their default (hardwired) values. This is
the same state the TNETX15AE is in if no EEPROM is present. Without an EEPROM, a management CPU is
required to load all the registers and set the start bit to 1 in the upper one-half of the control/status register (0x08).
The CRC calculation on the EEPROM bytes is the same as the IEEE Std 802.3u for the packet CRC calculation
on a byte-by-byte basis. For reference, the equation is:

G(x)� x32
� x26

� x23
� x22

� x16
� x12

� x11
� x10

� x8
� x7

� x5
� x4

� x2
� x� 1

The TNETX15AE EEPROM register assignments are shown in Table 4.

(1)

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Table 4. TNETX15AE EEPROM Register Assignments

DIO REGISTER ADDRESS EEPROM VALUE EEPROM ADDRESS

0x01 RAMsize 0x00h

0x02 Agingtimer LSB 0x01h

0x03 Agingtimer MSB 0x02h

0x04 Unkuniports LSB 0x03h

0x05 Unkuniports MSB 0x04h

0x06 Unkmultiports LSB 0x05h

0x07 Unkmultiports MSB 0x06h

0x50 Manufacturing test (0xFE) 0x07h

0x51 Manufacturing test (0x7F) 0x08h

0x52 Manufacturing test (0xFD) 0x09h

0x53 Manufacturing test (0x7F) 0x0Ah

0x54 Manufacturing test (0xFB) 0x0Bh

0x55 Manufacturing test (0x7F) 0x0Ch

0x56 Manufacturing test (0xF7) 0x0Dh

0x57 Manufacturing test (0x7F) 0x0Eh

0x58 Manufacturing test (0xEF) 0x0Fh

0x59 Manufacturing test (0x7F) 0x10h

0x5A Manufacturing test (0xDF) 0x11h

0x5B Manufacturing test (0x7F) 0x12h

0x5C Manufacturing test (0xBF) 0x13h

0x5D Manufacturing test (0x7F) 0x14h

0x5E Manufacturing test (0x7F) 0x15h

0x5F Manufacturing test (0x7F) 0x16h

0x60 Manufacturing test (0xFF) 0x17h

0x61 Manufacturing test (0x7E) 0x18h

0x62 Manufacturing test (0xFF) 0x19h

0x63 Manufacturing test (0x7D) 0x1Ah

0x64 Manufacturing test (0xFF) 0x1Bh

0x65 Manufacturing test (0x7B) 0x1Ch

0x66 Manufacturing test (0xFF) 0x1Dh

0x67 Manufacturing test (0x77) 0x1Eh

0x68 Manufacturing test (0xFF) 0x1Fh

0x69 Manufacturing test (0x6F) 0x20h

0x6A Manufacturing test (0xFF) 0x21h

0x6B Manufacturing test (0x5F) 0x22h

0x6C Manufacturing test (0xFF) 0x23h

0x6D Manufacturing test (0x3F) 0x24h

0x08 Control LSB 0x25h

0x09 Control MSB 0x26h

CRC byte 3 MSB 0x27h

CRC byte 2 0x28h

CRC byte 1 0x29h

CRC byte 0 LSB 0x2Ah

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

17POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

internal register descriptions

revision register, revision at 0x00 (DIO)

BIT

7
(MOST-SIGNIFICANT BIT) 6 5 4 3 2 1

0
(LEAST-SIGNIFICANT BIT)

Product code Revision

Initial values after reset

0 0 0 1 0 0 0 0

This register contains the revision code for the device. The initial revision code is hardwired to 0x10. This register
is read only, and writes to it are ignored.

SRAM size-select register, RAMsize at 0x01 (DIO)

The RAMsize register can be written to only when the START bit in the control register is set to 0. This register
is automatically loaded from the EEPROM when the RESET terminal is asserted low, or when LOAD in the
control register is set.

BIT

7 6 5 4 3 2 1 0

Reserved RSIZE

Initial values after reset

1 0 0 0 0 0 0 0

BIT NAME FUNCTION

7–4 Reserved Writes to this location are ignored and are read as 0.

3–0 RSIZE

Ram size select. This field indicates the size of the external SRAM, and has a bearing on the number of addresses that
the TNETX15AE supports. The TNETX15AE uses this field to determine how many tables to initialize as part of the reset
sequence by indicating how many address lines to use. The TNETX15AE uses external SRAM for tables of pointers
used in address decoding and for table end pointers (the two-word address descriptors). This field can be written only
when the START bit is 0 and reset is not active. This field also is loaded from the EEPROM interface during auto load.

Code values are as follows:

RAMsize RAM WORST
REGISTER SIZE CASE

0x00 640 × 8 2
0x01 832 × 8 2
0x02 1K × 8 3
0x03 2K × 8 7
0x04 4K × 8 14
0x05 8K × 8 28
0x06 16K × 9 59
0x07 32K × 10 123
0x08 64K × 11 251
0x09 128K × 12 507
0x0A 256K × 13 1019
0x0B 512K × 14 2189
0x0C 1M × 15 4530

0x0D to 0x0F 2M × 16 9211

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

18 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

age-deletion time-select register, agingtimer at 0x02–0x03 (DIO)

BYTE 1 BYTE 0

BIT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Agingtimer

Initial values after reset

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The agingtimer register is 16 bits wide and is used to control the aging process. There are two aging modes,
and the modes are selected according to the value of this register:

� When agingtimer is 0 or 0xFFFF, the TNETX15AE performs table-full aging. The TNETX15AE ages out the
oldest address when the lookup table becomes full.

� When agingtimer is not 0 or 0xFFFF, the TNETX15AE performs threshold aging. The value in the agingtimer
is the time threshold in seconds. All addresses that are older than this time are aged out.

Aging does not delete addresses that have been secured, and multicast addresses also are not aged. Aging
is disabled when the NAUTO bit in the control register is set. It is management’s responsibility in NAUTO mode
to manage the lookup table.

All bits in this register are read/writeable and default to 0x0 during reset. This field also is automatically loaded
from the EEPROM when the RESET terminal is asserted low or when LOAD in the control register is set to 1.

unknown unicast port-routing register, unkuniports at 0x04–0x05 (DIO)

BYTE 1 BYTE 0

BIT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Unkuniports

Initial values after reset

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

The unkuniports register is used to route unicast frames whose destination address is not found within the
lookup table. Normally these frames are flooded to all ports except to the port that originated the frame. The
TNETX15AE uses the unkuniports register to route these frames to only selected ports. When the TNETX15AE
uses the unkuniports register for unicast flooding, it increments the unkunictr counter. The TNETX15AE masks
out the originating port when using this register. This prevents the attached switch device from forwarding the
frame to its originating port.

The bit numbers in this register have a one-to-one correspondence with the attached switch-device port number.
This register is readable/writeable and is auto-loaded from the EEPROM when the RESET terminal is asserted
low or when LOAD in the control register is set.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

19POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

unknown multicast port-routing register, unkmultiports at 0x06–0x07 (DIO)

BYTE 1 BYTE 0

BIT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Unkmultiports

Initial values after reset

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

The unkmultiports register is used to route multicast frames whose multicast address is not found within the
lookup table. Normally these frames are flooded to all ports except to the port that originated the frame. The
TNETX15AE uses the unkmultiports register to route these frames to only selected ports. When the
TNETX15AE uses the unkmultiports register for multicast flooding, it increments the unkmultictr counter. The
TNETX15AE masks out the originating port when using this register. This prevents the attached switch from
forwarding the frame to its originating port.

The bit numbers in this register have a one-to-one correspondence with the attached switch-device port number.
This register is readable/writeable and is auto-loaded from the EEPROM when the RESET terminal is asserted
low or when LOAD in the control register is set.

mode control status register, control at 0x08–0x09 (DIO)

BYTE 1 BYTE 0

BIT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESET LOAD START INITD NEEPM NAUTO Reserved NLRN0 NCRC Reserved

Initial values after reset

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

No EEPROM detected

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Auto loading fails

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

The control register is automatically loaded from the EEPROM when the RESET terminal is asserted low, or
when the LOAD bit is set. Only selected bits in this register are loaded from the EEPROM. RESET and LOAD
bits are not loaded to prevent automatic loading loops. The two status bits, INITD and NEEPM, also are not
loadable. If automatic loading fails due to EEPROM malfunction or CRC error, the control register RESET bit
is set.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

20 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

mode control status register, control at 0x08–0x09 (DIO) (continued)

BIT NAME FUNCTION

15 RESET
Reset. Writing a 1 to RESET places the TNETX15AE in a hardware reset state. This function sets all internal logic
operations to a known state, and clears all registers (except for control). (All data from the lookup table is lost.) This bit
is not automatically loaded from the EEPROM. If EEPROM automatic loading fails, then the RESET bit is set to 1.

14 LOAD
Load system. Writing a 1 to LOAD starts the automatic loading of registers from the attached EEPROM. This bit is not
automatically loaded from the EEPROM. The EEPROM automatic loader clears this bit to 0 (writing a 0 to this bit has
no effect). This is another way to initialize registers besides the auto-load (if EEPROM present) after reset.

13 START
Start system. Writing a 1 to START causes the TNETX15AE to begin operation. While the SRAM tables are initialized,
no address checking is performed. (Writing a 0 to this bit has no effect.)

12 INITD
RAM-initialization-done signal. INITD becomes high when the lookup table SRAM is initialized. The TNETX15AE begins
learning/matching addresses after this signal goes high. This is a read-only bit. Expect this to take 40 ns × RAMsize.

11 NEEPM
No external EEPROM. NEEPM indicates when an internal EEPROM is detected. If this bit is 1, no EEPROM is present
or the TNETX15AE is unable to detect it, or the CRC is wrong. If this bit is set to 0, a properly formatted EEPROM was
detected. This is a read-only bit.

10 NAUTO

Not automatically add-address mode select. NAUTO selects the manner in which addresses are added to the lookup
table. In NAUTO mode, the aging logic operation is disabled. It is management’s responsibility to manage the lookup
table in this mode.

– When set to 1, the TNETX15AE adds addresses only to the lookup table when a DIO ADD command is given
to it. The bus watcher/LKUP state machines are still watching source addresses, and the NEW int is issued if a
new address is observed on the wire.
– When set to 0, the TNETX15AE automatically adds unknown addresses to its lookup table.

9–7 Reserved Cleared to 0 on reset. Must always be written with a 0, even via EEPROM load.

6 NLRN0 Not-learn addresses from port 0. When set, the TNETX15AE does not learn SRC addresses on port 0 (uplink).

5 NCRC

No CRC check. NCRC enables/disables the add-on-only-good CRC function.
– When set to a 1, the TNETX15AE adds frames immediately after the source address is found on the DRAM bus.
A good CRC is not required to add the source address to the table.
– When set to a 0, the TNETX15AE waits until the EOB/EOF and a good CRC indication before adding addresses.
Only one source address add can be pending at a time. Waiting on a good CRC can force the TNETX15AE to miss
adds on other ports.

4–0 Reserved Writes to these locations are ignored and read as 0.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

21POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

serial interface I/O register, SIO at 0x0A (DIO)

BIT

7 6 5 4 3 2 1 0

NMRST MCLK MTXEN MDATA MDIOEN ECLOK ETXEN EDATA

Initial values after reset

0 0 0 MDIO 0 0 0 EDIO

The SIO register contains the control bits for two serial interfaces to the TNETX15AE. Setting the outbound
signals changes the state of the external terminal. Sampling the inbound signals gives the state of the external
terminal. The MII to the PHY devices has a serial management portion. This interface can have multiple
masters, and allows for two-way data between master and slave. The interface to the EEPROM is simpler
because it is a dedicated path between one TNETX15AE and its EEPROM. Although it is also serial and two
way, there is only one master.

BIT NAME FUNCTION

7 NMRST

MII not reset. The state of MNRST directly controls the state of the MRESET line (MII reset)
– If NMRST is set to 0, the MRESET line is set to 0.
– If NMRST is set to 1, the MRESET line is set to 1.

This bit is not self-clearing and must be manually deasserted. It can be set low and then immediately set high. Since
every PHY attached to the MII may not have a reset terminal, it may be necessary to toggle NMRST and also individually
reset each PHY through MII commands. The default state of this bit is 0 (MII is in reset). The MDIOEN bit must be set
to drive MRESET.

6 MCLK
MII SIO clock. MCLK controls the state of the MDCLK terminal. The MDIOEN bit must be set to drive MDCLK.

– When MCLK is set to 1, MDCLK is set to 1.
– When MCLK is set to 0, MDCLK is set to 0.

5 MTXEN

MII SIO transmit enable. MTXEN is used with the MDATA bit to read/write information from/to the MDIO terminal. The
MDIOEN bit must be set to drive MDIO.

– When MTXEN is set to 1, the MDIO terminal is driven with the value in the MDATA bit.
– When MTXEN is set to 0, MDATA is loaded with the value in the MDIO terminal.

4 MDATA

MII SIO data. MDATA is used with MTXEN to read/write information from/to the MDIO terminal.
– When MTXEN is set to 1, MDIO is driven with the value in this bit.
– When MTXEN is set to 0, this bit is loaded with the value on MDIO.

The MDIOEN bit must be set to drive MDIO. The default value of this bit is the value driven on the MDIO terminal.

3 MDIOEN

MII SIO data terminal enable. MDIOEN enables the high-Z control of the MDIO, MDCLK, and MRESET terminals.
– Setting MDIOEN to 1 enables MII outputs.
– Setting MDIOEN to 0 places MII outputs in a high-Z state.

The default state of this bit is 0 (MII disabled)

2 ECLOK
EEPROM SIO clock. ECLOK controls the state of the ECLK terminal.

– When ECLOK is set to 1, ECLK is set to 1.
– When ECLOK is set to 0, ECLK is set to 0.

1 ETXEN
EEPROM SIO transmit enable. ETXEN controls the direction of the EDIO terminal.

– When ETXEN is set to 1, EDIO is driven with the value in the EDATA bit.
– When ETXEN is set to 0, EDATA is loaded with the value on the EDIO terminal.

0 EDATA

EEPROM SIO data. EDATA is used to read or write the state of the EDIO terminal.
– When EXTEN is set to 1, EDIO is driven with the value in this bit.
– When EXTEN is set to 0, EDATA is loaded with the value on EDIO.

The default value of this bit is the value driven on the EDIO terminal.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

22 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

management-table lookup interface at 0x0B–0x16 (DIO)

BYTE 3 BYTE 2 BYTE 1 BYTE 0 DIO ADDRESS

Findnode23–Findnode16 Findnode31–Findnode24 Findnode39–Findnode32 Findnode47–Findnode40 0x0C

Findport Findnode7–Findnode0 Findnode15–Findnode8 0x10

Findcontrol Findnodeage 0x14

The management-table lookup registers allow the management entity to find information about the node
addresses contained in the table.

These registers are part of the address lookup/inspection mechanism supported through the DIO (host)
interface. An address is fully described by the six bytes of findnode (0xC to 0x11). Data about an address is
returned in findport (0x12). FIND commands are issued through the findcontrol (0x16) register. They are
discussed later in more detail in numerical order.

To cause a FIND operation to execute, the host writes to the findcontrol register (0x16). To find the first address
in the table, execute a FIRST command. The target MAC address is returned in six bytes of findnode registers.
If a successive FIND command is executed (findnext), the starting point to continue the search is the six bytes
of findnode. The results are returned in the same registers, overwriting the original values. These registers can
be read/write between FINDS; a find next picks up with the current values of findnode. If a lookup on an address
to check parameters is executed, the data returned corresponds to the value in the six bytes of findnode when
the lookup command was given; the address parameters are posted in the findport register (0x12, 0x13). The
FIND operation completion is detected when the command bit is written back to 0 (poll). The find register block
is discussed later in further detail in numerical order.

lookup-node address register, findnode at 0x0C–0x11 (DIO)

The findnode registers are used to exchange addresses between the TNETX15AE and the management CPU.
The node address in findnode is kept in Ethernet native data format; bit 40 is the group/specific bit. The function
of findnode depends on the bits set in findcontrol:

� On FIRST operations, this register shows the first address in the lookup table. The data in findnode is valid
only when the FOUND bit in findcontrol is a 1.

