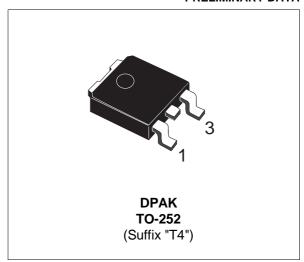


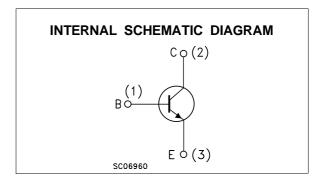
BULD1101ET4

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

PRELIMINARY DATA

Ordering Code	Marking	Shipment
BULD1101ET4	BULD1101E	Tape & Reel


- HIGH VOLTAGE CAPABILITY
- LOW SPREAD OF DYNAMIC PARAMETERS
- MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION
- VERY HIGH SWITCHING SPEED
- LARGE RBSOA
- SURFACE-MOUNTING DPAK (TO-252) POWER PACKAGE IN TAPE & REEL (SUFFIX "T4")


APPLICATIONS

 ELECTRONIC BALLASTS FOR FLUORESCENT LIGHTING

DESCRIPTION

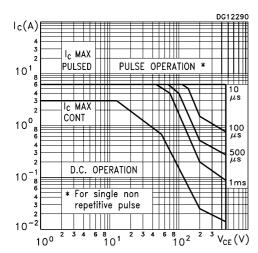
The device is manufactured using High Voltage Multi Epitaxial Planar technology for high switching speeds and high voltage capability. It uses a Cellular Emitter structure with planar edge termination to enhance switching speeds while maintaining a wide RBSOA.

ABSOLUTE MAXIMUM RATINGS

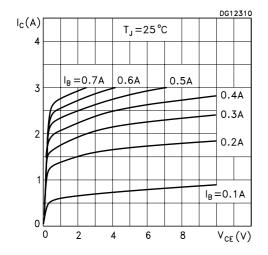
Symbol	Parameter	Value	Unit
V _{CES}	Collector-Emitter Voltage (V _{BE} = 0)	oltage ($V_{BE} = 0$) 1100	
V _{CEO}	Collector-Emitter Voltage (I _B = 0)	450	V
V _{EBO}	Emitter-Base Voltage (I _C = 0)	12	V
Ic	Collector Current	3	А
I _{CM}	Collector Peak Current (t _p <5 ms)	6	А
I _B	Base Current	1.5	А
I _{BM}	Base Peak Current (t _p <5 ms)	3	А
P _{tot}	Total Dissipation at Tc = 25 °C	35	W
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

April 2003 1/7

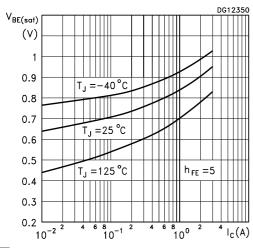
THERMAL DATA

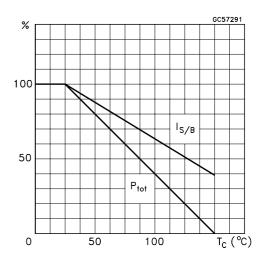

R _{thj-case}	Thermal Resistance Junction-Case	Max	3.57	°C/W
$R_{thj-amb}$	Thermal Resistance Junction-ambient	Max	100	°C/W

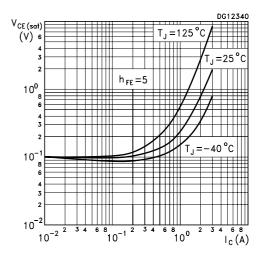
ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ $^{\circ}C$ unless otherwise specified)

