INTEGRATED CIRCUITS

DATA SHEET

74F777

Triple bidirectional latched bus transceiver (3-State + open collector)

Product specification

1992 May 19

IC15 Data Handbook

Triple bidirectional latched bus transceiver (3-State + Open Collector)

74F777

FEATURES

- Latching transceiver
- High drive Open Collector output current with minimum output swing
- Compatible with Test Mode (TM) bus specification
- Controlled output ramp
- Multiple package options
- Industrial temperature range available (-40°C to +85°C)

DESCRIPTION

The 74F777 is a triple bidirectional latched bus transceiver and is intended to provide the electrical interface to a high performance wired–OR bus. This bus has a loaded characteristics impedance

range of 20 to 50 ohms and is terminated on each end with a 30 to 40 ohm resistor.

The 74F777 is a triple bidirectional transceiver with Open Collector B and 3–State A port output drivers. A latch function is provided for the A port signals. The B port output driver is designed to sink 100mA from 2 volts to minimize crosstalk and ringing on the bus.

A separate output threshold clamp voltage (V $_{\rm X}$) is provided to prevent the A port output High level from exceeding future high density processor supply voltage levels. For 5 volt systems, V $_{\rm X}$ is simply tied to V $_{\rm CC}$.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CUR- RENT(TOTAL)
74F777	7.0ns	45mA

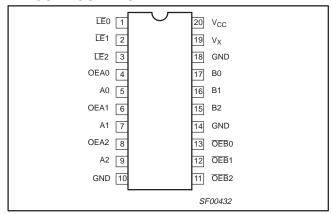
ORDERING INFORMATION

	ORDI		
DESCRIPTION	COMMERCIAL RANGE $V_{CC} = 5V \pm 10\%, T_{amb} = 0^{\circ}C \text{ to } +70^{\circ}C$	INDUSTRIAL RANGE V_{CC} = 5V $\pm 10\%$, T_{amb} = -40° C to +85 $^{\circ}$ C	PKG DWG #
20-pin plastic DIP (300 mil)	N74F777N	174F777N	SOT146-1
20-pin PLCC	N74F777A	174F777A	SOT380-1

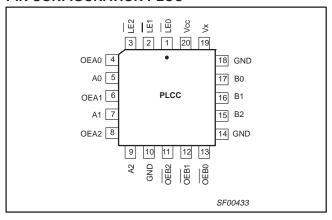
INPUT AND OUTPUT LOADING AND FAN OUT TABLE

PINS	DESCRIPTION	74F (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
A0 – A2	PNP latched inputs	3.5/0.117	70μΑ/70μΑ
B0 – B2	Data inputs with threshold circuitry	5.0/0.167	100μΑ/100μΑ
OEA0 – OEA2	A output enable inputs (active–High)	1.0/0.033	20μΑ/20μΑ
OEB0 – OEB2	B output enable inputs (active–Low)	1.0/0.033	20μΑ/20μΑ
LE0 – LE2	Latch enable inputs (active–Low)	1.0/0.033	20μΑ/20μΑ
A0 – A2	3–State outputs	150/40	3mA/24mA
B0 – B2	Open Collector outputs	OC/166.7	OC/100mA

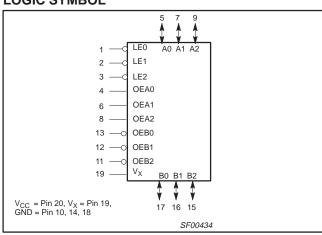
Note to input and output loading and fan out table

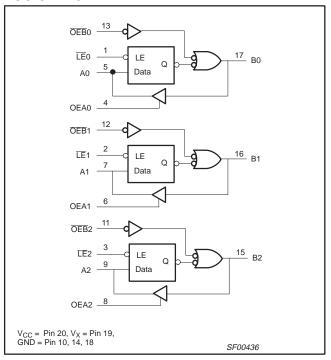

One (1.0) FAST unit load is defined as: $20\mu\text{A}$ in the High state and 0.6mA in the Low state. OC = Open Collector.