� On NEXT operations, this register shows the next address in the lookup table. The data in findnode is valid
only when the FOUND bit in findcontrol is a 1.

� On LKUP operations, the lookup logic operation looks up the address stored in this register. If found, the
FOUND bit in findcontrol is set to a 1.

This register is readable/writeable. While any of the FIND command bits are set, writes to these addresses
are ignored.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

23POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

lookup routing-code register, findport at 0x12–0x13 (DIO)

The findport register is a read-only register, which returns port assignment information for the node address
contained in the findnode register after a lookup. The data structure for the findport register depends on the type
of address stored in the findnode register.

If findnode contains a unicast address, findnode (40) = 0 (bit 40 of the Ethernet adddress is 0), then findport
is defined as:

BYTE 3 BYTE 2

BIT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VALID SECURE LOCKED CUPLNK PORTCODE Reserved

Initial values after reset

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BIT NAME FUNCTION

15 VALID Valid address indication.

14 SECURE

Secured address indication. SECURE shows the security level for the address contained in the findnode register.
Secure addresses are not aged out and cannot move ports. If a station with a secured address moves ports, a security
violation interrupt is given to the host, and the address is locked. Since the lookup of the destination address causes
the queueing of the packet for transmit, and this happens before the source address is inspected, the packet that
causes a security violation is processed through the switch.

13 LOCKED

Locked address indication. LOCKED shows the lock status for the address contained in the findnode register. Locked
addresses output a discard code on the EAM interface; frames destined for LOCKED addresses are not delivered.
Since the destination address lookup, which causes the queueing of the packet for transmission, is independent of
checking the source address, locked addresses cannot receive packets (but still can transmit) into the switch attached
to TNETX15AE.

12 CUPLNK

Copy frames to uplink indication. CUPLINK shows the copy uplink status for the address contained in the findnode
register. The address tagged by this bit adds the port specified in the uplinkports register to the routing code output
on the EAM bus. This can affect performance of the TNETX3150/TNETX3150A/TNETX3100, as each packet must
be linked to two transmit queues.

11–8 PORTCODE Current port for node. PORTCODE holds the current port for the unicast address shown in the findnode register.

7–0 Reserved Writes to this location are ignored and read as 0.

If findnode is a multicast address, findnode (40) = 1 (bit 40 of the Ethernet address is 1), then findport is
defined as:

BYTE 3 BYTE 2

BIT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VALID PORTFLAG

Initial values after reset

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BIT NAME FUNCTION

15 VALID Valid address indication.

14–0 PORTFLAG
Port-bit vector for multicast. PORTFLAG shows the port-bit vector for the multicast address contained in the findnode
register. The bit values in this field correspond one-to-one with the TNETX3150/TNETX3150A/TNETX3100 port
assignment.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

24 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

node age-stamp register, findnodeage at 0x14–0x15 (DIO)

BYTE 1 BYTE 0

BIT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NODEAGE

Initial values after reset

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The findnodeage register is a read-only register, which holds the current 16-bit age-time stamp of the address
contained in the findnode register after a find command executes. Age units are seconds. The time stamp
indicates when this address was last seen.

lookup table search control register, findcontrol at 0x16 (DIO)

The management logic uses the findcontrol register to scan the lookup table for addresses. Three commands
are available: findfirst (FIRST), findnext (NEXT), find (LKUP). Only one command is valid at one time. Example:
a findfirst and a findnext command cannot be issued at the same time (0x06). The TNETX15AE ignores all
multiple commands. This register is readable/writeable. Further accesses of this register are delayed until the
operation is complete; that is, SRDY does not go active until the FIND state machine is done. This can produce
a 6.4-µs read or write cycle if this register is accessed right after a FINDNEXT is started on a sparsely loaded
table.

BIT

7 6 5 4 3 2 1 0

FOUND Reserved FIRST NEXT LKUP

Initial values after reset

0 0 0 0 0 0 0 0

BIT NAME FUNCTION

7 FOUND
Address found. If the address contained in the findnode register is found in the table, FOUND is asserted. The data
contained in the find interface (findnode, findport, and findnodeage) is valid only when this bit is a 1. This is a read-only
bit.

6–3 Reserved Reserved

2 FIRST
Lookup first address. When FIRST is 1, the TNETX15AE scans the address table for the first valid address. If FOUND
is set, the address parts are placed in findnode, findport, and findnodeage.

1 NEXT
Lookup next addresses. When asserted, the TNETX15AE scans the address table for the next available address after
the address currently in the findnode registers (0xC–0x11). If FOUND is set, the address parts are placed in findnode,
findport, and findnodeage.

0 LKUP
Address lookup. When asserted, the TNETX15AE scans the address table for the address contained in the findnode
register. If found, the FOUND bit reads a 1 and findport and findnodeage are valid; if not found, it reads a 0.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

25POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

statistics registers at 0x17–0x1D (DIO)

BYTE 3 BYTE 2 BYTE 1 BYTE 0 DIO ADDRESS

Secvioctr 0x14

Unkmultictr Unkunictr 0x18

Numnodes 0x1C

All registers in this field are read only and their default value after reset is 0. The 16-bit counters in this section
must be read by bytes. It is recommended that the bytes be read least-significant byte through most-significant
byte (last). An additional stimulus can cause a carry between these two reads.

security violation counter, secvioctr at 0x17 (DIO)

The secvioctr field contains the number of times that a secured address attempts to move ports. This register
generates a stat interrupt (statistics overflow interrupt) when it is one-half full (most-significant bit in the field is
a 1). Reading this register automatically clears it and the default value of this register is 0x00.

unknown unicasts counter, unkunictr at 0x18–0x19 (DIO)

The unkunictr register counts the number of times that the TNETX15AE device floods a frame that has a unicast
destination address. These frames are used when the TNETX15AE cannot find the destination address in its
lookup table. This register generates a stat interrupt (statistic overflow interrupt) when it is one-half full
(most-significant bit in the field is a 1). Reading the most-significant byte of this register automatically clears it
and the default value of this register is 0x0000.

unknown multicasts counter, unkmultictr at 0x1A–0x1B (DIO)

The unkmultictr register counts the number of times that the TNETX15AE device floods a frame that has a
multicast destination address. Multicast destination addresses are flooded when the TNETX15AE cannot find
the destination address in its lookup table. This register generates a stat interrupt (statistics overflow interrupt)
when it is one-half full (most-significant bit in the field is a 1). Reading the most-significant byte of this register
automatically clears it and the default value of this register is 0x0000.

lookup table node count, numnodes at 0x1C–0x1D (DIO)

The numnodes counter register contains the number of addresses currently in the lookup table. This register
is read only and its value at reset is 0x0000.

SRAM address register, RAMaddr at 0x20–0x22 (DIO)

The RAMaddr register is used with the RAMdata (at 0x24, 0x25) register to access the TNETX15AE
external SRAM.

BYTE 2 BYTE 1 BYTE 0

BIT

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

INC Reserved RAM ADD

Initial values after reset

0 0

BIT NAME FUNCTION

23 INC
Address auto-increment. When INC is 1, this increments the RAM ADD field to access the next location in the SRAM.
The address is incremented by one after every read or write is performed on the most-significant byte of the RAMdata
register.

22–21 Reserved Writes to this location are ignored and read as 0.

20–0 RAM ADD
RAM address. This 21-bit field holds the address of the SRAM location, which is read or written. The data that is to
be read or written is placed in the RAMdata register. This interface is read/write at all times except during reset.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

manufacturing test register, MANtest at 0x23 (DIO)

This register is reserved for Texas Instruments (TI) manufacturing test. It is written to 0x0 for normal operation.
All reset mechanisms leave 0x0 in this register, and it is not loaded from the EEPROM. It is written to only when
the START bit is 0.

It contains mechanisms, for example, that increment all the counters at the same time (or run the aging algorithm
quicker than usual to decrease the time required to test the part at manufacture). Setting any of these bits results
in abnormal operation. To allow improvement to the testing, these functions are subject to change.

SRAM data register, RAMdata at 0x24–0x25 (DIO)

BYTE 1 BYTE 0

BIT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RAMdata after reset

Data at SRAM (0x000000)

The RAMdata register is used to access the SRAM address held in the RAM ADD field of the RAMaddr register.
This field is 16-bits wide.

� Writes to the RAM are executed when the MS byte of the RAMdata register is written to by the host. When
depositing values for transfer to SRAM, write the least-significant byte first.

� Reads are accomplished by reading the data from either byte in the RAMdata register.

� The SRAM address to be accessed should be placed in the RAMaddr register. If the INC bit in the RAMaddr
register is a 1, the address to be accessed is increased when the most-significant byte of RAMdata is
accessed.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

27POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

interrupt register, int at 0x28–0x29 (DIO)

The int register is used with the intmask register to provide interrupts to the attached CPU. When the
TNETX15AE EINT terminal is 1, this register gives the reason for the interrupt. Specific interrupts can be
masked out by setting the appropriate bit in the intmask register. This register is read only, with the exception
of the int bit. All bits in a byte are automatically cleared when the byte is read, even if more then one was set.

BYTE 1 BYTE 0

BIT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NEW NEWM CHNG CHNGM SECVIO SECVIOM AGE AGEM INT Reserved STAT FULL

Initial values after reset

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BIT NAME FUNCTION

15 NEW
New-node interrupt. NEW indicates that a new node has been added to the lookup table. The node address is given
in the newnode register and the node’s port is given in the newport register.

14 NEWM
Missed-new-node interrupt indication. NEWM indicates that a new node interrupt was given, but the information
previously placed in the newnode registers has not been read by the host CPU.

13 CHNG
Node-port change interrupt. CHNG indicates that there has been a change in port assignment for a node that exists in
the lookup table. The node address is given in the newnode register and the node’s new port is given in the newport
register.

12 CHNGM
Missed-node-port change interrupt indication. CHNGM indicates that a node-port change interrupt was issued, but the
information previously placed in the newnode registers has not been read by the host CPU.

11 SECVIO
Security-violation interrupt. SECVIO indicates that a node (which has been secured) has attempted to move port
assignments. The node address is given in the newnode registers. The location where the node attempted to move is
contained in the newport register.

10 SECVIOM
Missed-security-violation interrupt indication. SECVIOM indicates that a node-port change interrupt was issued, but the
information previously placed in the newnode registers has not been read by the host CPU.

9 AGE
Age-out interrupt. AGE indicates that a node has been aged-out (deleted from the lookup table). The node address is
issued in the agednode register. The node’s assigned port is given in the agedport register.

8 AGEM
Missed-age-out interrupt indication. AGEM indicates that an age-out interrupt was issued, but the information previously
placed in the agednode registers has not been read by the host CPU.

7 INT Test interrupt request. Asserting INT gives a test interrupt to the attached CPU.

6–2 Reserved Writes to this location are ignored and read as 0.

1 STAT
Statistics overflow interrupt. STAT indicates that a counter in the statistics is one-half full (most-significant bit in the
counter is a 1). This is an indication to the CPU to read the statistic counters (thereby clearing them).

0 FULL

SRAM full interrupt. FULL indicates that a condition existed (or exists) that will prevent the addition of another address
to the TNETX15AE address-lookup table. During the next ADD, space for either a pointer table (32 word) or a station
descriptor (four bytes) will not be available.

If NAUTO (bit 10, control 0x9) is set, the host is responsible for adding addresses. The host-initiated ADD operation did
not complete, and the FULL interrupt was asserted. The host must delete addresses until the ADD completes.

If NAUTO is not set, the internal state machines have deleted the necessary oldest addresses until the ADD operation
completes, even if the ADD was initiated by the host. In this case, the interrupt indicates that the table is operating near
peak capacity.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

28 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

interrupt masking register, intmask at 0x2A–0x2B (DIO)

The intmask register is used with the int register to select the type of interrupts that should be enabled to the
attached CPU. Bit definitions in the intmask register agree one-to-one with the bit definitions in the int register.
Only those fields with the bit set to 1 generate an interrupt to the CPU. Clearing the bit for a condition prevents
only the external terminal from moving to a logic 1 when the appropriate condition is true. The appropriate bit
in the interrupt register is always a 1 if the condition is true, and the bit has not been cleared by being read. This
register is read/writeable.

BYTE 1 BYTE 0

BIT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NEW NEWM CHNG CHNGM SECVIO SECVIOM AGE AGEM INT Reserved STAT FULL

Initial values after reset

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BIT NAME FUNCTION

15 NEW New-node interrupt mask. When NEW is set, a new-node interrupt is posted if the NEW bit in the int register is set.

14 NEWM
Missed-new-node interrupt mask. When NEWM is set, a missed new-node interrupt is posted if the NEWM bit in the int
register is set.

13 CHNG
Node-port change interrupt mask. When CHNG is set, a node-port change interrupt is posted if the CHNG bit in the int
register is set.

12 CHNGM
Missed-node-port change interrupt mask. When CHNGM is set, a missed-node-port interrupt is posted if the CHNGM
bit in the int register is set.

11 SECVIO
Security-violation interrupt mask. When SECVIO is set, a security-violation interrupt is posted if the SECVIO bit in the
int register is set.

10 SECVIOM
Missed-security-violation interrupt mask. When SECVIOM is set, a missed-security-violation interrupt is posted if the
SECVIOM bit in the int register is set.

9 AGE Age-out interrupt mask. When AGE is set, an age-out interrupt is posted if the AGE bit in the int register is set.

8 AGEM
Missed-age-out interrupt mask. When AGEM is set, a missed age-out interrupt is posted if the AGEM bit in the int register
is set.

7 INT Test interrupt mask. When INT is set, a test interrupt is posted if the INT bit in the int register is set.

6–2 Reserved Writes to this location are ignored and read as 0.

1 STAT
Statistics overflow interrupt mask. When STAT is set, a statistics interrupt is posted if the STATS bit in the int register
is set.

0 FULL SRAM full interrupt mask. When FULL is set, a memory-full interrupt is posted if the FULL bit in the int register is set.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

29POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

new-add aged-del register set

The add/delete register set is used by the state machines (logic operations) to report on stations’ addresses
that have been added, deleted, or involved in port security violations as executed by the internal state machines,
or to request such actions be taken on the specified address on behalf of the host.

The newnode and agednode set of registers send status information from the state machines to the host
following an interrupt. Addnode and delnode registers are host information/actions to be applied to the
TNETX15AE table. The status groups (new, aged) are covered in detail first, followed by the host command
groups (add, delete).

REGISTER SET AND ADDRESSES

BYTE 3 BYTE 2 BYTE 1 BYTE 0
DIO

ADDRESS

Adddelcontrol 0x2C

Newnode23–Newnode16 Newnode31–Newnode24 Newnode39–Newnode32 Newnode47–Newnode40 0x30

Newport Newnode7–Newnode0 Newnode15–Newnode8 0x34

Addnode23–Addnode16 Addnode31–Addnode24 Addnode39–Addnode32 Addnode47–Addnode40 0x38

Addport Addnode7–Addnode0 Addnode15–Addnode8 0x3C

Agednode23–Agednode16 Agednode31–Agednode24 Agednode39–Agednode32 Agednode47–Agednode40 0x40

Agedport Agednode7–Agednode0 Agednode15–Agednode8 0x44

Delnode23–Delnode16 Delnode31–Delnode24 Delnode39–Delnode32 Delnode47–Delnode40 0x48

Delnode7–Delnode0 Delnode15–Delnode8 0x4C

new-node/port-change/security-violation interrupt interface at 0x30–0x37 (DIO)

BYTE 3 BYTE 2 BYTE 1 BYTE 0
DIO

ADDRESS

Newnode23–Newnode16 Newnode31–Newnode24 Newnode39–Newnode32 Newnode47–Newnode40 0x30

Newport Newnode7–Newnode0 Newnode15–Newnode8 0x34

The new-node/port-change/security-violation interrupt interface is used with the int and intmask registers to
exchange information relating to new addresses being added or modified in the lookup table following a wire
event. This means a new source address was seen, a source address was seen on a new port, or a source
address was seen on a port other than the one where it was secured, regardless of the state of the NAUTO bit
in the control register. These registers are valid on a NEW, CHNG, or SECVIO interrupt. These registers are
read only and default to 0 on reset. With NAUTO = 0, a new address is already added to the table. With
NAUTO = 1, the host CPU gets notification of a new address via these registers and must perform the add.

