

Half-Bridge N-Channel Programmable 1-A MOSFET Driver for DC/DC Conversion with Adjustable High Side Propagation Delay

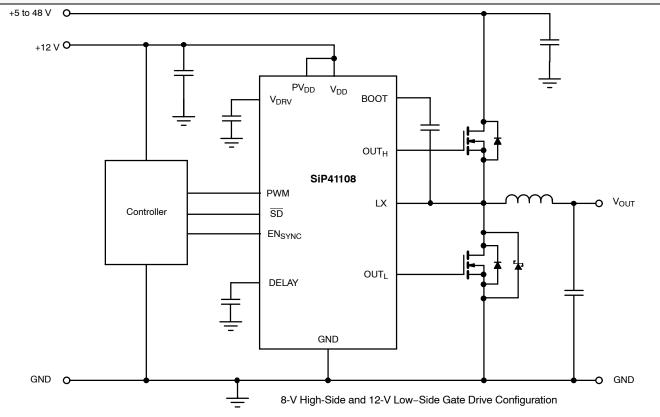
New Product

FEATURES

- 8-V or 12-V Low-Side Gate Drive
- Undervoltage Lockout
- Internal Bootstrap Diode
- Adaptive Shoot-Through Protection
- Synchronous MOSFET Disable
- Shutdown Control
- Adjustable High-Side Propagation Delay
- Switching Frequency Up to 1 MHz
- Drive MOSFETs In 5- to 48-V Systems

APPLICATIONS

- Multi-Phase DC/DC Conversion
- High Current Synchronous Buck Converters
- High Frequency Synchronous Buck Converters
- Asynchronous-to-Synchronous Adaptations
- Mobile Computer DC/DC Converters
- Desktop Computer DC/DC Converters


DESCRIPTION

SiP41108 is a high-speed half-bridge MOSFET driver with adaptive shoot-through protection for use in high frequency, high current, multiphase dc-to-dc synchronous rectifier buck power supplies. It is designed to operate at switching frequencies up to 1 MHz. The high-side driver is bootstrapped to allow driving n-channel MOSFETs. SiP41108 comes with adaptive shoot-through protection to prevent simultaneous conduction of the external MOSFETs.

The high-side turn on delay is programmable via an external capacitor. The 8-V regulator sets the high-side gate drive. The low-side driver supply, PV_{DD} , must be externally connected to either V_{DRV} or V_{DD} for 8-V or 12-V gate drive respectively.

The SiP41108 is assembled in a lead (Pb)-free PowerPAK® TSSOP-16 package and is specified to operate over the industrial operating range of -40°C to 85°C.

FUNCTIONAL BLOCK DIAGRAM

New Product

ABSOLUTE MAXIMUM RATINGS (ALL VOLTAGES REFERENCED TO GND = 0 V)

V _{DD} , PWM, EN _{SYNC} , DELAY	Power Dissipation ^{a,b}
LX. BOOT0.3 to 55 V	TSSOP-16 PowerPAK
BOOT to LX	Thermal Impedance $(\Theta_{JA})^{a,b}$ TSSOP-16 PowerPAK
Storage Temperature	Notes a. Device mounted with all leads soldered or welded to PC board.
Operating Junction Temperature	b. Derate 26.3 mW/°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

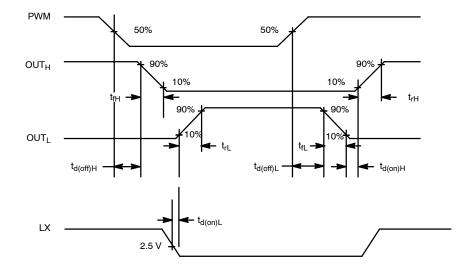
RECOMMENDED OPERATING RANGE (ALL VOLTAGES REFERENCED TO GND = 0 V)

V _{DD}	10.8 V to 13.2 V	V _{BOOT-LX}	8 V
V _{LX}		Operating Temperature Range	–40 to 85°C
C _{BOOT}	100 nF to 1 μF		