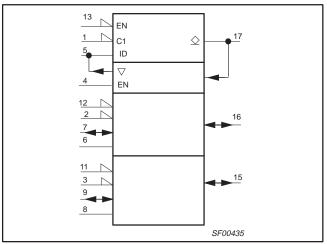
May 19, 1992 2 853–1645 06772


Triple bidirectional latched bus transceiver (3–State + Open Collector)

74F777


PIN CONFIGURATION


PIN CONFIGURATION PLCC


LOGIC SYMBOL

LOGIC DIAGRAM

IEC/IEEE SYMBOL

Triple bidirectional latched bus transceiver (3-State + Open Collector)

74F777

FUNCTION TABLE

		INPU	TS		LATCH	OUT	PUTS	OPERATING MODE
An	Bn*	LEn	OEAn	OEBn	STATE	An	Bn	1
Н	Х	L	L	L	Н	Z	H**	A 3-State, data from A to B
L	Х	L	L	L	L	Z	L	7
Х	Х	Н	L	L	Qn	Z	Qn	A 3-State, latched data to B
-	-	L	Н	L	(1)	(1)	(1)	Feedback: A to B, B to A
-	Н	Н	Н	L	H (2)	Н	Z(2)	Preconditioned latch enabling
-	L	Н	Н	L	H (2)	L	Z(2)	data transfer from B to A
-	-	Н	Н	L	Qn	Qn	Qn	Latch state to A and B
Н	Х	L	L	Н	Н	Z	Z	
L	Х	L	L	Н	L	Z	Z	B and A 3–State
Х	Х	Н	L	Н	Qn	Z	Z	
-	Н	L	Н	Н	Н	Н	Z	
-	L	L	Н	Н	L	L	Z	B 3-State, data from B to A
-	Н	Н	Н	Н	Qn	Н	Z	7
	L	Н	Н	Н	Qn	L	Z	<u> </u>
Notes to	functio	n table			Qn			

H = High voltage level

L = Low voltage level

X = Don't care

- = Input not externally driven

Z = High impedance (off) state

 Q_n = High or Low voltage level one setup time prior to the Low-to-High $\overline{\text{LE}}$ transition.

(1) = Condition will cause a feedback loop path: A to B and B to A.

(2) = The latch must be preconditioned such that B inputs may assume a High or Low level while OEB0 and OEB1 are Low and LE is High.

=Precaution should be taken to insure the B inputs do not float. If they do they are equal to Low state.

H**= Goes to level of pull-up voltage.

Each latch is independent. The latches may be run in any combination of modes.

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limit set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free air temperature range.)

SYMBOL	PARAME	TER	RATING	UNIT
V _{CC}	Supply voltage		-0.5 to +7.0	V
V _X	Threshold control		-0.5 to +7.0	V
V _{IN}	Input voltage	OEBn, OEAn, LEn	-0.5 to +7.0	V
		A0 – A2, B0 – B2	-0.5 to +5.5	V
I _{IN}	Input current	-30 to +5	mA	
V _{OUT}	Voltage applied to output in High output stat	−0.5 to V _{CC}	V	
I _{OUT}	Current applied to output in	A0 – A2	48	mA
	Low output state	B0 – B2	200	mA
T _{amb}	Operating free air	Commercial range	0 to +70	°C
	temperature range Industrial range		-40 to +85	°C
T _{stg}	Storage temperature range	-65 to +150	°C	

Triple bidirectional latched bus transceiver (3–State + Open Collector)

74F777

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER			LIMITS		UNIT
			MIN	NOM	MAX	1
V _{CC}	Supply voltage		4.5	5.0	5.5	V
V _{IH}	High-level input voltage	Except B0 - B2	2.0			V
		B0 – B2	1.6			V
V_{IL}	Low-level input voltage	Except B0 - B2			0.8	V
		B0 – B2			1.43	V
I _{lk}	Input clamp current	Except A0 – A2			-18	mA
		A0 – A2			-40	mA
I _{OH}	High-level output current	Except A0 - A2			-3	mA
I _{OL}	Low-level output current	A0 – A2			24	mA
		B0 – B2			100	mA
T _{amb}	Operating free-air temperature range	Commercial range	0		+70	°C
		Industrial range	-40	1	+85	°C

Triple bidirectional latched bus transceiver (3–State + Open Collector)

