ANALOG MULTIPLEXERS/DEMULTIPLEXERS: MMC 4067: SINGLE 16-CHANNEL MMC 4097: DIFFERENTIAL 8-CHANNEL ## GENERAL DESCRIPTION The MMC 4067, MMC 4097 are monolithic integrated circuits, available in 24-lead dual-in-line plastic package. The MMC 4067, MMC 4097 analog multiplexers/demultiplexers are digitally controlled analog switches having low ON impedance, low OFF leakage current, and internal address decoding. In addition, the ON resistance is relatively constant over the full input-signal range. The MMC 4067 is a 16-channel multiplexer with four binary control inputs A, B, C, D, and an inhibit input, arranged so that any combination of the inputs selects one switch. The MMC 4097 is a differential 8-channel multiplexer having three binary control inputs A, B, C, and an inhibit input. The inputs permit selection of one of eight pairs of switches. A logic "1" present at the inhibit input turns all channels off. ### FEATURES Low on resistance: 125Ω (typ.) over $15~V_{p-p}$ signal-input range for $V_{0\overline{D}}V_{SS}=15~V$ High off resistance: channel leakage of $\pm 10~pA$ (typ.) for $V_{DD} V_{SS} = 15 \text{ V}$ Matched switch characteristics: $\Delta R_{on} = 5\Omega$ (typ). for $V_{D\overline{D}}V_{SS} = 15 \text{ V}$ Very low quiescent power dissipation under all digital-control input and supply conditions: 0.2. µW (typ.) for VooVss = 10 V Binary address decoding on chip | BSO | LUTE MAXII | NUM RATINGS | | | | | |-------------------------|----------------------------------|---|-------------------------------|--|-------------------|--| | V _{DD} *
V, | Supply voltage:
Input voltage | E and F types | -0.5 to
-0.5 to
-0.5 to | 20
18
V _{DD} +0.5
±10
200 | V
V
V
mA | | | tot | Total power diss | t (any one input)
sipation (per package) | | | mW | | | | | output transistor
kage-temperature range | | 100 | mW | | | ΤΔ | Operating temperature : | G and H types
E and F types | -55 to
-40 to | 125
85 | ى
5.
5. | | | $\Gamma_{ m sts}$ | Storage temper | | -65 to | 150 | °C | | | | | referred to V _{SS} pin voltage
OPERATING CONDITIONS | | | | | | V ₀₀ * | Supply voltage | G and H types
E and F types | 3 to
3 to | 18
15 | V
V | | | V _i | Input voltage | E and i types | J to | V _{DD} | v | | | TA | Operating temperature . | G and H types
E and F types | -55 to
-40 to | 125
85 | °C. | | #### CONNECTION DIAGRAM # STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions) | | | | TES' | r con | NOITIC | S | | | 1 | VALUES | 3 | | | | | |---|-------------------------------------|-----------------------------------|------------------------------|--|---|---------------|--|--|--|---------------|------------------------------|----------------------|--------------|---------------------------|----------| | PARAMETER | | | V _{IS} | VEE | V _{SS} | Voo | TLON | (●) | | 25°C | | THIG | (•) | | | | | | | | (V) | (V) | (V) | (V) | min. | max. | min. | typ | max. | min, | max. | UN | | L Guiesi
device
currer | | | G and H
ypes | | | | 5
10
15
20 | | 5
10
20
100 | | 0.04
0.04
0.04
0.08 | 5
10
20
100 | | 150
300
600
3000 | μΔ | | | | | E and F
types | | | | 5
10
15 | | 20
40
80 | | 0.04
0.04
0.04 | 20
40
80 | | 150
300
600 | | | | itch | | | | | | | | | | | | | 0001 | | | N Resistance | | ance | G and H
types | 0≤V≦
V _{DD} | J | 0 | 5
10
15 | | 800
310
200 | | 470
180
125 | 1050
400
240 | | 1300
580
320 | | | | | | E and F
types | 0≤V≤
V _{DO} | 0 | 0 | 5
10
15 | | 850
330
210 | | 470
180
125 | 1050
400
240 | | 1200
520
300 | • | | ΔON Resistance (Between any 2 channels) | | | | 0 | 0 | 5
10
15 | The state of s | | The state of s | 10
10
5 | | | | 1 | | | ge OF |)Arry
 channel
 OFF | | G and H
types | | 0 | 0 | 18 | | 100 | | + /-0.1 | 100 | | 1000 | n/ | | cur
rent | All chan
OFF
(commo
OUT∕IN | n ' | G and H
types | | 0 | 0 | 18 | | 100 | | + /- 0 .1 | 100 | | 1000 | n | | | Any
channel
OFF | | E and F
types | | 0 | 0 | 15 | | 300 | | + /-0.1 | 300 | | 1000 | n | | | All chan
OFF
(commo
OUT/IN | ın | E and F
types | | 0 | 0 | 15 | The state of s | 300 | • | + /-0.1 | 300 | | 1000 | n. | | C | •T | Input | | | <u> </u> | | | | | | 5 | <u> </u> | | | | | Capa | icitance | Outpu
Outpu | it 4067
it 4097
hrough | A A N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y | *************************************** | ~ 5 | 5 | | | | 55
35
0.2 | | | | p | | Cor | | | r ess or | Inhibit | ;) | <u> </u> | | · | | A | ···• | | | | | | V ₁ Input low voltage V _H Input high voltage | | V _(it)
thru
1 kΩ | | ν _{γ5}
1Κ
V ₅₅
2μΑ | 10
15
5 | 3.5 | 15
3
4 | 35 | | 15
3
4 | 3.5 | 1.5
3
4 | | | | | r pd | er sparkets 111 | Pari AFVI. | ora Acc | TANIHAMAN III ad alama kanan kan | (on a | II OFF | 10