SPECIFICATIONS ^a	1						
		Test Conditions Unless Specified		Limits			
Parameter	Symbol	V _{DD} = 12 V, V _{BOOT} – V _{LX} = 8 V, T _A = –40 to 85°C		Min ^a	Typb	Max ^a	Unit
Power Supplies	•			•			
Supply Voltage	V_{DD}			10.8		13.2	V
Quiescent Current	I _{DDQ}	PWM Non-Switching			5.0	8.5	
Cumply Cumput		f 100 M = C 0 = E	$PV_{DD} = V_{DD}$		11.5		mA
Supply Current	I _{DD}	$f_{PWM} = 100 \text{ kHz}, C_{LOAD} = 3 \text{ nF}$	$PV_{DD} = V_{DRV}$		10.0		
Shutdown Current	I _{SD}	$\overline{SD} = 0 \text{ V}, T_A = 25^{\circ}\text{C}$			0.1	1	μΑ
Shutdown Current	ISD	SD = 0 V			0.8	5	μΑ
Reference Voltage							
Break-Before-Make	V _{BBM}				2.5		V
PWM Input				1			
Input High	V _{IH}			4.0		V _{DD}	v
Input Low	V _{IL}					1.0	v
Bias Current	I _B				±0.3	±1	μΑ
EN _{SYNC} , SD Inputs							
Input High	V _{IH}			4.0		V_{DD}	
Input Low	V _{IL}					1.0	V
Bias Current (EN _{SYNC})	I _B					±1	
Bias Current (SD)	I _B	SD = V _{DD}				15	μΑ
Bootstrap Diode					_		
Forward Voltage	V _F	I _F = 40 mA, T _A = 25°C		0.7	0.85	1.0	V
MOSFET Drivers					_		
High Cide Daire Coment	I _{PKH(source)}	V V 0V			0.8		
High-Side Drive Current	I _{PKH(sink)}	$V_{BOOT} - V_{LX} = 8 V$		1.0			
	I _{PKL(source)}	V 0V			0.9		_
	I _{PKL(sink)}	V _{DRV} = 8 V	$P_{VDD} = V_{DRV}$		1.2		Α
Low-Side Drive Current	I _{PKL(source)}	V 46V	D 1/		1.4		1
	I _{PKL(sink)}	V _{DRV} = 12 V	$P_{VDD} = V_{DD}$		1.8		