To avoid the data in these registers from being changed if another interrupt occurs while reading the current
data, the data in these registers is locked until the most-significant byte of the newport register is read.

The bit definition follows:

new-address register, newnode at 0x30–0x35 (DIO)

The newnode registers contain the node address (in Ethernet native data format) for which the interrupt was
given. The default value of this register after reset is 0x00.00.00.00.00.00.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

30 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

new-address port register, newport at 0x36–0x37 (DIO)

BYTE 3 BYTE 2

BIT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VALID Reserved PORTCODE Reserved OLDPORT

Initial values after reset

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BIT NAME FUNCTION

15 VALID Valid address indication.

14–12 Reserved Writes to this location are ignored and read as 0.

11–8 PORTCODE
Current port for node. The PORTCODE field holds the assigned port number for the address contained in the
newnode register.

7–4 Reserved Writes to this location are ignored and read as 0.

3–0 OLDPORT
Old port for address. When an address moves port locations, OLDPORT contains the old port location for the
address. When a security-violation interrupt is asserted by the TNETX15AE, the SECVIO bit is set in the int register,
and OLDPORT shows the port where the node attempted to move.

agednode interrupt interface group at 0x40–0x46 (DIO)

BYTE 3 BYTE 2 BYTE 1 BYTE 0
DIO

ADDRESS

Agednode23–Agednode16 Agednode31–Agednode24 Agednode39–Agednode32 Agednode47–Agednode40 0x40

Agedport Agednode7–Agednode0 Agednode15–Agednode8 0x44

The agednode interrupt interface is used with the int and intmask registers to pass information to the
management agent about addresses that have been deleted from the lookup table due to the internal aging
process. The information placed in these registers (written in Ethernet native data format) is valid only when
the AGE bit in the int register is set to a 1. These registers are read only and default to 0 after reset.

To prevent the data in these registers from being changed if another interrupt occurs while reading the current
data, the data in these registers is locked until the agedport register is read.

aged-address register, agednode at 0x40–0x45 (DIO)

On an age interrupt, the agednode registers contain the address of the node that has been aged out from the
lookup table. This is a read-only register and defaults to 0x00.00.00.00.00.00 after reset. A different interrupt
is issued if this information remains unread long enough that another node is aged out before the agednode
registers are released.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

31POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

aged-address port assignment, agedport at 0x46 (DIO), byte 2

BIT

7 6 5 4 3 2 1 0

Reserved PORTCODE

Initial values after reset

0 0 0 0 0 0 0 0

BIT NAME FUNCTION

7–4 Reserved Writes to this location are ignored and read as 0.

3–0 PORTCODE
Agednode port assignment. PORTCODE displays the assigned port for the aged-out address contained in the
agednode register.

management add/edit address interface group at 0x2C and 0x38–0x3F (DIO)

BYTE 3 BYTE 2 BYTE 1 BYTE 0
DIO

ADDRESS

Adddelcontrol 0x2C

0x30

0x34

Addnode23–Addnode16 Addnode31–Addnode24 Addnode39–Addnode32 Addnode47–Addnode40 0x38

Addport Addnode7–Addnode0 Addnode15–Addnode8 0x3C

The management add/edit address registers are used with the ADD bit in the adddelcontrol register to perform
CPU adds and edits to the lookup table. These registers are normally readable/writeable. As long as the ADD
bit in the addelcontrol register is high, writes to these bytes are ignored.

lookup table add/delete command register, adddelcontrol at 0x2C (DIO), byte 0

BYTE 0

BIT

7 6 5 4 3 2 1 0

Reserved ADD DEL

Initial values after reset

0 0 0 0 0 0 0 0

BIT NAME FUNCTION

7–2 Reserved Writes to this location are ignored and are read as 0.

1 ADD
Address add. When ADD is asserted, the TNETX15AE uses the information contained in the management add/edit
address interface to add or edit an address in the lookup table. ADD remains asserted until the add process is complete.

0 DEL See the delete command bit description and the description of the delnode registers (0x48–0x4f).

The adddelcontrol register can be read at any time. If the ADD or DEL bit is being written and that bit is already
set, the DIO interface will stall and SRDY will be delayed until the current cycle completes. If neither of these
two bits is already set during a write, a normal cycle results.

add address register, addnode at 0x38–0x3D (DIO)

The unicast or multicast address in this register (written in Ethernet native data format) is added to the lookup
table when the ADD bit in the adddelcontrol register is set to 1, along with the data in the addport register. The
default value of this register after reset is 0x00.00.00.00.00.00.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

32 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

add routing code register, addport at 0x3E–0x3F (DIO)

The addport register is used to set or change port and flag assignments for the node address contained in the
addnode register. The definition for the addport register depends on whether the address stored in the addnode
register is a unicast or multicast address.

This interface is used by the host to enter broadcast, multicast, and unicast addresses to the TNETX15AE table.
Wire ADDs operate on packet-source addresses, and all of these are forced to unicast addresses.

If addnode is a unicast address, (addnode (40) = 0), addport is defined as follows:

BYTE 3 BYTE 2

BIT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved SECURE LOCKED CUPLNK PORTCODE Reserved

Initial values after reset

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BIT NAME FUNCTION

15 Reserved Writes are ignored and read as 0.

14 SECURE Secured address flag. SECURE is used to change the security level for the address contained in the addnode register.

13 LOCKED
Locked address flag. LOCKED locks/unlocks the address contained in the addnode register on an add operation.
Locked addresses output a discard code on the EAM interface.

12 CUPLINK
Copy frames to uplink flag. CUPLINK sets the copy uplink status for the address contained in the addnode register.
Addresses tagged by this bit add the port (specified in the uplinkports register) to the routing code.

11–8 PORTCODE
Current port code for address. The value in PORTCODE becomes the port to which packets (sent to this address)
are forwarded. In addresses that are added automatically to the table, the source port goes to this field. This field is
writeable, and can be used to redirect traffic.

7–0 Reserved Writes to this location are ignored and read as 0.

If addnode is a multicast address, (addnode (40) = 1), addport is defined as follows:

BYTE 3 BYTE 2

BIT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved PORTFLAG

Initial values after reset

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BIT NAME FUNCTION

15 Reserved Writes are ignored and read as 0.

14–0 PORTFLAG
PORTFLAG for multicast. PORTFLAG is the port assignment for the multicast address contained in the addnode
register. The bit values in this field correspond one-to-one with the TNETX3150/TNETX3150A/TNETX3100 port
assignment.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

33POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

management delete address interface group at 0x2C, 0x48–0x4F (DIO)

BYTE 3 BYTE 2 BYTE 1 BYTE 0
DIO

ADDRESS

Adddelcontrol 0x2C

0x30

0x34

0x38

0x3C

0x40

0x44

Delnode23–Delnode16 Delnode31–Delnode24 Delnode39–Delnode32 Delnode47–Delnode40 0x48

Delnode7–Delnode0 Delnode15–Delnode8 0x4C

The management delete address interface is used with the DEL bits in the adddelcontrol register to perform
management deletions from the lookup table.

lookup table add/delete command register, adddelcontrol at 0x2C (DIO), byte 0

BYTE 0

BIT

7 6 5 4 3 2 1 0

Reserved ADD DEL

Initial values after reset

0 0 0 0 0 0 0 0

BIT NAME FUNCTION

7–2 Reserved Writes to this location are ignored and are read as 0.

1 ADD See the add command-bit description and the description of the addnode registers (0x38–0x3f).

0 DEL
Address delete. When DEL is asserted, the TNETX15AE uses the information contained in the management delete
address interface to delete an address from the lookup table. DEL remains asserted until the delete process is complete.

The adddelcontrol register can be read at any time. If the ADD or DEL bit is being written and that bit is already
set, the DIO interface will stall and SRDY will be delayed until the current cycle completes. If neither of these
two bits is already set during a write, a normal cycle results.

delete-node address register, delnode at 0x48–0x4D (DIO)

The delnode registers are used with the DEL bit in the adddelcontrol register to allow for management deletion
of an address in the lookup table. To delete an address, the address to be deleted is placed in Ethernet native
data format in this register, and the DEL bit in the adddelcontrol register is asserted. This register defaults to
0x00.00.00.00.00.00 after reset. These registers are normally read/write except when the DEL bit in the
adddelcontrol register is high; then, writes are ignored.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

34 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

uplink routing register, uplinkport at 0x6E (DIO)

BIT

7 6 5 4 3 2 1 0

Reserved Uplink

Initial values after reset

0 0 0 0 0 0 0 0

The uplinkport register routes selected packets to a user-selected port. This register is valid only when the
destination address being looked up has the CUPLNK bit set. Then the TNETX15AE forwards frames to the
port specified in the lookup table and the port specified in this register. The TNETX15AE masks (does not send
frames to) the port that originated the frame.

PRINCIPLES OF OPERATION

The purpose of this section is to assist in the development of management operational code for the TNETX15AE.
Management code is drastically simplified when using the TNETX15AE since it is designed to operate without the
need for a management CPU. Many of the functions that were performed previously by a CPU are now integrated
on the TNETX15AE.

This section discusses the following topics:

� A background on the TNETX15AE architecture, including the data-storage algorithm and the arbitration
between logic operations

� How to access the TNETX15AE registers through the DIO interface, and how these registers can be used
to access the internal/external SRAM, the EEPROM, and any MII-managed devices

� How to access the TNETX15AE through the DIO interface from a hardware reset, and do the steps needed
to bring the TNETX15AE to an operational state

� How to use the logic operations to perform management-based lookups, adds, and deletions.

� How to use the TNETX15AE interrupt support to create event-driven management code.

internal operation

This section describes the TNETX15AE hardware and how it affects the programmer and the
TNETX3150/TNETX3150A/TNETX3100 performance. The functionality described in this section is transparent
to the user, but it is included to help the user become familiar with the TNETX15AE architecture and how it
interfaces to the TNETX3150/TNETX3150A/TNETX3100 device. Refer to the latest
TNETX3150/TNETX3150A/TNETX3100 documentation for additional information.

EAM codings and in-order broadcasts (IOB)

The TNETX15AE uses two styles of EAM codings – single-port and multiple-port codings. The
TNETX3150/TNETX3150A/TNETX3100 treats these two types of coding differently.

Single-port codings forward frames to a single port. The TNETX3150/TNETX3150A/TNETX3100 queues these
frames to the port queue.

Multiple-port codings forward frames to multiple ports. The TNETX3150/TNETX3150A/TNETX3100 creates an
IOB list structure to queue this frame to multiple-port queues. IOB lists use more memory bandwidth than a
regular list because IOB lists require the use of an extra 64-byte buffer to contain all queue pointers for the ports.
If many small frames are sent to multiple ports, IOB structures then can use significant
TNETX3150/TNETX3150A/TNETX3100 memory bandwidth.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

35POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PRINCIPLES OF OPERATION

EAM codings and in-order broadcasts (IOB) (continued)

The TNETX15AE uses single-port codings when possible, to maximize performance. The TNETX15AE
inspects all multiple-port codings. If, after removing all ineligible receivers (e.g., source port) only one
destination port is left, the TNETX15AE switches to a single-port coding on the EAM bus.

For a more complete description of IOB lists, refer to the latest TNETX3150/TNETX3150A/TNETX3100
specification.

TNETX15AE DRAM and EAM interface

The TNETX15AE takes its frame input through the TNETX3150/TNETX3150A DRAM bus. It must recognize
a start-of-frame (SOF) indication on the first flag byte of the frame. After the SOF is found, the TNETX15AE
latches the first 32 bits of the destination address on the next DRAM cycle. At this point, it must complete a
lookup cycle, choose the appropriate EAM code, and output this code in 440 ns, or less. Figure 3 shows the
lookup timing. Check the data set for the TNETX3150/TNETX3150A/TNETX3100 for field definitions beyond
those used by the TNETX15AE. The data on each cycle has the following format.

ÎÎ
ÎÎ

OSCIN

DOE

DWE

DRAS

ÎÎÎ
ÎÎÎ

DCAS

Row Col Col Col Col Col

FPTR Data

Col Col Col Col Col Col Col Col Col Col Col Col

Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data

0PPP 01UU CCCC 00UU 1BBB 1SSSCCCC 00UU CCCC CCCC CCCC CCCC CCCC00UU 00UU 00UU 00UU

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

DA7–DA0,
DX2–DX0

DD31–
DD0

DD35–
DD32

EAM15–
EAM0

Forward Pointer Field
(Request Port Code)

High Nibble
of Start Flag

(SOF)

Most-Significant 32 Bits
of DA Latched

(Decode May Begin)

End-of-Buffer
(EOB)External Address Match (EAM)

Code Valid End-of-Flag
(EOF)

440 ns

0 ns 250 ns 500 ns 750 ns

Cycle 11 12 13 14 15 161 2 3 4 5 6 7 8 9 100

Low

Least-Significant 16 Bits
of DA Latched

Figure 3. Lookup Cycle Timing

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

36 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PRINCIPLES OF OPERATION

TNETX15AE DRAM and EAM interface (continued)

The TNETX15AE must determine that the data being written to memory is the first buffer of a data frame and
not an IOB index buffer. The buffer contains packet data if the IOB bit is 0. The channel/source port code is
latched from bits DD27–DD24 during the forward pointer (FPTR) transfer when
TNETX3150/TNETX3150A/TNETX3100 is writing packet data to DRAM.

The TNETX15AE must determine the start of frame by looking at the flag in cycle 1. The flag is given in the
DD35–DD32 terminals. The SOF is shown in the following table in cycle 1 at bit (35–34) = 01b.

CYCLE
BIT

CYCLE
35 34 33 32 31 28 27 24 23 16 15 0

0 IOB Parity† Tag† Channel code Forward pointer†

1 0 1 Reserved Most-significant 32 bits of DA

2 Channel code† Most-significant 16 bits SA Least-significant 16 bits DA

3 0 0 Reserved Least-significant 32 bits of SA

•
•
•

Flags† Data†

N–1 EOB Valid bytes† Data†

N EOF Frame status† CRC

† These bits are ignored by the TNETX15AE.

The TNETX15AE destination lookup cycle begins when it latches the partial destination address to begin the
table lookup in cycle 1, and ends when it outputs an EAM code within the allocated 440 ns after the SOF
condition is met. It must pick up the 16 bits at the destination in cycle 2 to complete the decode.