15 | 7
11 | AND SHAME AND | 7 | | | 7 | in the second second | | | 164 þ 1. | Input
I eaka ge
curent | jed (redna gogova) (c | G and H
•types | V ₁ =0/18 | | | 18 | | ±01 | | ±10 ° | | | ±1 | <i> </i> | | | CALCILL | | E and F
types | V _i =0715
 - | | | 15 | | 103 | | ± 10 ³ | ±0.3 | | ±1 | 4 | | · | TE | VALÜES | | | | | | | , | | | | |----------------------|-------|--------|--------------------------|------------------------|------|------|------|-----|---------------------|------|------|----| | PARAMETER | V_1 | Vo | I ₀
(Au) | V _{DD}
(V) | Ttow | | 25°C | | T [*] HIGH | | UNIT | | | | ίV | (V) | | | min. | max. | min. | typ | max. | min. | max. | | | Cl Input capacitance | Any a | ddress | or inhibit | input | | | | 5 | 7.5 | | | pF | ### DYNAMIC ELECTRICAL CHARACTERISTICS $(T_{amb} = 25^{\circ}C, C_{L} = 50 \text{ pF, all input square wave rise and fall times} = 20 \text{ ns})$ | • | | TEST | COND | TIONS | | | | VAI | LUES | | |---|-------------------------------------|------------------------|--|-----------------------|------------------------|------------------------|---|--------------------|-------------------|------------| | PARAMETER | V _C
(V) | H _L
(kΩ) | f _i
(kHz) | V _i
(V) | V _{SS}
(V) | V _{DD}
(V) | | TYP. | MAX. | UNIT | | Switch | | | | | | | | | | | | t _{pd} Propagation delay
time (Signal input to
output) | = V ₀₀ | 500 | | \n\ | 0 | 5
10
15 | : | 30
15
11 | 60
30
20 | ns | | Frequency response channel "ON" (Sine wave input) at 20 | = V _{DD} | 1 | | 5(●) | 0 | 10 | V ₀ at common 4067
OUT/IN 4097 | 14
20 | | MHz | | $Log(V_0/V_i) = -3dB$ | | | | | | | V ₀ at any channel | 60 | | MHz | | Feedthrough (all channels OFF) at 20 Log(V ₀ /V _i) =-40dB | = V _{SS} | 1 | | 5(♠) | 0 | 10 | V_0 at common 4067 OUT/IN 4097 V_0 at any channel | 20
12
8 | | MHz | | Frequency signal crosstalk at 20 Log(Vn(B)/Vi(A)) = | V _{C(A)} = V _{DD} | 1 | | 5(●) | 0 | 10 | Between any (A and
B) channels | 1 | | MHz | | -40 dB | V _{C®} ≓V _{SS} | : | William Control of the th | | | | Between Measured
sections on
(A and B) common | 10 | | | | | | | | | | | 4097 only Measured on any channel | 18 | | | | Sine wave distortion $f_{is}=1$ kHz sine wave | 5
10
15 | 10
10
10 | 1 | 2(•)
3(•)
5(•) | 000 | 5
10
15 | | 0.3
0.2
0.12 | | º/o | | Control (Addre | ss or inhi | bit) | | | | | | | | - | | Propagation delay
time: address or inhi-
bit to signal OUT
(channel turning ON) | V _{DD} | 10 | | | 000 | 5
10
15 | | 325
135
95 | 650
270
190 | ns | | Propagation delay
time: address or inhi-
bit to signal OUT
(channel turning OFF) | √ _∞ | D.3 | | | 000 | 5
10
15 | | 220
90
65 | 440
180
130 | ns | | Address or inhibit to
signal crosstalk | V _{DD} | 10% | | | 0 | 10 | | 75 | | mV
peak | ⁽o) peak to peak voltage symmetrical about ($V_{DD} - V_{SS}$)/2 #### APPLICATIONS INFORMATION In applications where separate power sources are used to drive V_{DD} and the signal inputs, the V_{DD} current capability should exceed V_{DD}/R_L ($R_L=$ effective external load). This provision avoids permanent current flow or clamp action on the V_{DD} supply when power is applied or removed from the MMC 4067 or MMC 4097. When switching from one address to another, some of the ON periods of the channels of the multiplexers will overlap momentarily, which may be objectionable in certain applications. Also when a channel is turned on or off by an address input, there is a momentary conductive path from the channel to V_{SS} , which will dump some charge from any capacitor connected to the input or output of the channel. The inhibit input turning on a channel will similarly dump some charge to V_{SS} . The amount of charge dumped is mostly a function of the signal level above V_{SS} . Typically, at $V_{D\overline{D}}V_{SS}=10V$, a 100 pF capacitor connected to the input or output of the channel will lose3-4% of its voltage at the moment the channel turns on or off. This loss of voltage is essentially independent of the address or inhibit signal transition time, if the transition time is less than1-2 μ s. When the inhibit signal turns a channel off, there is no charge dumping to V_{SS} . Rather, there is a slight rise in the channel voltage level (65 mV typ.) due to capacitive coupling from inhibit input to channel input or output. Address inputs also couple some voltage steps onto the channel signal levels. In certain applications, the external load-resistor current may include both V_{DD} and signal-line components. To avoid drawing V_{DD} current when switch current flows into the transmission gate inputs, the voltage drop across the bidirectional switch must not exceed 0.8 volt