New Product

Vishay Siliconix


SPECIFICATIONS ^a							
		Test Conditions Unless Specified $V_{DD} = 12 \text{ V, } V_{BOOT} - V_{LX} = 8 \text{ V, } T_A = -40 \text{ to } 85^{\circ}\text{C}$			Limits		
Parameter	Symbol			Min ^a	Typb	Max ^a	Unit
MOSFET Drivers							
High-Side Driver Impedance	R _{DH(source)}	V _{BOOT} - V _{I X} = 8 V, LX = 0	SND		2.3	4.2	
riigh-side briver impedance	R _{DH(sink)}	VBOOT - VLX = 6 V, LX = V	JIND		1.9	3.5	
	R _{DL(source)}	V _{DRV} = 8 V	P _{VDD} = V _{DRV}		2.9	5.2	Ω
Low-Side Driver Impedance	R _{DL(sink)}	ADHA – 9 A	1 ADD - ADBA		1.3	2.4	22
Low-Side Driver Impedance	· H _{DL} (source)	P _{VDD} = V _{DD}		2.4	4.3		
	R _{DL(sink)}	VDRV - 12 V	1 000 - 000		1.2	2.2	
High-Side Rise Time	t _{rH}	10% – 90%, V _{BOOT} – V _{LX} = 8 V C	3 nF		45		
High-Side Fall Time	t _{fH}	- 10% - 90%, VBOOT - VLX - 0 V C	LOAD - 0 III		35		
High-Side Rise Time Bypass		100/ 000/ 1/ 10 1/4	٥		45		
High-Side Fall Time Bypass		$10\% - 90\%$, $V_{BOOT} - V_{LX} = 12 \text{ V}$	PLOAD = 3 NF		35		
High Oids Dans 11 D 1	t _{d(off)H}	0 7 . 111 .	_		20		
High-Side Propagation Delay	t _{d(on)H}	- See Timing Waveform	S		30		
Low-Side Rise Time		10% – 90%, V _{BOOT} – V _{LX} = 8 V C _{LOAD} = 3 nF	$P_{VDD} = V_{DRV}$		65		ns
Low-Side hise Time	t _{rL}	10% – 90%, V _{BOOT} – V _{LX} = 12 V C _{LOAD} = 3 nF	$P_{VDD} = V_{DD}$		65		
.ow-Side Fall Time	t _{fL}	$10\% - 90\%$, $V_{BOOT} - V_{LX} = 8 V$ $C_{LOAD} = 3 \text{ nF}$	$P_{VDD} = V_{DRV}$		30		
LOW CIGO Fall Fillio		$10\% - 90\%$, $V_{BOOT} - V_{LX} = 12 V$ $C_{LOAD} = 3 \text{ nF}$	$P_{VDD} = V_{DD}$		30		
Low-Side Propagation Delay	t _{d(off)L}	See Timing Waveforms			15		
	t _{d(on)} L				20		
LX Timer					_		
PHASE Falling Time-out	t _{LX}				380		ns
V _{DRV} Regulator							
Output Voltage	V _{DRV}			7.6	8	8.4	V
Output Current	I _{DRV}				80	100	Λ
Current Limit	I _{LIM}	V _{DRV} = 0 V		120	200	280	mA
Line Regulation	LNR	V _{CC} = 10.8 V to 13.2 V	/		0.05	0.5	%/V
Load Regulation	LDR	5 mA to 80 mA			0.1	1.0	%
V _{DRV} Regulator UVLO							
V _{DRV} Rising		$V_{DRV} = V_{DD}$			6.7	7.2	
V _{DRV} Falling	V _{UVLO2}	V _{DRV} = V _{DD}			6.4	6.9	٧
Hysteresis	Hyst			100	300	500	mV
High-Side Undervoltage		l .		1	1	1	
Threshold	V _{UVHS}	LX Falling		2.5	3.35	4.0	V
V _{DD} Undervoltage Lock		1					
Threshold	V _{UVLO1}			5.0	5.3	5.6	V
Power on Reset Time	POR				2.5		ms
Thermal Shutdown	l			1	1	1	
Temperature	T _{SD}	Temperature Rising			165		
Hysteresis	T _H	Temperature Falling			25		۰C

Notes
a. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum (-40° to 85°C).
b. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing and are measured at V_{DD} = 12 V unless otherwise noted.

New Product

TIMING WAVEFORMS

PIN CONFIGURATION AND TRUTH TABLE

TSSOP-16 PowerPAK

NC 1 OUT _H 2 BOOT 3	г¬	16 15	NC LX EN _{SYNC}
SD 4 PWM 5	Top View	13	V_{DRV} PV_{DD}
DELAY 6 AGND 7 PGND 8	LJ	11 10 9	V_{DD} OUT_{L} NC

	TRUTH TABLE			
PWM	SD	EN _{SYNC}	OUT _H	OUTL
L	Н	L	L	L
Н	Н	L	Н	L
L	Н	Н	L	Н
Н	Н	Н	Н	L
Х	L	Х	L	L

ORDERING INFORMATION			
Part Number	Temperature Range	Marking	
SiP41108DQP-T1-E3	−40 to 85°C	41108	