The channel-code field in the body of the frame is exactly the same as that in the forward pointer. The
TNETX15AE uses the channel code from the forward pointer.

decoding the destination address (DA) and source address (SA) from the DRAM bus

The TNETX3150/TNETX3150A/TNETX3100 writes data to the DRAM buffers in a specific format (refer to the
TNETX3150/TNETX3150A/TNETX3100 data sheet for additional information on this format). The TNETX15AE
recognizes this format to determine the correct destination and source addresses. The format for the DA and
the SA is shown in the following:

CYCLE
BIT

CYCLE
31 25 24 16 15 8 7 0

1 DA23–DA16 DA31–DA24 DA39–32 DA47–DA40

2 SA39–SA32 SA47–SA40 DA7–DA0 DA15–DA8

3 SA7–SA0 SA15–SA8 SA23–SA16 SA31–SA24

The TNETX15AE will latch and save the source address, cycles 2 and 3, if it is not already saving one. A
source-address lookup will take place when there is no activity (TNETX3150/TNETX3150A/TNETX3100 to
DRAM), when the transfer to memory is not the first 64 bytes of a packet, or when the transfer is from memory
to an output FIFO.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

37POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PRINCIPLES OF OPERATION

decoding the destination address (DA) and source address (SA) from the DRAM bus (continued)

The node addresses are transmitted on the DRAM bus in the Ethernet native data format. This is the same
format in which the address appears in the frame. Ethernet first transmits the least-significant bit of a data byte
on the wire. This makes the specific/group bit appear in bit 40 (least-significant bit of most-significant byte). For
example, a destination address of 0x12.34.56.78.9A. BC and a source address of 0xDE.F1.23.45.67.89 is seen
on the DD terminals as follows:

CYCLE
BIT

CYCLE
31 25 24 16 15 8 7 0

1 0x78 0x56 0x34 0x12

2 0xF1 0xDE 0xBC 0x9A

3 0x89 0x67 0x45 0x23

CRC checking and valid frames

The TNETX15AE determines the status of the frame when the EOB, followed by an EOF, is detected. CRC
checking is determined from the frame-status field. The code for a good CRC is frame status = 000b. All other
frame-status codings indicate that the TNETX3150/TNETX3150A/TNETX3100 aborts the frame due to either
a CRC error, a FIFO overflow, or a network error. The frame status is checked only when the option of adding
addresses to TNETX15AE tables on a good CRC is indicated rather than immediately adding a new address.
If a good CRC is required to add an address, the ADD state machine simply waits from source address time
to CRC time. It can be interrupted by a lookup for another port, but no ADD/DEL or other lower-priority activity
on any other port can take place. This might cause TNETX15AE to miss adding addresses when expected.

operating logic arbitration

The lookup table is contained in the external SRAM. All of the TNETX15AE logic operations share access to
this SRAM. An arbitration scheme is implemented to give all logic operations access to the SRAM while meeting
the lookup timing requirements.

The TNETX15AE contains seven logic operations that require the use of the SRAM bus. They are the RAM
initialization logic operation (INIT), the lookup logic operation (LKUP), the delete logic operation (DEL), the add
logic operation (ADD), the management address-lookup logic operation (FIND), the RAM registers RAMaddr
and RAMdata (REG), and the aging logic operation (AGE).

The arbiter assigns a priority to each logic operation. The highest priority is assigned to the INIT logic operation
to initialize the TNETX15AE after a reset. After initialization, LKUP becomes the logic operation with the highest
priority because it is the logic operation that is the most time critical. The next priority level is shared by ADD
and DEL. Register-based accesses (REG) are followed by the FIND logic operation. AGE becomes the lowest
priority. Figure 4 shows the priorities of the TNETX15AE logic operations.

The arbiter grants the bus to the logic operation with the highest priority that is currently requesting the bus. Each
logic operation requests the bus by asserting its request signal. The arbiter assigns the bus to that logic
operation by asserting its grant signal. If no logic operation is requesting the bus, the arbiter grants the bus to
AGE for background aging operations.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

38 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PRINCIPLES OF OPERATION

operating logic arbitration (continued)

INIT

LKUP

DEL ADD

REG

FIND

AGE

Decreasing
Priority

Figure 4. Logic-Operation Priorities

One logic operation can interrupt a lower-priority logic operation to acquire the bus. For example, an LKUP
operation interrupts an ADD operation.

For the case of ADD and DEL (with the same priority), the arbiter grants the bus to the first logic operation that
requests it. It then grants an uninterruptable bus (unless by a LKUP) to that logic operation until that logic
operation is completed. If both ADD and DEL request the bus at the same time, the bus is granted to ADD. This
ensures that ADD is not interrupted by a DEL operation and vice versa. This hierarchy explains why a host
request for access to RAM completes with some variability — there may be higher-priority operations accessing
RAM at that instant.

lookup algorithm

The TNETX15AE device uses a table-based lookup algorithm to provide deterministic lookups with less than
248 memory words. The tables are hierarchical and are linked to the lower tables by threads. Each table can
thread to several different tables in the hierarchy. The lowest table in the hierarchy (leaf) does not point to
anything and contains information about the address to be matched.

Each level in the hierarchy is assigned to a specific range of bits in the address. The bits in the range are used
as an offset within the table at each level. If a thread exists at that offset, the TNETX15AE follows that thread.
The TNETX15AE matches an address when it finds a complete thread to a leaf. The thread structure is shown
in Figure 5.

The first level (root level) has only one table from which it can branch out to 2N possible tables. N is the number
of bits compared at a given time. Each additional table in the hierarchy branches down to 2N other possible
tables. The second level contains 2N table and 22N threads. The third level contains 22N tables and 23N threads,
and so on.

Because of this exponential growth, the threads and the amount of possible paths at each level soon overtake
the number of addresses required. If this growth were to go unchecked with an N of 5, the third level would
contain 1,024 tables and 32,768 threads. If only 1024 addresses are required, there are more tables allocated
than needed, and most contain NULL pointers.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

39POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PRINCIPLES OF OPERATION

lookup algorithm (continued)

Table

Table Table

Table TableTable

2nd Level : 2 N Tables

22N Threads

3rd Level : 2 3N Tables

Table

N = Number of bits compared

23N Threads

Figure 5. Lookup-Algorithm Table Hierarchy

For bit groups of five (gives table sizes of 32), and with five levels of table hierarchy, preassigning all possible
tables at initialization requires more RAM than is possible to attach to the TNETX15AE. Therefore, table
allocation occurs only when a new table is required as a result of discovering a bit pattern at any of the levels
previously unseen. This has several side effects – given the same address set, entering them into the table in
a different order yields different SRAM contents as the tables required are allocated from free space in a different
order; the pointer values written to the table entries to point to the next level in the hierarchy are dynamically
allocated. An address is in the table if there are valid entries at each level in the hierarchy (as each n-bit part
of the address is inspected) that continue all the way down to a leaf where the characteristics of that address
are stored. An address is not present in the table when there is a null pointer at any level of the decode.
Addresses that are sequential share all the intermediate pointers down to the address of the leaf. Addresses
with at least one bit different in each N-bit decode group occupy completely different tables. The worst-case
rating on the storage capacity of the TNETX15AE SRAM assumes that each address is different from all the
others by at least one bit in each decode group. This implies that each card is from a different manufacturer,
and the serial number of any card is not within 2N of any other card.

Since each table needs to compare 2N possible combinations, it requires 2N pointers. Each table has the format
shown in Table 5.

Table 5. Lookup-Algorithm Table Format

OFFSET
N

(BITS TO BE
COMPARED)

POINTERS

0 00000 To table x at next level

1 00001 To table y at next level

2 00010 To table z at next level

•
•
•

•
•
•

•
•
•

2N – 1 2N – 1

Only the pointers column of Table 5 occupies memory locations.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

40 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PRINCIPLES OF OPERATION

lookup algorithm (continued)

Each pointer points to a table in the next level. The TNETX15AE uses N bits in the address as an offset to this
table and, if a valid pointer is found, decode proceeds to the next level. A null pointer indicates that the entry
was not found (in this case the search fails). The width of the memory word (W) must increase as the memory
gets deeper, such that 2N+W – 1 ≥ memory size; the memory address of the next pointer is (contents of current
table entry):(next N bits to decode).

a graphical example of the lookup algorithm

This example uses the following method to look up the number 0xB2 (10.11.00.10b), two bits at a time (N = 2).
Graphically, this number is represented in Figure 6.

00 01 10 11

00 01 10 11

00 01 10 11

00 01 10 11

Figure 6. Example of Lookup-Number Algorithm (Matching 0xB2)

The first table at offset 0x10b points to the second level (see Figure 6). The pointer at the second level (offset
by the second set of bits (0x11b)) points to the third table. This process continues until the last two bits are
matched. Matching 0xB2, two bits at a time, uses four tables, with each containing four possible pointers. Not
all locations in the tables are used, which potentially can lead to unused memory. Now, add 0xB0 (10.11.00.00b)
to the table. Figure 7 illustrates the results.

00 01 10 11

00 01 10 11

00 01 10 11

00 01 10 11

Figure 7. Example of Lookup-Number Algorithm (Adding 0xB0)

0xB0 follows exactly the same thread as 0xB2 and the only difference between the two is in the last table. 0xB0
matches offset 00b while 0xB2 matches offset 10b. There are now two numbers being represented, but there
are still four tables allocated.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

41POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PRINCIPLES OF OPERATION

a graphical example of the lookup algorithm (continued)

Continuing this example, we can add 0xB1 and 0xB2 with the same number of tables allocated. This is called
the best-case scenario since the maximum amount of addresses can be stored in the minimum amount of
memory. Now add 0x22 (00.10.00.10b) to a lookup table containing only 0xB2. Figure 8 shows the results.

00 01 10 11

00 01 10 11

00 01 10 11

00 01 10 11

00 01 10 11

00 01 10 11

00 01 10 11

Figure 8. Example of Lookup-Number Algorithm (Adding 0x22)

Adding 0x22 requires allocating three additional tables. Seven tables are now required to hold two addresses.
Compared to numbers that differ in their least-significant bits, numbers that differ in their most-significant bits
require more tables. Continuing the example, adding 0x2A requires an additional three tables, as would 0xE2.
This is the worst-case scenario of storing addresses with this technique.

The TNETX15AE is designed to handle the worst-case address distribution. The worst-case address
distribution requires a separate thread per address. A purely random distribution creates multiple threads at the
top levels. The most-significant bits of a network card address are the vendor bits. However (in most networks)
there are only a couple of vendors used. These cards do not have a purely random address distribution, and
they all share a common set of bits that identifies the vendor. This configuration requires fewer pointers for the
same number of addresses. In such a network, the tables look more like those in Figure 9.

There is a need to allocate for worst case, but since the worst case is not likely to happen in a real system, the
opportunity exists to include more addresses than indicated by the worst-case rating. The actual number of
addresses supported depends on the nature of the nodes in the network. TNETX15AE devices in networks with
nodes from one or a small number of manufacturers can recognize more addresses than those in a purely
random-address network.

This algorithm has the primary advantage that the lookup time is independent of the number of addresses stored
in the lookup table. Whether the number of addresses present is one or a half million, the lookup time depends
on the number of table levels required to match the address.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

42 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PRINCIPLES OF OPERATION

a graphical example of the lookup algorithm (continued)

Table

Table

Table

Table

Table

Table Table

Figure 9. Address Distribution Table Hierarchy (Worst Case)

Another side effect of this algorithm is that the table order is already sorted (smallest to largest).

The choice of N (the number of bits to consider each cycle) must be an integer and is a balance of:

1. The size of each table = 2N words; larger means more wasted space per lightly used table, and smaller
means less wasted space per lightly used table.

2. The clocks required to process a whole address (in this case 48 IEEE addresses) = 48 ÷ N rounded up to
the next integer; considering more bits at a time decodes 48 bits in less time (considering fewer at a time
takes more time). The upper limit is 10 or 11 clocks.

SRAM data storage

lookup table SRAM allocation

The TNETX15AE uses a 5-bit version of the lookup algorithm described in the previous section.

When a 5-bit version of the lookup algorithm is used, each address requires ten tables to store a 48-bit value.
Tables 0 through 9 are used to match the 48 bits involved in the lookup. Table 9 (shown in Figure 10) contains
the actual data describing an address.

The external SRAM must be a minimum of eight bits wide, so address descriptor information (see findport and
findnodeage register definitions) can be stored in four locations as bytes. Starting at 16K, the external SRAM
must get wider so that a pointer of installed word width (when five bits are appended) gives a pointer with enough
bits to address any memory location. Both address descriptor blocks and pointer tables must be contiguous,
and both are allocated dynamically. The table is full when the next structure being allocated does not fit. Several
addresses may have to be deleted on a table-full condition to make room for a new address.

An allocated (but unused) table entry is set to 0 since zero cannot be a valid address for a table leaf.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

43POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PRINCIPLES OF OPERATION

lookup table SRAM allocation (continued)

Table 0 (Root)

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Table 8

Table Level 9
is 8 Address Descriptor Blocks

Bits 47–43

Bits 42–38

Bits 37–33

Bits 32–28

Bits 27–23

Bits 22–18

Bits 17–33

Bits 12–8

Bits 7–3

Bits 2–0

Figure 10. Address Tables

The last level decodes only bits 2–0 of the address, therefore, only eight unique locations are required. Since
tables are allocated 32 words at a time, the last table is divided into eight four-word units. The lower eight bits
of each word hold one byte of the address descriptor block as shown in Figure 11.

BYTE 1 BYTE 2 BYTE 3 BYTE 4

Flags/port code Reserved MSG age stamp LSB age stamp

Figure 11. Address Descriptor Block Format

Since only the first byte of the address descriptor block is required to make a forwarding decision, an address
lookup requires 40 ns to access each of 10 levels for a total 400-ns lookup time plus an internal setup cycle.
The total time required (400 ns + 20 ns) gives some margin to generate the EAM code in time for the
TNETX3150/TNETX3150A/TNETX3100.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

44 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PRINCIPLES OF OPERATION

RAMsize and number of nodes supported

The address capability for the various RAM sizes is given in Table 6 (repeated from RAMsize register definition).

Table 6. Address Capability for RAM Sizes

RAMsize
REGISTER RAM SIZE

WORST
CASE

BEST
CASE

0x00 640 × 8 2 88

0x01 832 × 8 2 136

0x02 1K × 8 3 184

0x03 2K × 8 7 432

0x04 4K × 8 14 928

0x05 8K × 8 28 1920

0x06 16K × 9 59 3904

0x07 32K × 10 123 7880

0x08 64K × 11 251 15816

0x09 128K × 12 507 31688

0x0A 256K × 13 1019 63432

0x0B 512K × 14 2189 134 040

0x0C 1M × 15 4530 277 408

0x0D–0x0F 2M × 16 9211 564 144

The data in Table 6 shows a large range between the worst-case performance and the best-case performance.
For a 500-address system, 128K × 12 is needed. A 1000 address system requires 256K × 13. A 2000 address
system requires 512K × 14, where K = 1024 for binary-sized memories.

The difference between the best and worst case at each row depends on the similarity (when viewed in 5-bit
groups) of the addresses entered into the table. If addresses are sequential, there is maximal table sharing, and
the most addresses fit into the smallest space. If addresses are widely spaced with respect to the 5-bit groups,
there is minimal table sharing, because each 32-entry table has only one entry at each level. This requires the
most SRAM per address.

register spaces/external devices accessible through the TNETX15AE

Although the TNETX15AE is designed to work in a CPU-less environment, access to the internal registers is
useful for the following reasons:

� Setting/changing port assignments

� Setting operational modes (startup options)

� Resetting the device (software reset)

� Management-based access and control of the lookup table

� Statistics gathering

� Diagnostic operations

� Communicating with attached PHYs through the MII

� Reading/writing to an external EEPROM

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

45POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PRINCIPLES OF OPERATION

register spaces/external devices accessible through the TNETX15AE (continued)

Figure 12 shows the various register spaces provided by and accessed through the TNETX15AE.