74F777

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

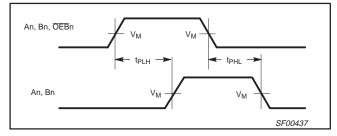
SYMBOL	PARAMETE	R	TE	ST		UNIT		
			COND	ITIONS ¹	MIN	TYP ²	MAX	i
I _{OH}	High-level output current	B0 – B2	V _{CC} = MAX, V _{IL} = MAX, V	V _{IH} = MIN, V _{OH} = 2.1V			100	μΑ
l _{OFF}	Power-off output current	B0 – B2	$V_{CC} = 0.0V$, $V_{IL} = MAX$, V			100	μΑ	
			$V_{CC} = MIN,$	$I_{OH} = -3mA$, $V_X = V_{CC}$	2.5		Vcc	V
V_{OH}	High-level output voltage	A0 – A2 ⁴	$V_{IL} = MAX,$ $V_{IH} = MIN$	$I_{OH} = -4mA$, $V_X = 3.13V$ and 3.47V	2.5		V _X	V
		A0 – A2 ⁴	$V_{CC} = MIN,$	$I_{OL} = 20 \text{mA}, V_X = V_{CC}$			0.50	V
V_{OL}	Low-level output voltage	B0 – B2	$V_{IL} = MAX$,	I _{OL} = 100mA			1.15	V
			V _{IH} = MIN	I _{OL} = 4mA	0.40			V
V _{IK}	Input clamp voltage	A0 – A2	$V_{CC} = MIN, I_I = I_{IK}$				-0.5	V
		Except A0 – A2	$V_{CC} = MIN, I_I = I_{IK}$				-1.2	V
I _I	Input current at maximum input voltage	OEBn, OEAn, LEn	$V_{CC} = MAX, V_I = 7.0V$				100	μА
		A0 – A2, B0 – B2	$V_{CC} = MAX, V_I = 5.5V$			1	mA	
I _{IH}	High-level input current	OEBn, OEAn, LEn	$V_{CC} = MAX, V_I = 2.7V, Br$			20	μА	
		B0 – B2	$V_{CC} = MAX, V_I = 2.1V$				100	μΑ
I _{IL}	Low-level input current	OEBn, OEAn, LEn	$V_{CC} = MAX, V_I = 0.5V$				-20	μΑ
		B0 – B2	$V_{CC} = MAX, V_I = 0.3V$				-100	μΑ
I _{OZH} + I _{IH}	Off–state output current, High level voltage applied	A0 – A2	$V_{CC} = MAX, V_O = 2.7V$				70	μΑ
I _{OZL} + I _{IL}	Off-state output current, Low level voltage applied	A0 – A2	$V_{CC} = MAX, V_I = 0.5V$				-70	μА
I _X	High level control current	•	$V_{CC} = MAX, V_X = V_{CC}, \overline{L}$ A0 - A2 = 2.7V, B0 - B2	-100		100	μА	
			$V_{CC} = MAX, V_X = 3.13 \& 2.7V, \overline{OEB}n = A0 - A2 = 2.20$	-10		10	μА	
I _{OS}	Short circuit output current ³	A0 – A2 only	$\frac{V_{CC}}{OEB}$ n = 2.7V	-60		-150	mA	
		I _{CCH}	V _{CC} = MAX			40	60	mA
Icc	Supply current (total)	I _{CCL}	$V_{CC} = MAX, V_{IL} = 0.5V$			55	80	mA
		I _{CCZ}	$V_{CC} = MAX, V_{IL} = 0.5V$		45	67	mΑ	

Notes to DC electrical characteristics

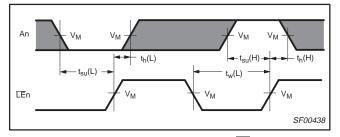
- For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
 Unless otherwise specified, V_X =V_{CC} for all test condition.
- 2. All typical values are at V_{CC} = 5V, T_{amb} = 25°C.
- 3. Not more than one output should be shorted at a time. For testing I_{OS}, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{OS} tests should be performed last.
- 4. Due to test equipment limitations, actual test conditions are for V_{IH} =1.8v and V_{IL} = 1.3V.

Triple bidirectional latched bus transceiver (3–State + Open Collector)