Eval Kit	Temperature Range
SiP41108DB	−40 to 85°C

PIN DESCRIPTION			
Pin Number	Name	Function	
1, 9, 16	NC	No Connection	
2	OUT _H	8–V High-side MOSFET gate drive	
3	BOOT	Bootstrap supply for high-side driver. A capacitor connects between BOOT and LX.	
4	SD	Shuts down the driver IC	
5	PWM	Input signal for the MOSFET drivers	
6	DELAY	Connection for the highside delay adjustment capacitor.	
7	AGND	Analog ground. Exposed pad is connected to AGND.	
8	PGND	Power ground	
10	OUT _L	Synchronous or low-side MOSFET gate drive	
11	V_{DD}	12-V supply. Connect a bypass capacitor ≥1 μF from here to ground.	
12	PV_{DD}	Low side driver supply. Connect to V _{DRV} for 8-V Gate Drive or to V _{DD} for 12-V drive.	
13	V_{DRV}	8-V Voltage Regulator Output. Connect a bypass capacitor ≥ 1 μF from here to ground	
14	EN _{SYNC}	Enables OUT _L , the driver for the synchronous MOSFET	
15	LX	Connection to source of high-side MOSFET, drain of the low-side MOSFET, and the inductor	

New Product

FUNCTIONAL BLOCK DIAGRAM

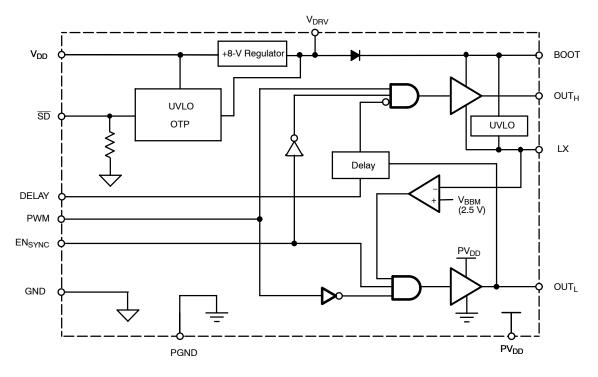


Figure 1.

DETAILED OPERATION

PWM

The PWM pin controls the switching of the external MOSFETs. The driver logic operates in a noninverting configuration. The PWM input stage should be driven by a signal with fast transition times, like those provided by a PWM controller or logic gate, (<200 ns). The PWM input functions as a logic input and is not intended for applications where a slow changing input voltage is used to generate a switching output when the input switching threshold voltage is reached. The PWM amplitude is 5 V but can go up to $V_{\rm DD}$

Low-Side Driver

The supplies for the low-side driver are V_{DD} and GND. During shutdown, OUT_L is held low.

High-Side Driver

The high-side driver is isolated from the substrate to create a floating high-side driver so that an n-channel MOSFET can be

used for the high-side switch. The supplies for the high-side driver are BOOT and LX. The voltage is supplied by a floating bootstrap capacitor, which is continually recharged by the switching action of the output. During shutdown OUT_H is held low.

Gate Drive Voltage (VDRV) Regulator

An integrated 80-mA, 8-V regulator supplies voltage to the V_{DRV} pin and it current limits at 200-mA typical when the output of the regulator is shorted to ground. A capacitor (1 μF minimum) must be connected to the V_{DRV} pin to stabilize the regulator output, and the voltage on V_{DRV} is supplied to the integrated bootstrap diode. V_{DRV} is used to recharge the bootstrap capacitor and can be used to power the low-side driver. The V_{DRV} can be externally connected to V_{DD} to bypass the 8-V regulator and allow 12-V high-side gate drive. If V_{DRV} is connected to V_{DD} the system voltage should not exceed 43 V.

New Product

Bootstrap Circuit

The internal bootstrap diode and a bootstrap capacitor form a charge pump that supplies voltage to the BOOT pin. An integrated bootstrap diode replaces the external Schottky diode needed for the bootstrap circuit; only a capacitor is necessary to complete the bootstrap circuit. The bootstrap capacitor is sized according to,

 $C_{BOOT} = (Q_{GATE}/\Delta V_{BOOT-LX}) \times 10$

where Q_{GATE} is the gate charge needed to turn on the high-side MOSFET and $\Delta V_{BOOT-LX}$ is the amount of droop allowed in the bootstrapped supply voltage when the high-side MOSFET is driven high. The bootstrap capacitor value is typically 0.1 μF to 1 μF . The bootstrap capacitor voltage rating must be greater than V_{DD} + 12 V to withstand transient spikes and ringing.