Address High

DIO

MII I/F

EEPROM I/F

SRAM I/F

Address Low

Data

Data
Auto- Increment

SIO

RAM Addr

RAM Data
SRAM

(External)

Serial EEPROM

MII/PHYs

TNETX15AE

Access Registers

Internal
DIO Registers

Figure 12. Register Spaces Provided and Accessed Through the TNETX15AE

DIO interface

The DIO interface is asynchronous to allow easy adaptation to a range of microprocessor devices and computer
system interfaces. The DIO interface is designed to operate from the same bus as the
TNETX3150/TNETX3150A/TNETX3100 DIO interface. Thus, both devices are accessed using the same DIO
read and write routines. Each device is selected for DIO reads and writes through independent chip-select
signals. Chip select for the TNETX3150/TNETX3150A/TNETX3100 is named SCS, while chip select for the
TNETX15AE is named ESCS. Figure 13 shows how the TNETX15AE and the
TNETX3150/TNETX3150A/TNETX3100 share the DIO interface.

Microprocessor

TNETX3150/TNETX3150A/
TNETX3100

EINT

TNETX15AE

SDATA7–SDATA0

SAD1–SAD0

SRNW

SRDY

ESCS

SCS

Figure 13. DIO Interface Bus

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

46 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PRINCIPLES OF OPERATION

DIO write cycle

The write cycle waveforms are shown in Figure 14 and described in the following:

� The TNETX15AE host register address (SAD1–SAD0 and SDATA7–SDATA0) is asserted and SRNW
goes low.

� After a setup time, ESCS goes low, initiating a write cycle.

� The TNETX15AE pulls SRDY low as the data is accepted.

� SDATA7–SDATA0, SAD1–SAD0, and SRNW signals are deasserted after the hold time has expired.

� ESCS goes high (by the host) to complete the cycle, causing SRDY to deassert and to go high for one cycle
before going into the high-impedance (Z) state.

ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ

ESCS

Host Address

SRNW

SAD1–SAD0

SDATA7–SDATA0

SRDY

Data

Z Z

Figure 14. DIO Write-Cycle Waveforms

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

47POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PRINCIPLES OF OPERATION

DIO read cycle

The read-cycle waveforms are shown in Figure 15 and described in the following:

� The TNETX15AE host register address SAD1–SAD0 is asserted while SRNW is held high.

� After a setup time, ESCS goes low, initiating the read cycle.

� After a delay time, with ESCS low, SDATA7–SDATA0 is released from the high-impedance (Z) state.
SDATA7–SDATA0 is driven with valid data and SRDY goes low. The host can access the data.

� ESCS goes high (by the host) to signal completion of the cycle, causing SRDY to deassert. SRDY goes high
for one clock cycle before going into the Z state. SDATA7–SDATA0 also goes to the Z state.

ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ

ESCS

Host Address

SRNW

SAD1–SAD0

SDATA7–SDATA0 Data

SRDY
Z Z

Figure 15. DIO Read-Cycle Waveforms

host (access) register space

The TNETX15AE registers, SRAM (internal and external), and EEPROM are indirectly accessed through the
access registers. The access registers are written/read to/through the DIO interface. There are four byte-wide
access registers. They are individually selected through the SAD bus, as shown in Table 7, and the registers
are read/written through the SDATA bus.

Table 7. DIO Access Register Code

SAD1 SAD0 ACCESS REGISTERS

0 0 DIO address low

0 1 DIO address high

1 0 DIO data

1 1 DIO data auto-increment

Two bytes, DIO address low and DIO address high, are used as a pointer to the address (DIOADR) of the internal
register being selected. DIO address high is the most-significant byte of DIOADR and DIO address low is the
least-significant byte. The DIO address register is byte writeable. The user does not have to write to both DIO
address locations for each access to the internal registers. Up to 216 possible internal locations can be accessed
through the DIO address registers. Some of these first-level indirect registers are themselves address registers
(RAMaddr) for second-level indirect access to even bigger address spaces.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

48 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PRINCIPLES OF OPERATION

host (access) register space (continued)

The next two bytes, DIO data and DIO data auto-increment, are used to read and write data to the byte-wide
internal register selected in the DIOADR. Both DIO data and DIO data auto-increment can be used effectively
to read and write the data, but the DIO data auto-increment register provides additional functionality over DIO
data. Access to the DIO data auto-increment register provides a post-increment (by one) to the DIO address
register. This is useful for reading/writing to a block of registers.

As an example, to access a single-byte-wide register such as the SIO register (DIO address = 0x0A) the
operations needed are:

� Write a 0x00 to DIO address high

� Write a 0x0A to DIO address low to select DIO address 0x0A

� Read the SIO register by reading DIO data, or write to the SIO register by writing to DIO data.

Multiple-byte registers are accessed by reading/writing to their individual bytes. The control register (DIO
address 0x08–0x09) is accessed in the following manner:

� Write a 0x00 to DIO address high

� Write a 0x08 to DIO address low to select DIO address 0x08

� Read the least-significant byte of the control register by reading DIO data, or write to the least-significant
byte of the control register by writing to DIO data.

� Write a 0x00 to DIO address high

� Write a 0x09 to DIO address low to select DIO address 0x09

� Read the most-significant byte of the control register by reading DIO data, or write to the most-significant
byte of the control register by writing to DIO data.

Improvement on the preceding steps is obtained by writing a 0x00 to DIO address high and changing only DIO
address low. More steps can be eliminated by using the DIO data auto-increment register to read or write to
contiguous register bytes. The following shows how to use the auto-incrementing function to access the control
register.

� Write a 0x00 to DIO address high

� Write a 0x08 to DIO address low to select DIO address 0x08

� Read the least-significant byte of the control register by reading DIO data auto-increment or write to the
least-significant byte of the control register by writing to DIO data auto-increment. The address in DIO
address auto-increments to 0x0009.

� Read the most-significant byte of the control register by reading DIO data auto-increment, or write to the
most-significant byte of the control register by writing to DIO data auto-increment.

The auto-incrementing function is useful when reading or writing to a large number of adjacent registers, such
as the 48-bit address registers or when reading the statistics block.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

49POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PRINCIPLES OF OPERATION

internal registers

The internal registers are used to initialize and/or software-reset the TNETX15AE, select the TNETX15AE
startup and routing options, check the number of nodes within the TNETX15AE and statistics, enable
management-based operations on the lookup table, and interface with the on-chip or external SRAM, the
EEPROM, and any MII-managed devices.

The internal registers are described in the detailed internal register section of this document.

The following sections provide additional information on the use of internal registers to access the SRAM, MII
devices, and EEPROM.

lookup-table SRAM access

BYTE 3 BYTE 2 BYTE 1 BYTE 0
DIO

ADDRESS

RAMsize 0x00

RAMaddr 0x20

RAMdata 0x24

The TNETX15AE SRAM can be accessed with the RAMaddr and RAMdata registers. The algorithm for reading
and writing to the RAM is similar to that for reading and writing to the internal registers; the address of the location
to access is placed in the RAMaddr register and the data is read from or written to the RAMdata register.

This interface also has an auto-increment function, which is selected from the INC bit in the RAMaddr register.
The auto-incrementer increments by one when the most-significant byte of the RAMdata register is read or
written to.

The DIO state machine must request access to SRAM via the SRAM bus scheduler. A write to SRAM is queued
when the most-significant byte of the RAMdata register is written. A read of SRAM is queued when either byte
of the RAMdata register is read through the DIO port.

serial interface – MII-managed devices

BYTE 3 BYTE 2 BYTE 1 BYTE 0
DIO

ADDRESS

SIO 0x08

The TNETX15AE gives the programmer an easy way to implement a software-controlled bit-serial interface.
This interface is most appropriate in implementing an MII management serial interface.

MII devices, which implement the management interface, consisting of MDIO and MDCLK, are accessed in this
way though the SIO register. In addition (for PHYs that support this) the TNETX15AE implements a
MII-management signal, MRESET, to hardware-reset MII PHYs.

MDIO requires an external pullup for operation. The I/O direction is controlled by the MTXEN bit, and the
external terminal state is set from or read in MDATA. The complete serial interface (MDIO, MDCLK, MRESET)
can be placed in a high-Z state through the MDIOEN bit in SIO.

The TNETX15AE does not implement any timing or data structure on its serial interface. Appropriate timing and
frame format must be assured by the management software by setting or clearing bits at the right time and in
the right order. Refer to the IEEE Std 802.3u specification and the data sheet for the MII-managed device for
the nature and timing of the MII waveforms.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

50 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PRINCIPLES OF OPERATION

x24C02 EEPROM interface

BYTE 3 BYTE 2 BYTE 1 BYTE 0
DIO

ADDRESS

SIO Control 0x08

The flash EEPROM interface is provided so the system-level manufacturers can provide a preconfigured
system to their customers. Customers can change or reconfigure the system and retain preferences between
system power downs. The flash EEPROM contains configuration and initialization information that is accessed
infrequently (typically at power up and reset). The host can write to the EEPROM through this SIO
register interface.

The TNETX15AE implements a two-wire serial interface, consisting of EDIO and EDCLK that communicates
with the EEPROM. Similar to the MII interface, the TNETX15AE does not implement any timing or data structure
on its serial interface. Appropriate timing and frame format must be ensured by the management software by
setting or clearing bits at the right times. There are no limits to the size or organization of the EEPROM when
the host is driving this interface, but these same terminals are used by an internal state machine to load the
contents of the EEPROM into internal registers. This state machine expects a 24C02 (as device 0) on the serial
bus. Refer to the manufacturer’s data sheet for a description of the EEPROM waveforms.

If an EEPROM is not installed, EDIO should be tied low. For EEPROM operation, EDIO and EDCLK require an
external pullup (see EEPROM data sheet). The TNETX15AE detects the presence or absence of the EEPROM
and indicates this in the NEEPM bit of the control register.

initialization

The TNETX15AE can be designed for stand-alone use, with no need for a management CPU. It can be reset
and initialized with or without a host CPU. This section discusses the steps necessary to bring the TNETX15AE
up to an operating level.

TNETX3150/TNETX3150A/TNETX3100 initialization

If multiple-port EAM codings are used, then TNETX3150/TNETX3150A/TNETX3100 IOBMOD bit in the systcl
register must be set to a 1. If reversed (IOBMOD in TNETX3150/TNETX3150A/TNETX3100
systcl register = 0), the ability to send frames to multiple ports, but not all ports, is lost. Multicasts become
broadcasts to all ports, regardless of EAM code. Also, the broadcast is not in order with other traffic on each
transmit queue.

The user also must disable the TNETX3150/TNETX3150A/TNETX3100 internal-address matching when using
the TNETX15AE. This is accomplished by writing a 1 to the ADRDIS bit in the port control register of each port.

resetting the TNETX15AE

hardware reset

The TNETX15AE is hardware reset by asserting RESET low. The TNETX15AE comes out of reset when RESET
goes high.

During a hardware reset, no access to the internal registers is allowed. A read or write stalls, that is, SRDY does
not come true until the hardware state machine is done. All access registers and internal registers are initialized
to default values. Hardware reset should complete in a few tens of clock cycles.

If an EEPROM is detected (after a hardware reset), the TNETX15AE begins the EEPROM auto-loading
process. No DIO operations are allowed during auto-loading.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

51POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PRINCIPLES OF OPERATION

software reset

The TNETX15AE is software reset by setting the RESET bit to a 1 in the control register (0x00,0x09 DIO). The
TNETX15AE remains in the reset state until this bit is cleared. All internal registers are initialized to default
values during a software reset, except for the control register, which keeps its current value. Reading the internal
registers is allowed during a software reset, but the user cannot write to any register (except for the
control register).

The EEPROM auto-loading process does not start during a software reset. The user must assert the LOAD bit
in the control register for auto-loading to start.

EEPROM initialization/automatic loading (LOAD)

The TNETX15AE automatically loads selected registers from an attached 24C02 EEPROM after a hardware
reset or when the LOAD bit in the control register is set. Up to eight 24C02 EEPROMs can be connected across
the same serial interface. They are distinguished by separate addresses that are selectable by pulling address
terminals up or down on each EEPROM. The TNETX15AE requires the automatic loading information in device
number 0x00, starting at location 0x00.

The TNETX15AE determines if the EEPROM device is present. Several conditions cause the TNETX15AE to
determine that a device is not present. If EDIO is pulled down, the EEPROM is assumed to be not present. If
the EEPROM fails to acknowledge (ACK) on data writes, the EEPROM is not present. If the cyclic redundancy
check (CRC) in the EEPROM does not match the internally calculated CRC, the EEPROM is assumed to be
not present.

When no EEPROM is detected, The TNETX15AE sets the NEEPM bit in the control register to a 1, and the
TNETX15AE is placed in a reset state (RESET and NEEPM are set in the control register) while the registers
assume their default values.

The automatic loader reads the register values from the EEPROM and programs the TNETX15AE accordingly.
The last register written is the control register.

The automatic loader can initialize and start up the TNETX15AE if the START bit in the control register is
programmed in the EEPROM. This allows for initialization and startup without a host CPU.

During the automatic loading, no DIO operations are permitted. Both reads and writes stall, that is, SRDY does
not come true on a pending operation until the EEPROM load cycle is over. The load cycle should take (bits per
word access on the EEPROM) × (words read) × 100 kHz, or 27 × 43 × 100 kHz, or 12 ms. To sense the end,
wait for a sample register read to complete, or wait 15 ms.

If load is followed by start, then the INITD bit in the control register can be used to indicate when all the setup
is done. The download bit, LOAD bit, RESET bit, and any other read only or reserved bits cannot be set during
automatic loading. The CRC for the EEPROM is calculated using the information written in the EEPROM
although information may not be written to the TNETX15AE. For example; a value of 0x8F or 0xFF in the
EEPROM for RAMsize is written as 0x0F in the TNETX15AE since bits 7, 6, 5, and 4 are reserved, but the
calculated CRC for the EEPROM for each case is different.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

52 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PRINCIPLES OF OPERATION

EEPROM initialization/automatic loading (LOAD) (continued)

The last four bytes read by the automatic loader correspond to a 32-bit CRC value for the information stored
in the EEPROM. The CRC value is calculated by using the following callable C routine, which assumes that the
data to be examined is loaded into an array eeprom_data []:

void ifexeeprom (char *cs)
{
long crc;
int k;

crc = 0xffffffffl;
for (k=0;k<=38;k++)

{
crcbyt (eeprom_data[k], &crc);
}

crc ^= 0xffffffffl;
eeprom_data[k++]=(int) ((crc >> 24) & 0x0ffl);
eeprom_data[k++]=(int) ((crc >> 16) & 0x0ffl);
eeprom_data[k++]=(int) ((crc >> 8) & 0x0ffl);
eeprom_data[k++]=(int) ((crc) & 0x0ffl);
}

crcbyt (dat,crc)
int dat;
long *crc;

{
int i;

for (i=0;i<8;i++)
{
crcbit(dat>>7,crc);
dat = dat <<1;
}

}

crcbit (dat,crc)
int dat;
long *crc;

{

if ((((*crc>>31) & 11)^((long)dat & 11)) ==1)
{
*crc ^= 0x02608edbl;
*crc = *crc <<1;
*crc |= 0x00000001l;
}

else
{
*crc = *crc <<1;
*crc &= 0xfffffffel;
}

}

In this example, the values for which the CRC is calculated are placed in the eeprom_data[] array from offset
0 to 38 (0x26). The routine crcbyt is called for each byte. The C routine then places the calculated CRC values
in the eeprom_data[] array at locations 39 to 42 (0x27 to 0x2A).

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

53POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PRINCIPLES OF OPERATION

TNETX15AE operational modes

The TNETX15AE operational modes are selected through the control register. They are used to control decision
points in the logic operations. The modes available through the control register are NAUTO, NCRC, and NLRN0.
All three of these modes can be changed after the START bit is set high.

NAUTO mode

The not automatically add-address (NAUTO) mode is implemented to give the management CPU complete
control of the lookup table. It does so by disabling the two automatic processes that can affect the lookup table,
wire additions, and aging.