74F777


AC ELECTRICAL CHARACTERISTICS

						A PORT	LIMITS					
SYMBOL	PARAMETER	TEST CONDITION	\ V _C	$T_{amb} = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 30pF, R_{L} = 9\Omega$			C to +70°C 0V ±10% F, R _L = 9Ω	+85 V _{CC} = +5	-40°C to 5°C .0V ±10% -, R _L = 9Ω	UNIT		
			MIN	TYP	MAX	MIN	MAX	MIN	MAX			
t _{PLH} t _{PHL}	Propagation delay Bn to An	Waveform 1	8.5 7.5	10.5 9.5	13.0 12.0	8.0 7.5	14.5 12.5	8.0 7.5	14.5 12.5	ns		
t _{PZH}	Output enable time to High or Low OEAn to An	Waveform 3, 4	8.0 9.0	10.0 11.0	13.0 14.0	7.0 8.0	14.5 15.5	7.0 8.0	14.5 15.5	ns		
t _{PHZ} t _{PLZ}	Output Disable time from High or Low OEAn to An	Waveform 3, 4	1.5 1.5	3.0 3.0	6.0 6.0	1.0 1.0	6.5 6.0	1.0 1.0	6.5 6.0	ns		
			B PORT LIMITS									
SYMBOL	PARAMETER	TEST CONDITION	V _C	_{nb} = +25 _C = +5.0 OpF, R _U	VO	V _{CC} = +5.	to +70°C $0V \pm 10\%$ $R_U = 9\Omega$	T _{amb} = - +85 V _{CC} = +5 C _D = 30pF	UNIT			
			MIN	TYP	MAX	MIN	MAX	MIN	MAX			
t _{PLH} t _{PHL}	Propagation delay An to Bn	Waveform 1	3.0 5.0	4.5 6.5	7.0 9.0	2.5 4.5	8.0 10.0	2.5 4.5	8.0 10.0	ns		
t _{PLH} t _{PHL}	Propagation delay LEn to Bn	Waveform 1	3.5 5.5	5.5 7.5	8.0 10.5	3.0 5.0	9.0 11.5	3.0 5.0	9.0 11.5	ns		
t _{PLH} t _{PHL}	Enable/disable time OEBn to An	Waveform 1	3.0 6.0	5.0 8.0	7.5 10.5	3.0 5.5	8.0 12.0	3.0 5.5	8.0 12.0	ns		
t _{TLH} t _{THL}	Transition time, B port 1.3V to 1.7V, 1.7V to 1.3V	Test Circuits and Waveforms	0.5 0.5	4.0 2.0	4.5 4.5	0.5 0.5	7.0 4.5	0.5 0.5	7.0 4.5	ns		


AC SETUP REQUIREMENTS

				LIMITS										
SYMBOL	PARAMETER	TEST CONDITION	\ V _C	_{nb} = +25 cc = +5.0 0pF, R _U	OV	$T_{amb} = 0^{\circ}C$ $V_{CC} = +5.$ $C_D = 30pF$	0V \pm 10%	T _{amb} = - +85 V _{CC} = +5. C _D = 30pF	UNIT					
			MIN	TYP	MAX	MIN	MAX	MIN	MAX					
t _{su} (H) t _{su} (L)	Setup time An to LEn	Waveform 2	4.0 4.5			4.5 4.5		4.5 4.5		ns				
t _h (H) t _h (L)	Hold time An to LEn	Waveform 2	0.0 0.0			0.0 0.0		0.0 0.0		ns				
t _w (L)	LEn pulse width, Low	Waveform 2	5.5			6.5		6.5		ns				

AC WAVEFORMS

Waveform 1. Propagation delay, data to output and enable/disable time OEBn to Bn

Waveform 2. Data set-up and hold times and $\overline{\text{LE}}$ pulse width

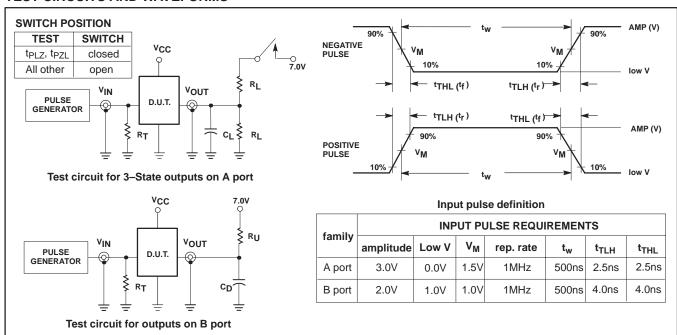
May 19, 1992 7

Triple bidirectional latched bus transceiver (3-State + Open Collector)

74F777

OEAn t_{PZL} VOI +0.3V SF00440

Waveform 3. 3-State output enable time to High level and output disable time from High level


Waveform 4. 3-State output enable time to Low level and output disable time from Low level

Notes to AC waveforms

For all waveforms, $V_M = 1.5V$.