Shoot-Through Protection

The external MOSFETs are prevented from conducting at the same time during transitions. Break-before-make circuits monitor the voltages on the LX pin and the OUT_L pin and control the switching as follows: When the signal on PWM goes low, OUT_H will go low after an internal propagation delay. After the voltage on LX falls below 2.5 V by the inductor action, the low-side driver is enabled and OUT_L goes high after some delay. When the signal on PWM goes high, OUT_L will go low after an internal propagation delay. After the voltage on OUT_L drops below 2.5 V, the high-side driver is enabled and OUT_H will go high after an internal propagation delay. If LX does not drop below 2.5 V within 380 ns after OUT_H goes low, OUT_L is forced high until the next PWM transition.

Delay

The addition of a capacitor between DELAY and GND will increase the propagation delay time for OUT_H going high. Delay capacitance may be added to prevent shoot through current in the low-side MOSFET due to the finite time between OUT_I going low and the continuing conduction of the low-side

MOSFET. Choose a MOSFET with lower gate resistance to reduce this effect. If necessary, choose a capacitor value that prevents MOSFET conduction under worst-case temperature and manufacturing conditions. Propagation delay is increased according to the ratio of 1 ns/pF.

Synchronous MOSFET Enable

Under light load conditions, efficiency can be increased by disabling the synchronous MOSFET, thus avoiding the gate charge losses of the synchronous MOSFET. When $\rm EN_{SYNC}$ is low, $\rm OUT_L$ is forced low. When high, the low-side driver operates normally. $\rm EN_{SYNC}$ should be driven by a 5-V signal but can go up to $\rm V_{DD}$

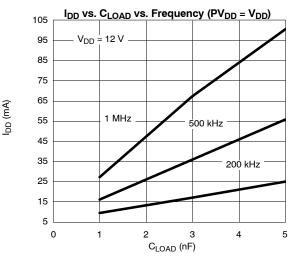
Shutdown

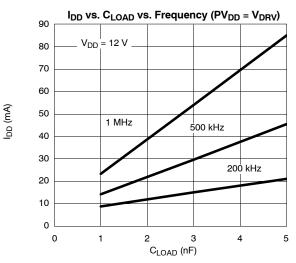
The driver enters shutdown mode when \overline{SD} goes low. Both OUT_L and OUT_H go low during shutdown. Shutdown current is less than 1 μ A.

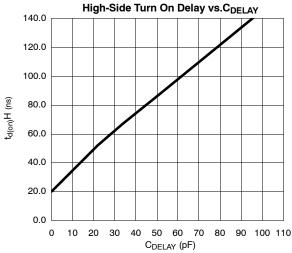
V_{DD} Bypass Capacitor

MOSFET drivers draw large peak currents from the supplies when they switch. A local bypass capacitor is required to supply this current and reduce power supply noise. Connect a 1- μ F ceramic capacitor as close as practical between the V_{DD} and GND pins.

Undervoltage Lockout


Undervoltage lockout prevents control of the circuit until the supply voltages reach valid operating levels. The UVLO circuit forces OUT_L and OUT_H to low when V_{DD} is below its specified voltage. A separate UVLO forces OUT_H low when the voltage between BOOT and LX is below the specified voltage.


Thermal Protection


If the die temperature rises above 165° C, the thermal protection disables the drivers. The drivers are re-enabled after the die temperature has decreased below 140° C.

TYPICAL CHARACTERISTICS

TYPICAL WAVEFORMS

Figure 2. PWM Signal vs. HS Gate, LS Gate and LX (Rising)

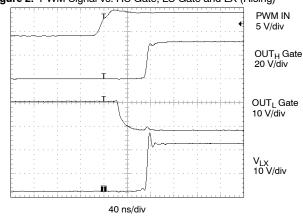
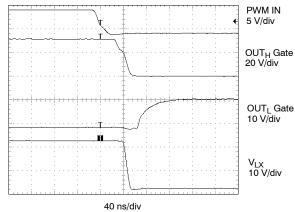



Figure 3. PWM Signal vs. HS Gate, LS Gate and LX (Falling)

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?73373.

Legal Disclaimer Notice

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

www.vishay.com Revision: 08-Apr-05