NAUTO to 1 disables adding addresses to the TNETX15VE tables learned from packets passing through the
TNETX3150/TNETX3150A. All addresses in the TNETX15VE must be added through the DIO interface (see
ADD in internal register section). No interrupt is generated on addresses added through the DIO interface.

NEW interrupts in this mode signal that the address-checking state machine has seen an address on the wire
that is not in the table.

NAUTO also affects the AGE logic operation by disabling it. AGE does not delete nodes from the table even
if the table is full. It is the management’s responsibility in this mode to maintain the addresses in the lookup table.
Table-full conditions are determined through a FULL interrupt, or when a host-initiated ADD stalls.

NCRC mode

The no-CRC (NCRC) check mode enables the TNETX15AE to add addresses learned from packets before the
CRC is checked. It is a performance-boosting feature for the ADD state machine that allows it to perform more
ADD logic operations in the same amount of time. This allows the TNETX15AE to add more efficiently and keep
the aging time stamp current on nodes that do not talk frequently on the network, avoiding unnecessary aging.

The tradeoff in this mode is the possibility that corrupt addresses could be added to the lookup table. This
condition should not become critical unless aging is turned off.

NRLN0 mode

When NRLN0 is set to 1, no new source address from a packet entering the switch on port 0 is added to the
table. This feature, combined with unkuniport and unkmultiport registers, allows the TNETX15AE to be at the
edge of a large network and only learn direct-attached station addresses, not the whole network above the
uplinked port.

aging modes (agingtimer register)

The TNETX15AE implements an autonomous aging logic operation. There are two modes of aging and these
modes are controlled through the agingtimer register. The two modes are time-threshold aging and
table-full aging.

Time-threshold aging is set by writing a value between 0x0001 and 0xFFFE to this register. In this mode, the
register value gives the time in seconds that is used by the AGE logic operation to delete addresses. This
provides an aging range of 1 second to 18 hours. Addresses older than this are deleted.

Table-full aging is set by writing 0x0000 or 0xFFFF to the register. In this mode, the AGE logic operation ages
out addresses only when the table is full and the ADD logic operation needs to add an address. AGE deletes
the oldest address in the table. To identify the oldest address, the time stamp stored in each address descriptor
is incremented with each address added instead of each second of time.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

54 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PRINCIPLES OF OPERATION

lookup table SRAM initialization (START)

The lookup table is automatically initialized by the TNETX15AE, with no need for an external processor. The
steps for initializing are:

� Write to RAMsize the size of the external SRAM. Writing to RAMsize can be performed by a CPU before
START is set or via the EEPROM auto-load operation.

� Assert the START bit in the control register. This is accomplished either by the CPU or EEPROM.

� The TNETX15AE indicates the completion of the lookup-table initialization by setting the INITD bit in the
control register to 1.

The TNETX15AE clears the lookup table by writing 0x0000 to all available locations and then initializes the
memory data structures. After these operations are done, the TNETX15AE performs lookups, adding, and aging
operations as directed by mode bits.

frame-forwarding LKUP logic operation

The lookup (LKUP) logic operation is designed for two important tasks: 1) perform time-critical lookups of the
wire within the TNETX3150/TNETX3150A/TNETX3100’s allotted time, and 2) forward the frame to the right
ports. The LKUP logic operation works independently of all other logic operations. To meet the timing
requirements, this logic operation occupies the highest priority on the SRAM bus after SRAM is initialized for
looking up destination addresses. LKUP performs a lookup on the destination address found from the DRAM
interface.

If an address is found, the TNETX15AE uses the information contained in the lookup table for routing. If the
address is not found, the TNETX15AE floods the frame to the ports indicated in the unkmultiports or unkuniports
register. The LKUP logic is also used to check for the presence of the source address in the table.

management-based lookups (FIND)

The LKUP logic operation also is called when the DIO interface sets the FIND (LKUP) bit in the findcontrol
register. The FIND logic operation is designed to give the programmer a simple way to find addresses within
the lookup table. FIND is controlled from the following internal registers:

BYTE 3 BYTE 2 BYTE 1 BYTE 0
DIO

ADDRESS

Findnode23–Findnode16 Findnode31–Findnode24 Findnode39–Findnode32 Findnode47–Findnode40 0x0C

Findport Findnode7–Findnode0 Findnode15–Findnode8 0x10

Findcontrol Findnodeage 0x14

The interface provides a 48-bit read or writeable register findnode in which the address is placed; a 16-bit
register findport in which routing information is placed; and a 16-bit register findnodeage, which contains the
age time stamp of the node being looked up.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

55POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PRINCIPLES OF OPERATION

FIND, FINDFIRST, and FINDNEXT commands

There are three find commands supported by the TNETX15AE: FINDFIRST, FINDNEXT, and FIND(LKUP).
These are used to interrogate the table that the TNETX15AE built as a result of all ADDS. FIND works on all
addresses.

FIND indicates completion by clearing its command bits. The findcontrol register keeps the code that the user
has written until the process is complete. For example, if the user writes a 0x01 to findcontrol (LKUP) then this
register reads 0x01 until the FIND logic operation is finished operating.

If an address is found as a result of the command just completed, it is indicated by asserting the FOUND bit in
findcontrol. The FOUND bit indicates that the information in the findnode, findport, and findnodeage registers
is valid.

The FIND command finds a specific user-defined address in the lookup table. The procedure for the FIND
command is as follows:

� Write the 48-bit address query in the findnode register.

� Set the LKUP bit in the findcontrol register. The TNETX15AE scans the lookup table for that
particular address.

� Poll the findcontrol register until the LKUP bit is cleared. A single read is necessary as the SRDY is delayed
until the operation is complete.

� Read the findcontrol register. If FOUND is set, the address was found and the node’s information is placed
in the registers. If FOUND is not set, the address was not found within the lookup table.

The FINDFIRST command finds the first address contained in the lookup table. The procedure for the
FINDFIRST command is as follows:

� Set the FIRST bit in the findcontrol register. No write to findnode or findport is required. The TNETX15AE
scans the lookup table for the first address.

� Poll the findcontrol register until the FIRST bit is cleared. A single read is necessary as the SRDY is delayed
until the operation is complete (up to 6.4 µs).

� Read the findcontrol register. If FOUND is set, an address was found and the node’s address and
information is placed in the registers. If FOUND is not set, an address was not found, i.e., the lookup table
is empty.

The FINDNEXT command finds the next address from that contained in the findnode register. The user can
either write a value in findnode and find the next address or keep the current value and continue finding next
addresses. The procedure for the FINDNEXT command is as follows:

� Write the starting address in findnode (if desired) or keep the currently held address.

� Set the NEXT bit in findcontrol. The TNETX15AE scans the lookup table for the next address after the one
contained in findnode.

� Poll the findcontrol register until the NEXT bit is cleared. A single read is necessary as the SRDY is delayed
until the operation is complete (up to 6.4 µs).

� Read the findcontrol register. If FOUND is set, and the address was found, the node’s address and
information is placed in the registers. If FOUND is not set, and an address was not found, the rest of the
lookup table is empty.

The commands can be combined sequentially to quickly read the whole address table. All that is required is a
FINDFIRST, followed by FINDNEXT commands, until no more addresses are found.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

56 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PRINCIPLES OF OPERATION

summary of FIND operations supported

Table 8 summarizes the supported FIND operations, the bits used to select the operation, and the code written
to the findcontrol register.

Table 8. FIND Operations

OPERATION BITS USED FINDCONTROL

FIND (LKUP) LKUP 0x01

FINDNEXT NEXT 0x02

FINDFIRST FIRST 0x04

adding an address

The ADD logic operation is responsible for new address additions to the lookup table, address port changes,
modifying the information stored in the lookup table, and keeping the address time stamp current. The
TNETX15AE implements a single ADD logic operation and shares it between automatic adds from the wire and
host port additions. The TNETX15AE prioritizes wire adds over management adds. It completes an add request
before starting another request.

The ADD algorithm is summarized as follows:

� ADD performs a lookup to determine if the address exists in the table.

� If the address exists, ADD verifies that the port assignment has not changed. If the port assignment
changes, ADD updates the port. In all cases, ADD updates the AGE time stamp.

� If the address does not exist, ADD adds the address to the table with the current time stamp.

Currently, adding an address requires available lookup tables. It is possible that during the ADD operation no
more lookup tables are available for address additions. A FULL interrupt is issued to the host, and the ADD
operation stalls, pending the resolution of the no-space-available situation. In this situation, the following occurs.

� If the NAUTO bit is set to 1 (host-managing table), the host deletes addresses in the table until enough are
deleted to make space for the new address. Depending on the shared tables used by the addresses being
deleted, and the tables that are shared by the inbound address, it is possible that many addresses may have
to be deleted for the new address to fit. When enough space is available, the ADD operation completes.

� If the NAUTO bit is set to 0 (TNETX15AE managing table), the TNETX15AE deletes as many addresses
as necessary to fit the new address into the table by deleting the oldest addresses, using the AGE function.

interrupts available to support both wire ADDs and host ADDs

The following interrupts are active, regardless of the state of NAUTO, to support monitoring of addresses added
to the table (subject to the bandwidth available to look up source addresses):

� NEW and NEWM interrupts are indicated when a new address is found.

� CHNG and CHNGM interrupts are indicated when the address is not new but the port assignment
is changed.

� SECVIO and SECVIOM interrupts are indicated when the address is not new, the port assignment is
changed, and the address is secured.

The following modes indicate control and other options that affect the ADD logic operation.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

57POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PRINCIPLES OF OPERATION

NAUTO mode

NAUTO mode is selected by asserting the NAUTO bit in the control register. In NAUTO mode, the ADD logic
operation does not add addresses off the wire. The only way addresses are added, moved, or edited is through
the register interface. The host processor is assumed to have complete control of the contents of the
address table.

NLRN0 mode

The ADD logic operation cannot add addresses learned from port 0 when this bit is set. The bus watcher does
not extract these addresses from the DRAM bus. In this mode, the management CPU can add an address for
port 0 (the hardware does not). Since the bus watcher does not provide addresses from these ports to ADD in
this mode, ADD does not perform any age process on any addresses in the lookup table assigned to port 0 in
this mode; nor, are the NEW, CHNG, or SECVIO interrupts active for port 0 in this mode.

NCRC mode

The NCRC bit controls whether or not the bus watcher waits for a complete valid (CRC checked) frame before
the source address is given to ADD. The TNETX15AE performs additions faster in NCRC mode since it does
not have to wait for the good CRC indication on the bus. If the TNETX15AE is waiting for a good CRC, after a
bad packet on a seldom-used port, no addresses are being added on any port, although, lookup is functioning
normally for destination addresses already in the table. If this bit is set, there is a possibility that addresses from
bad (bad or missing CRC) frames are added, but the aging process deletes them eventually.

management address adding

The ADD logic operation also can add addresses to the table through the DIO interface management add/edit
address interface registers as shown in the following:

BYTE 3 BYTE 2 BYTE 1 BYTE 0
DIO

ADDRESS

Adddelcontrol 0x2C

Addnode23–Addnode16 Addnode31–Addnode24 Addnode39–Addnode32 Addnode47–Addnode40 0x38

Addport Addnode7–Addnode0 Addnode15–Addnode8 0x3C

Management ADDs are used to perform the following functions:

� The address flags SECURE, LOCKED, and the copy uplink flag, CUPLINK, can be set or cleared through
management adds.

� DIO ADDs are used to change the address port assignment.

� DIO ADDs also are the only way multicast addresses are added to the lookup table.

� DIO ADDs also write the current time to the AGE time stamp for the node.

Management add commands are given through the ADD bit in the adddelcontrol register. The steps for adding
an address are as follows:

� Write the node’s address in the addnode registers.

� If it is a unicast address, write the node’s flag information and port assignment in addport. If it is a multicast
address, write the forwarding mask.

� Set the ADD bit in the adddelcontrol register to 1.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

58 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PRINCIPLES OF OPERATION

management address adding (continued)

The ADD logic operation locks the addnode, addVLANID, and addport registers to ensure that they do not
change during the address ADD. Reads to these registers are still possible, but writes are ignored. The ADD
bit in the adddelcontrol register remains a 1 until the ADD is complete.

Having a sticky bit (remains a 1) for ADD gives the programmer the opportunity to set up or perform other register
operations without having to wait for the ADD completion. A polling method is used to determine if the ADD
is finished.

adding unicast and multicast addresses

There is no significant change in procedure between adding unicast and multicast addresses. There is one
difference that the programmer must observe. The TNETX15AE stores different information for multicast
addresses than for unicast addresses. Unicast addresses use a 4-bit code for the port number and three flag
bits. Multicast addresses store a 15-bit forwarding mask.

Both data formats are added through the addport register. The format for this register changes, depending on
bit 40 in the addnode register. If set to 1, the addport data is interpreted as multicast (if not, it is interpreted
as unicast).

deleting an address

The TNETX15AE has two ways to delete addresses from the lookup table – the internal aging algorithm and
a host request through the DIO interface. The DEL state machine is responsible for deleting addresses from
the lookup table. DEL takes its information from the DIO registers for DIO deletes and from the AGE logic
operation for aging deletes.

The TNETX15AE implements a 16-bit timer, incrementing every second for the aging process. This timer is used
to write the time stamp during ADDs and for comparing ages.

aging (AGE logic operation)

The AGE logic operation is responsible for automatic address deletes. The TNETX15AE implements two styles
of aging: time-threshold aging and table-full aging. The aging style is selected through the agingtimer register.
A value of 0x0000 or 0xFFFF in the agingtimer register selects table-full aging. Any other value selects
time-threshold aging. The AGE logic operation is disabled when the TNETX15AE is placed in NAUTO mode.
The aging algorithm works as shown in Figure 16 and is described in the following.

Find OldestStart
Wait
for

Condition
Delete

Scan

Figure 16. Aging Algorithm Block Diagram

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

59POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PRINCIPLES OF OPERATION

aging (AGE logic operation) (continued)

� The operation AGE scans the table for the oldest address (state = find oldest state). AGE determines the
oldest address by finding the address in the lookup table with the lowest time stamp. If more than one
address has the same oldest time stamp, AGE picks the first address. The AGE scanning process omits
all multicast addresses. This process also omits unicast addresses that have been secured by setting the
SECURE flag. These addresses can be deleted only by a DIO-delete command.

� Once the oldest address is found, AGE keeps this address, enters a waiting state (state = wait for condition),
until one of two conditions occurs:

1. If the address table is changed by either the ADD logic operation performing an address
addition/time-stamp update or by deleting (DEL) an address, AGE checks the address that ADD or DEL
is working on. If ADD has changed the time stamp for the current oldest address, it must scan the whole
table for a new oldest address (state = find oldest). If DEL has deleted the current oldest address, it again
must rescan the whole table for a new oldest address (state = find oldest). If neither ADD nor DEL touched
the current oldest address, it still remains the oldest address and AGE returns to the wait state
(state = wait for condition).

2. The aging condition is met. In this case, AGE calls on the DEL logic operation to delete the node from the
table. After a successful deletion, AGE rescans the whole table for the next node to age (state = find oldest)
and then gives an interrupt to the host to indicate the previous oldest address was deleted from the table.

� During the find-oldest process, and if AGE is in a time-threshold age, AGE deletes all addresses that are
over the threshold value and reports them via the interrupt.

The aging condition is different for time-threshold aging and table-full aging, and both are described in
the following paragraphs.

time-threshold aging

In time-threshold aging, the aging condition occurs when the address age is larger than the time threshold
entered in the agingtimer (0x2) registers. The address age is not the time stamp written in the SRAM but the
difference between current time and each time stamp. When this value becomes greater than agingtimer value,
the address is deleted.