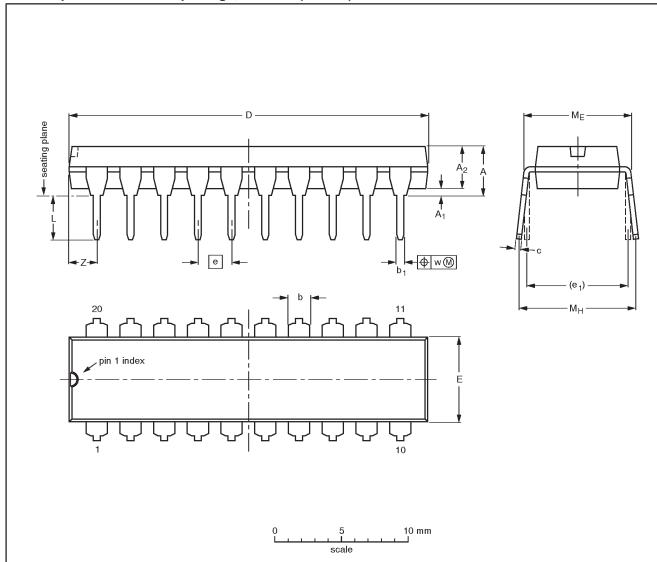
The shaded areas indicate when the input is permitted to change for predictable output performance.

TEST CIRCUITS AND WAVEFORMS

R_L = Load resistor; see AC electrical characteristics for value.

Load capacitance includes jig and probe capacitance; see AC electrical characteristics for value. Pull up resistor; see AC electrical characteristics for value.

 C_D = Load capacitance includes jig and probe capacitance; see AC electrical characteristics for value. R_T = Termination resistance should be equal to Z_{OUT} of pulse generators.


SF00431

Triple bidirectional latched bus transceiver (3-State + open collector)

74F777

DIP20: plastic dual in-line package; 20 leads (300 mil)

SOT146-1

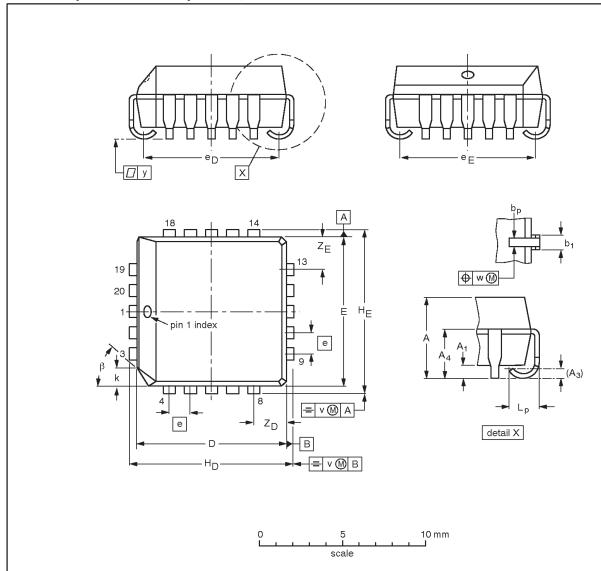
DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	M _H	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.30	0.53 0.38	0.36 0.23	26.92 26.54	6.40 6.22	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.0
inches	0.17	0.020	0.13	0.068 0.051	0.021 0.015	0.014 0.009	1.060 1.045	0.25 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.078

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT146-1			SC603			92-11-17 95-05-24


1992 May 19

Triple bidirectional latched bus transceiver (3-State + open collector)

74F777

PLCC20: plastic leaded chip carrier; 20 leads

SOT380-1

DIMENSIONS (millimetre dimensions are derived from the original inch dimensions)

UNIT	А	A ₁ min.	A ₃	A ₄ max.	bp	b ₁	D ⁽¹⁾	E ⁽¹⁾	е	e _D	еE	H _D	HE	k	Lp	v	w	у	Z _D ⁽¹⁾ max.	Z _E ⁽¹⁾ max.	β
mm	4.57 4.19	0.51	0.25	3.05	0.53 0.33	0.81 0.66	9.04 8.89	9.04 8.89	1.27	8.38 7.37	8.38 7.37	10.03 9.78	10.03 9.78	1.22 1.07	1.44 1.02	0.18	0.18	0.10	2.16	2.16	45°
inches	0.180 0.165	0.020	0.01	0.12		0.032 0.026		0.356 0.350	0.05	0.330 0.290				0.048 0.042		0.007	0.007	0.004	0.085	0.085	45

Note

1. Plastic or metal protrusions of 0.01 inches maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT380-1		MO-047AA			95-02-25 97-12-16

Triple bidirectional latched bus transceiver (3-State + open collector)

74F777

NOTES

1992 May 19

Triple bidirectional latched bus transceiver (3-State + open collector)

74F777

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

^[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code Date of release: 10-98

Document order number: 9397-750-05178

Let's make things better.

Philips Semiconductors