Example:

Time threshold value = 192d seconds (0x00C0)
Current timer value = 256d seconds (0x0100)
Address time-stamp value = 80d seconds (0x0050)
Address aging time = 256d – 80d = 176d seconds (0x00B0)

Conclusion: The address is not aged yet since the address aging time (176d seconds) is less than the time
threshold value (192d seconds) by 16d seconds. It takes an additional 16d seconds (0x0010) for
the address aging time to equal the time threshold (192d seconds) (0x00C0) and age (delete)
the address.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

60 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PRINCIPLES OF OPERATION

table-full aging

Table-full aging is implemented for applications that do not want to use aging based on time, but still require
aging. As its name implies, aging in this mode only happens when the lookup table is full and needs additional
room to add a new address. The ADD logic operation initiates an aging request when it determines that it does
not have enough tables to add the address it is working on. The time behaves differently in this mode. In table-full
aging, the age timer does not increment every second, but rather when a new address is added. There must
be a time difference between addresses to decide which is oldest, but a single count is sufficient. Since ADD
time stamps every time it sees an address come through the bus, nodes that are actively transmitting between
adds quickly move up to the same (new) age level. Those nodes that do not transmit remain at the lower age
stamps. It is these nodes that are deleted in table-full aging when the table is full.

DEL logic operation (management address deletions)

BYTE 3 BYTE 2 BYTE 1 BYTE 0
DIO

ADDRESS

Adddelcontrol 0x2C

Delnode23–Delnode16 Delnode31–Delnode24 Delnode39–Delnode32 Delnode47–Delnode40 0x48

Delnode7–Delnode0 Delnode15–Delnode8 0x4C

The DEL logic operation is controlled through the delnode and the adddelcontrol register. Management delete
commands are given through the DEL bit in the adddelcontrol register.

The steps for deleting a particular address (multicast or unicast) are as follows:

� Writing the node address in the delnode register

� Asserting the DEL bit in adddelcontrol

The DEL logic operation locks the delnode on all delete commands to ensure that they do not change during
the deletions. Reads to these registers are still possible. The DEL bit in adddelcontrol remains in the 1 state until
the deletion is complete.

Much like the management adds, having a sticky bit for DEL gives the programmer the opportunity to set up
or perform other register operations without having to wait for the delete completion. A polling method is used
to find out if the delete is finished. This involves reading adddelcontrol to determine if the command bit used
has returned to 0.

interrupts

The TNETX15AE implements interrupts to ease the management processor’s tasks. The interrupts are used
to indicate changes to the lookup table. It indicates that a new address is added, an address changed ports,
an address changed ports and is secure, and an address is deleted due to the aging process. The statistic
registers are half full (and the possibility for an overflow is present) and the lookup table is full. The TNETX15AE
indicates that interrupts to the CPU exist by setting to 1 its level-sensitive EINT terminal. The EINT terminal is
asserted when any of the possible interrupt conditions are met and the condition(s) is(are) enabled.

The interrupt register is readable at all times and contains all the current TNETX15AE interrupts. The interrupt
register is byte clearable. That is, the interrupt bits in a byte are cleared when that byte is read, whether the int
is masked or not.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

61POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PRINCIPLES OF OPERATION

masking interrupts

The TNETX15AE can mask interrupts. This is accomplished by an interrupt masking register (intmask). The
int and intmask registers have a one-to-one correspondence. The only way EINT is asserted is if both the
corresponding bits in the int and intmask are in a 1 state. The logic for the interrupt masking is shown in
Figure 17.

Int
Register

Intmask
Register

Interrupt Mask Register

Interrupt Register

AND

AND

OR EINT

Figure 17. Interrupt Masking Logic

test interrupts (INT)

Test interrupts are generated by asserting the INT bit in the int register. The INT bit in the intmask register also
must be set to a 1 state for the interrupt to take effect. The INT bit is used to give the programmer an easy way
to test interrupt detection. This bit is the only bit in the int register that is writeable.

ADD interrupts (NEW, NEWM, CHNG, CHNGM, SECVIO, SECVIOM, and FULL)
The ADD interrupts generate collateral information in the following registers:

BYTE 3 BYTE 2 BYTE 1 BYTE 0
DIO

ADDRESS

Newnode23–Newnode16 Newnode31–Newnode24 Newnode39–Newnode32 Newnode47–Newnode40 0x30

Newport Newnode7–Newnode0 Newnode15–Newnode8 0x34

ADD interrupts are sourced by the ADD logic operation based on information from the wire. ADD indicates a
new address by a NEW interrupt, an address is on a new port by a CHNG interrupt, and a security violation by
a SECVIO interrupt.

The FULL interrupt indicates that ADD needed to start AGE (to free up table space) if NAUTO is 0, or the host
needs to delete some addresses if NAUTO = 1.

The FULL interrupt indicated that table resources are exhausted to the point where (wire or DIO) ADD cannot
take place. If NAUTO = 0, AGE will delete oldest entries when another ADD is requested. IF NAUTO = 1, the
host must do some deletes before the next DIO ADD can complete.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

62 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PRINCIPLES OF OPERATION

ADD interrupts (NEW, NEWM, CHNG, CHNGM, SECVIO, SECVIOM, and FULL) (continued)
The add interrupts are indicated in the interrupt register and the information for the particular interrupt is placed
in the newnode and newport registers. Since there is only one set of registers that is shared for these interrupts,
and to ensure that the information placed in these registers is not corrupted during reads, ADD locks the
newnode and newport registers until the most-significant byte of newport is read.

Locking these registers means that ADD does not have a place to put information for new events. If additional
events are missed, they are indicated in the int register as missed interrupts (NEWM, CHNGM, and SECVIOM).

On a NEW interrupt, the newport register contains information about the port for the new address. On a CHNG
interrupt, this register identifies the new port address. On a SECVIO interrupt, the address does not move to
the port, but the newport register indicates the port to which it tried to move.

aging interrupts (AGE, AGEM)
When an address is aged out by the internal AGE logic, it generates an interrupt and reports about that address
in the following registers:

BYTE 3 BYTE 2 BYTE 1 BYTE 0
DIO

ADDRESS

Agednode23–Agednode16 Agednode31–Agednode24 Agednode39–Agednode32 Agednode47–Agednode40 0x40

Agedport Agednode7–Agednode0 Agednode15–Agednode8 0x44

AGE indicates an interrupt every time that it ages out a node. It places the information on the node (being aged
out) on the agednode register, the node’s port on agedport. These registers are locked when a new interrupt
is given to protect the information contained.

Missed interrupts due to these registers being locked are indicated as an AGEM interrupt. These registers are
unlocked when the agedport register is read.

statistic interrupt (STAT)
The statistic interrupt is given when one of the statistic registers (except for numnodes) becomes one-half full;
the most-significant bit becomes a 1. This is an indication to the management CPU that the statistic registers
should be read to avoid counter overrun. Reading the most-significant byte of a statistic counter, except for
numnodes, clears it. The host should read least-significant byte, then most-significant byte, and be prepared
for a carry between byte reads.

If a carry took place between byte needs, the statistic count will appear to have jumped by 255 instead of one
count.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

63POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

IEEE Std 1149.1 test-access port (JTAG)

The test-access port consists of five terminals that are used to interface serially with the TNETX15AE package
for boundary-scan testing.

The TNETX15AE is fully JTAG compliant, with the exception of requiring external pullup resistors on the
following terminals: TDI, TMS, and TRST.

The following instructions, with their 4-bit opcodes, are supported by JTAG.

INSTRUCTION
TYPE NAME

JTAG
OPCODE

Mandatory EXTEST 0000

Mandatory SAMPLE/PRELOAD 0001

Private ATPG 0010

Private SELFEXERCISE 0011

Optional IDCODE 0100

Optional HIGH Z 0101

Private IDDQ 1100

Mandatory BYPASS 1111

The IDCODE for the TNETX15AE is:

VARIANT PART NUMBER MANUFACTURER LSB

Bit number 31–28 27–12 11–1 0

Binary code 0000b 1011 0001 1010 1110b 000 0001 0111b 1b

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

64 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

absolute maximum ratings over operating case temperature range (unless otherwise noted) †

Supply voltage range, VCC (see Notes 2 and 3) –0.5 V to 3.6 V.
Supply voltage range, VCC(5V) (see Notes 2 and 3) –0.5 V to 5.5 V.
Input voltage range, VI –0.5 V to VCC(5 V) + 0.5 V.
Output voltage range, VO –0.5 V to VCC.
Thermal impedance, junction-to-ambient package, airflow = 0, ZθJA 47.5°C/W.
Thermal impedance, junction-to-ambient package, airflow = 100 ft/min, ZθJA 38.2°C/W.
Thermal impedance, junction-to-case package, ZθJC 9.9°C/W.
Operating case temperature range, TC 0°C to 95°C.
Storage temperature range, Tstg –65°C to 150°C.

† Stresses beyond those listed under “absolute maximum ratings” can cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods can affect device reliability.

NOTES: 2. All voltage values are with respect to GND.
3. Turning power supplies on and off (cycling sequence) within a mixed 5-V/3.3-V system is an important consideration. The designer

must observe a few rules to avoid damaging the TNETX15AE. Check with the manufacturers of all components used in the 3.3-V
to 5-V interface to ensure that no unique device characteristics exist that would lead to rules more restrictive than the TNETX15AE
requires.

The optimum solution to power-supply sequencing in a mixed-voltage system is to ramp up the 3.3-V supply first. A power-on reset
component operating from this supply forces all 5-V tolerant outputs into the high-impedance state. Then, the 5-V supply is ramped
up. On power down, the 5-V rail deenergizes first, followed by the 3.3-V rail.

The second-best solution is to ramp both the 3.3-V and 5-V rails at the same time, making sure that no more than 3.6 V exists between
these two rails during the ramp up or down. If the 3.3 V is derived from the 5 V, then the 3.3 V rises as the 5 V rises so that the 5-V
rail never exceeds the 3.3-V rail by more than 3.6 V. Both the optimum and second-choice algorithms for power up prevent any device
damage. If it is impractical to implement ramping, follow these rules:

• When turning on the power supply, all 3.3-V and 5-V supplies should start ramping from 0 V and reach 95 percent of their end-point
values within 25 ms. All bus contention between the device and external devices is eliminated by the end of 25 ms.

• When turning off the power supply, 3.5-V and 5-V supplies should start ramping from steady-state values and reach 5 percent
of these values within 25 ms. All bus contention between the device and external devices is eliminated by the end of 25 ms. There
is a 250-second lifetime maximum at greater than 3.6 V between the supply rails. Holding this period to 25 ms per power-on/off
cycle should not significantly contribute to shifts in mean time between failures (MTBF) during product lifetimes.

recommended operating conditions

MIN NOM MAX UNIT

VCC Supply voltage 3 3.3 3.6 V

VCC(5V) Supply voltage 4.5 5 5.5 V

VIH High-level input voltage 2 VCC(5V) V

VIL Low-level input voltage (see Note 4) 0 0.8 V

IOH High-level output current –4 mA

IOL Low-level output current 4 mA

NOTE 4: The algebraic convention, where the more-negative (less-positive) limit is designated as a minimum, is used for logic-voltage levels only.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

65POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

electrical characteristics over recommended operating conditions (unless otherwise noted)

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

VOH High-level output voltage IOH = rated VCC–0.6 V

VOL Low-level output voltage IOL = rated 0.4 V

IOZ High impedance state output current
VO = VCC 20

µAIOZ High-impedance-state output current
VO = 0 –20

µA

IIH High-level input current VI = VI(MAX) –20 µA

IIL Low-level input current VI = GND 20 µA

ICC Supply current, 3.3 V 75 mA

ICC(5V) Supply current, 5 V 2 mA

timing requirements over recommended operating conditions (see Figure 18)

external SRAM read cycle
NO. MIN MAX UNIT

1 tc(R) Cycle time, read 40 ns

2 tsu(ED) Setup time, ED15–ED0 valid before OSCIN↑ 10 ns

3 th(ED) Hold time, ED15–ED0 valid after OSCIN↑ 2 ns

operating characteristics over recommended operating conditions (see Figure 18)

external SRAM read cycle
NO. PARAMETER MIN MAX UNIT

4 td(EA)1 Delay time, from OSCIN↑ to EA20–EA0 valid 2 17 ns

5 td(EOE)1 Delay time, from OSCIN↓ to EOE↓ 13 ns

6 td(EOE)2 Delay time, from OSCIN↑ to EOE↑ 2 12 ns

7 td(EA)2 Delay time, from EOE↑ to EA20–EA0 valid –2 ns

4+2 td(EA)1 + tsu(ED) Delay time, total for same device 24 ns

ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ

Z

5

1

6

Z
3

EA20–EA0
(Output)

EWE
(Output)

EOE
(Output)

ED15–ED0
(Input)

OSCIN
(Input)

2

Valid

4 4

Valid

Valid

7

Figure 18. External SRAM Read Cycle

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

66 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

timing requirements (see Figure 19)

external SRAM write cycle
NO. MIN MAX UNIT

1 tc(W) Cycle time, write 40 ns

operating characteristics over recommended operating conditions(see Figure 19)

external SRAM write cycle
NO. PARAMETER MIN MAX UNIT

2 td(EA)1 Delay time, from OSCIN↑ to EA20–EA0 valid 2 17 ns

3 td(EWE)1 Delay time, from OSCIN↓ to EWE↓ 12 ns

4 td(ED)1 Delay time, from OSCIN↓ to ED15–ED0 valid 17 ns

5 td(EWE)2 Delay time, from OSCIN↑ to EWE↑ 2 12 ns

6 td(ED)2 Delay time, from EWE↑ to ED15–ED0 invalid 0 ns

7 td(EA)2 Delay time, from EWE↑ to EA20–EA0 invalid 0 ns

8 td(ED)3 Delay time, from OSCIN↑ to ED15–ED0 invalid 17 ns

ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ

Z

4

1

5

Z

6

EA20–EA0
(Output)

EWE
(Output)

EOE
(Output)

ED15–ED0
(Output)

OSCIN
(Input)

Valid

2 2

Valid3

ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ

7

Valid

8

Figure 19. External SRAM Write Cycle

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

67POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

operating characteristics over recommended operating conditions (see Note 5 and Figure 20)

EAM routing code
NO. PARAMETER MIN MAX UNIT

1 td(EAM)1 Delay time, from EAM15–EAM0 valid to EAM15–EAM0 invalid 100 ns

2 td(EAM)2 Delay time, from OSCIN↑ to EAM15–EAM0 valid 17 ns

NOTE 5: The TNETX3150/TNETX3150A/TNETX3100 latches the EAM data (at certain edges) on frames that write the first 64 bytes of frame
data to the DRAM. The edges where EAM is valid are shown in Figure 20. At other times, the value in EAM is not valid and is ignored
by the TNETX3150/TNETX3150A/TNETX3100. The TNETX15AE outputs the EAM data on the rising edge of OSCIN before the
TNETX3150/TNETX3150A/TNETX3100 latches the data and holds the data until the end of the transfer burst. This ensures adequate
setup and hold times for TNETX3150/TNETX3150A/TNETX3100s EAM input. The particular frame, where the EAM code is valid, is
identified by the start-of-frame (SOF) indicator in the frames flag fields and by the DWE strobe being low. The EAM code is not valid
on DRAM reads [DWE = (1)] on refresh cycles or on IOB buffer writes and reads.

ÎÎ
ÎÎ

21

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

OSCIN
(Input)

DWE
(Input)

DRAS
(Input)

ÎÎÎ
ÎÎÎ

DCAS
(Input)

Row Col Col Col Col Col

FPTR Data

Col Col Col Col Col Col Col Col Col Col Col Col

Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data

DA7–DA0
DX2–DX0

DD31–DD0
(Input)

DD35–DD32
(Input)

EAM15–
EAM0

(Output)

Forward Pointer Access
High Nibble of

Start Flag (SOF)

440 ns

1

EOF

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1615 1817 2019 23 2524 2726 2928 3130 3332 3534 3736

TNETX3150/TNETX3150A/TNETX3100
Latches the EAM Code Here

EAM Code Valid

1 2 3 4 5 6 7 8 9 10 11 12 13 1615 1714

2

Figure 20. EAM Bus Timing

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

68 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

timing requirements (see Note 6 and Figure 21)

DRAM interface †

NO. MIN MAX UNIT

1 tsu(DD) Setup time, DD35–DD0 valid before OSCIN↑ 3 ns

2 tsu(DWE) Setup time, from DWE↓ to OSCIN↑ 4 ns

3 tsu(DRAS) Setup time, from DRAS↓ to OSCIN↑ 4 ns

4 tsu(DCAS) Setup time, from DCAS↓ to OSCIN↑ 5 ns

5 th(DD) Hold time, DD35–DD0 valid after OSCIN↑ 3 ns

6 th(DWE) Hold time, DWE low after OSCIN↑ 3 ns

7 th(DRAS) Hold time, DRAS low after OSCIN↑ 3 ns

8 th(DCAS) Hold time, DCAS low after OSCIN↑ 3 ns

† DD35–DD0 data is available for two cycles
NOTE 6: The TNETX15AE listens on the DRAM interface to extract frame information. The TNETX15AE extracts information on only the write

cycles. The TNETX15AE does not output any signals to the DRAM interface. The only parameters that apply to the TNETX15AE on
this interface are delay times, with respect to OSCIN, that translate into the TNETX15AE setup times.

OSCIN
(Input)

Data

DWE
(Input)

DRAS
(Input)

DCAS
(Input)

DD35–DD0
(Input)

1

4

2

ZZ

TNETX15AE Latches Here

3

5

6

7

8

Figure 21. DRAM Interface Timing

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

69POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

timing requirements (see Note 7 and Figure 21)

DIO read cycle
NO. MIN MAX UNIT

1 tw(ESCSL) Pulse duration, ESCS low 40 ns

2 tsu(SRNW) Setup time, SRNW high before ESCS↓ 3 ns

3 tsu(SAD) Setup time, SAD1–SAD0 valid before ESCS↓ 3 ns

NOTE 7: The DIO interface is a byte-wide, asynchronous interface that is designed for use with a wide variety of CPUs. The interface can be
run at any speed; there is no minimum speed requirement. DIO cycle lengths can vary, depending on the type of register accessed.
The TNETX15AE withholds the SRDY acknowledge signal on registers until it has gathered the necessary data.

operating characteristics over recommended operating conditions (see Note 7 and Figure 22)

DIO read cycle
NO. PARAMETER MIN MAX UNIT

4† tw(SRDYH) Pulse duration, SRDY high 25 ns

5 td(SRNW) Delay time, from SRDY↓ to SRNW↓ 0 ns

6 td(SAD) Delay time, from SRDY↓ to SAD1–SAD0 invalid 0 ns

7 td(SDATA)1 Delay time, from SRDY↓ to SDATA7–SDATA0 valid 5 ns

8 td(ESCS) Delay time, from SRDY↓ to ESCS↑ 0 ns

9 td(SDATA)2 Delay time, from ESCS↑ to SDATA7–SDATA0 high-impedance Z 17 ns

10† td(SRDY)1 Delay time, from ESCS↓ to SRDY↓ 40 ‡ ns

11† td(SRDY)2 Delay time, from ESCS↑ to SRDY↑ 0 25 ns

† These parameters are specified by design, but not tested.
‡ Max = min + N (internal cycles), where N equals the number of internal cycles required to arbitrate internally to obtain the value being requested.

N is equal to a minimum of 1, and can be large during RAM INIT and FINDNEXT operation, since DIO operations will not complete during these
operations (no SRDY true), and both of these operations can read every SRAM location to finish.

NOTE 7: The DIO interface is a byte-wide, asynchronous interface that is designed for use with a wide variety of CPUs. The interface can be
run at any speed; there is no minimum speed requirement. DIO cycle lengths can vary, depending on the type of register accessed.
The TNETX15AE withholds the SRDY acknowledge signal on DIO accesses until it has gathered the necessary data.

ÎÎÎÎÎÎ
ÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ

Data

ESCS
(Input)

SRNW
(Input)

SDATA7–SDATA0
(Output)

SRDY
(Output)

1

ZZ

Host Address

410

11

SAD1–SAD0
(Input)

9

8

3

5

6

7

2

ZZ

Figure 22. DIO Read Cycle

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

70 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

timing requirements (see Note 7 and Figure 23)

DIO write cycle
NO. MIN MAX UNIT

1 tw(ESCSL) Pulse duration, ESCS low 40 ns

2 tsu(SRNW) Setup time, SRNW low before ESCS↓ 3 ns

3 tsu(SAD) Setup time, SAD1–SAD0 valid before ESCS↓ 3 ns

4 tsu(SDATA) Setup time, SDATA7–SDATA0 valid before ESCS↓ 3 ns

NOTE 7: The DIO interface is a byte-wide, asynchronous interface that is designed for use with a wide variety of CPUs. The interface can be
run at any speed; there is no minimum speed requirement. DIO cycle lengths can vary, depending on the type of register accessed.
The TNETX15AE withholds the SRDY acknowledge signal on registers until it has gathered the necessary data.

operating characteristics over recommended operating conditions (see Note 7 and Figure 23)

DIO write cycle
NO. PARAMETER MIN MAX UNIT

5† tw(SRDYH) Pulse duration, SRDY high 25 ns

6 td(SRNW) Delay time, from SRDY↓ to SRNW↑ 0 ns

7 td(SAD) Delay time, from SRDY↓ to SAD1–SAD0 invalid 0 ns

8 td(SDATA) Delay time, from SRDY↓ to SDATA7–SDATA0 high-impedance Z 0 ns

9 td(ESCS) Delay time, from SRDY↓ to ESCS↑ 0 ns

10† td(SRDY)1 Delay time, from ESCS↓ to SRDY↓ 40 ‡ ns

11† td(SRDY)2 Delay time, from ESCS↑ to SRDY↑ 0 25 ns

† These parameters are specified by design, but not tested.
‡ Max = min + N (internal cycles), where N equals the number of internal cycles required to arbitrate internally to obtain the value being requested.

N is equal to a minimum of 1, and can be large during RAM INIT and FINDNEXT operation, since DIO operations will not complete during these
operations (no SRDY true), and both of these operations can read every SRAM location to finish.

NOTE 7: The DIO interface is a byte-wide, asynchronous interface that is designed for use with a wide variety of CPUs. The interface can be
run at any speed; there is no minimum speed requirement. DIO cycle lengths can vary, depending on the type of register accessed.
The TNETX15AE withholds the SRDY acknowledge signal on registers until it has gathered the necessary data.

ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎ

Data

ESCS
(Input)

SRNW
(Input)

SDATA7–SDATA0
(Input)

SRDY
(Output)

1

ZZ

Host Address

510

11

SAD1–SAD0
(Input)

2 6

7

8

3

4

9

ZZ

Figure 23. DIO Write Cycle

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

71POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

timing requirements over recommended operating conditions

OSCIN clock
MIN NOM MAX UNIT

tc(OSCIN)† Cycle time, OSCIN 20 ns

tw(OSCINH) Pulse duration, OSCIN high 8 10 ns

tw(OSCINL) Pulse duration, OSCIN low 8 10 ns

Frequency drift† ±50 ppm

† TNETX15AE is designed to use the OSCIN input from the companion TNETX3150/TNETX3150A/TNETX3100 to be able to snoop on the
TNETX3150/TNETX3150A/TNETX3100-DRAM bus. The accuracy and drift are constrained by TNETX3150/TNETX3150A/TNETX3100 use of
OSCIN for Ethernet state machines.

timing requirements over recommended operating conditions (see Figure 24)

power-on reset
NO. MIN MAX UNIT

1 td(OSCIN) Delay time, from VCC↑ to RESET↑ 25 ms

2 td(RESET) Delay time, from OSCIN↑ to RESET↑ 25 ms

3 td(AUTO) Delay time, from RESET↑ to EEPROM autoload over 50 ms

ÎÎÎÎ
ÎÎÎÎ

OSCIN
(Input)

VCC(5V)
(Input)

VCC
(Input)

1

2

RESET
(Input)

Normal Operation

Signals ‡ Valid

‡ A pullup or active logic is required for each input to have known logic levels at all times, especially during reset when an I/O output is disabled.

3

Figure 24. Power-On Reset Timing

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

72 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

timing requirements over recommended operating conditions (see Figure 25)

RESET (software) timing
NO. MIN MAX UNIT

1 tw(RESET) Pulse duration, RESET low 3 µs

2 tsu(RESET) Setup time, RESET low before OSCIN↑ 10 ns

3 th(RESET) Hold time, RESET low after OSCIN↑ 12 ns

ÎÎÎÎ
ÎÎÎÎ

OSCIN
(Input)

VCC(5V)
(Input)

VCC
(Input)

1RESET
(Input)

Signals †

2

3

Normal Operation

† A pullup or active logic is required for each input to have known logic levels at all times, especially during reset when an I/O output is disabled.

Figure 25. RESET (Software) Timing

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

73POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

operating characteristics over recommended operating conditions (see Note 8 and Figure 26)

EEPROM and MDIO (MII) interfaces

When the host is driving the EEPROM interface through the SIO register (0x0A), the output terminals are copies
of register bits synchronized by OSCIN rising, and the input register bits are copies of the device terminals
synchronized by OSCIN rising. This adds a maximum of 20 ns of delay in each direction, which is negligible in
terms of the maximum signal change rate allowed for the EEPROMs (approximately 100 kHz), or the MDIO (MII
management). The timing for these interfaces is set at the rate that register bits are set in software. For detailed
descriptions of the EEPROM requirements, refer to the data sheet for the part in question. For detailed
descriptions of the MII management interface, refer to IEEE Std 802.3.

When the TNETX15VE is driving the EEPROM during the automatic register load cycle, the timing on the
EEPROM is as shown in Figure 26.

EEPROM interface timing (TNETX15AE to EEPROM transfer) (see Note 8)
NO. PARAMETER† MIN MAX UNIT

fclock Clock frequency, ECLK 98 kHz

1 tw(ECLKL)1 Pulse duration, ECLK low during start/stop 10.24 µs

2 tw(ECLKH)1 Pulse duration, ECLK high during start/stop 10.2 µs

3 tw(ECLKH)2 Pulse duration, ECLK high during data 5.1 µs

4 tw(ECLKL)2 Pulse duration, ECLK low during data 5.12 µs

5 td(EDIO)1 Delay time, from ECLK↑ to EDIO↓ , start condition 5.1 µs

6 td(ECLK)1 Delay time, from EDIO↓ to ECLK↓ , start condition 5.1 µs

7 td(EDIO)2 Delay time, from ECLK↓ to EDIO↑ , data condition 0 µs

8 td(ECLK)2 Delay time, from EDIO↑ to ECLK↑ , data condition 5.1 µs

9 td(EDIO)3 Delay time, from OSCIN to EDIO 18 ns

10 td(ECLK)3 Delay time, from OSCIN to ECLK 18 ns

† These parameters are specified by design, but not tested.
NOTE 8: The timing for the EEPROM interface occurs with the ETEST bit set to 0.

ECLK
(Output)

EDIO
(Output) Valid

21 43

5 6 7 8

Figure 26. EEPROM Interface Timing

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

74 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PARAMETER MEASUREMENT INFORMATION

Outputs are driven to a minimum high-logic level of 2.4 V and to a maximum low-logic level of 0.6 V. These levels
are compatible with TTL devices.

Output transition times are specified as follows: all transition times are measured at the point where the output signal
crosses 1.3 V.

The rise and fall times are not specified but are assumed to be those of standard TTL devices, which are
typically 1.5 ns.

1.3 V

test measurement

The test-load circuit shown in Figure 27 represents the programmable load of the tester pin electronics that is
used to verify timing parameters of the TNETX15VE output signals.

OUTPUT TEST LOAD

CL

IOH

VLOAD

IOL

Test
Point

Output
Under
Test

Where:
IOH = refer to I OH in recommended operating conditions
IOL = refer to I OL in recommended operating conditions
VLOAD = 1.5 V, typical
CL = 25 pF, typical load-circuit capacitance

Figure 27. Test and Load Circuit

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

75POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

APPLICATION INFORMATION

TNETX15AE/TNETX3150/TNETX3150A stand-alone applications

unmanaged switch

The simplest application for the TNETX15AE device is shown in Figure 28. This is an unmanaged multiport
switch. The TNETX15AE is responsible for matching addresses, learning addresses, and for eliminating (aging
out) old addresses. The TNETX15AE also provides options to the manufacturer through its EEPROM. The
manufacturer could program this EEPROM through a parallel-port interface to the TNETX15AE. Options that
can be set are SRAM size, the aging time, and where unknown unicast and multicast frames go. This is the
lowest-cost solution for an unmanaged multinode-per-port switch. This is the architecture of the TI evaluation
module (EVM).

PHY

PHY

PHY

TNETX3150/
TNETX3150A

EEPROM OSC

TNETX15AE

Parallel Port

SRAM

DIO

Multiports

EEPROM

Figure 28. Lowest Cost Unmanaged Multiport Switch

managed switch

The microprocessor (CPU) interfaces to the TNETX3150/TNETX3150A/TNETX3100 through a common DIO
interface. The microprocessor also can manage any PHY through an IEEE Std 802.3u MII interface using the
SIO register in the TNETX15AE.

The microprocessor’s tasks are minimized mainly because the CPU does not have to participate in frame
matching. The microprocessor is used to set TNETX15AE/TNETX3150/TNETX3150A modes, secure
addresses so that the node does not move ports (useful for routers, attached switches, and servers), and
respond to control MIB requests.

The TNETX15AE is designed for easy management of the lookup table. Address-table lookups, adds, edits,
and deletes are performed easily through the TNETX15AE registers. Interrupt support in the TNETX15AE also
simplifies the management tasks. The TNETX15AE can give an interrupt to the CPU when the lookup table
changes due to a wire event. This minimizes code, as the CPU does not have to actively poll a large address
table for changes.

In-band signaling (see Figure 29) must be done with a MAC device connected to one of the switch ports. There
is no access to the data stream via the DIO port on the TNETX3150/TNETX3150A/TNETX3100 or the
TNETX15AE. Both devices affect the ability of a port to receive or forward packets; the packet itself is received
and transmitted via a regular switch port.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

76 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

APPLICATION INFORMATION

TNETX15AE/TNETX3150/TNETX3150A stand-alone applications (continued)

PHY

PHY

TNETX3150
TNETX3150A

EEPROM OSC

TNETX15AE

CPU
Manager

SRAM

DIO

Multiports

EEPROM

MAC

MII

Figure 29. In-Band Managed Multiport Switch

With access to a port, the CPU can receive frames destined to other nodes. By tagging the CUPLNK bit for that
particular address in the address table, the CUPLNK bit copies all frames destined for that address to the ports
specified in UPLINKport. By setting UPLINKport to direct these frames to the management CPU, it can receive
frames of interest.

TNETX15AE
ADDRESS-LOOKUP DEVICE

SPWS041A – AUGUST 1997 – REVISED OCTOBER 1997

77POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

MECHANICAL DATA

PGE (S-PQFP-G144) PLASTIC QUAD FLATPACK

4040147/C 11/96

0,27

72

0,17

37

73

0,13 NOM

0,25

0,75
0,45

0,05 MIN

36

Seating Plane

Gage Plane

108

109

144

SQ

SQ
22,20
21,80

1

19,80

17,50 TYP

20,20

1,35
1,45

1,60 MAX

M0,08

0°–7°

0,08

0,50

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-026

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright 1998, Texas Instruments Incorporated