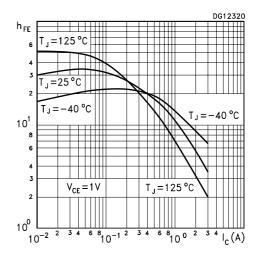

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{CES}	Collector Cut-off Current (V _{BE} = 0)	V _{CE} = 1100 V			100	μΑ
V _{(BR)EBO}	Emitter-BaseBreakdown Voltage (I _C = 0)	I _E = 1 mA	12		24	V
V _{CEO(sus)*}	Collector-Emitter Sustaining Voltage (I _B = 0)	I _C = 100 mA	450			V
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	$I_C = 1 \text{ A } I_B = 200 \text{ mA}$ $I_C = 1 \text{ A } I_B = 200 \text{ mA}$ $T_j = 125^{\circ}\text{C}$		0.25 0.6	1 1.5	V V
V _{BE(sat)*}	Base-Emitter Saturation Voltage	$I_C = 1 \text{ A}$ $I_B = 200 \text{ mA}$			1.5	V
h _{FE} *	DC Current Gain	$\begin{split} I_{C} &= 250 \text{ mA} & V_{CE} = 5 \text{ V} \\ I_{C} &= 250 \text{ mA} & V_{CE} = 5 \text{ V} & T_{j} = 125^{\circ}\text{C} \\ I_{C} &= 2 \text{ A} & V_{CE} = 5 \text{ V} \\ I_{C} &= 2 \text{ A} & V_{CE} = 5 \text{ V} & T_{j} = 125^{\circ}\text{C} \end{split}$	20 23 6 4	38 44 10 7	80 85 18 16	
t _s	RESISTIVE LOAD Storage Time Fall Time	$\begin{array}{lll} I_{C} = 2.5 \; A & V_{CC} = 125 \; V \\ V_{BB(off)} = -5 \; V & t_{P} = 300 \mu s \\ I_{B1} = -I_{B2} = 0.5 \; A \\ (see figure 1) & & \end{array}$		400	2 700	μs ns
Ear	Repetitive Avalanche Energy	$\label{eq:L_scale} \begin{array}{ll} \text{L} = 2 \text{ mH} & \text{C} = 1.8 \text{ nF} \\ \text{I}_{\text{BR}} \leq 2.5 \text{A} & \text{(see figure 2)} \end{array}$	6			mJ

^{*} Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

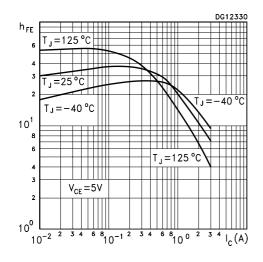

Safe Operating Area


Output Characteristics

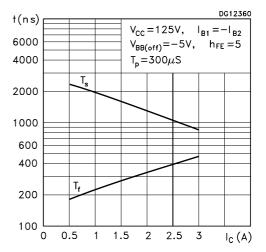

Base-Emitter Saturation Voltage


Derating Curve

Collector-Emitter Saturation Voltage



DC Current Gain



BULD1101ET4

DC Current Gain

Resistive Load Switching Times

Reverse Biased Safe Operating Area

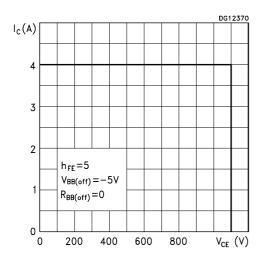


Figure 1: Resistive Load Switching Test Circuit

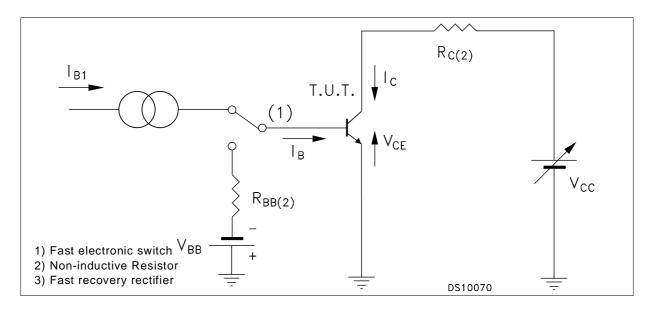
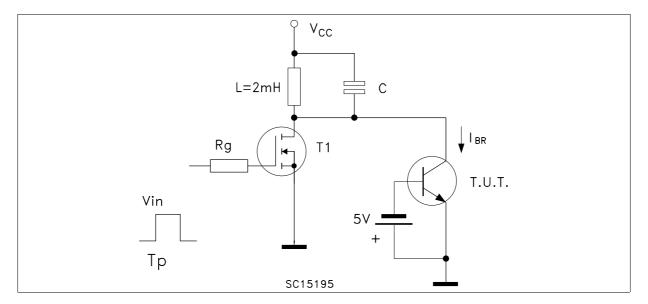
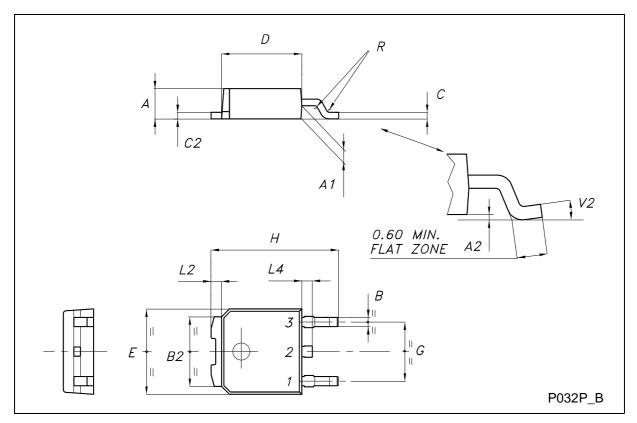




Figure 2: Energy Rating Test Circuit

TO-252 (DPAK) MECHANICAL DATA

DIM.	mm		inch			
DIWI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	2.20		2.40	0.087		0.094
A1	0.90		1.10	0.035		0.043
A2	0.03		0.23	0.001		0.009
В	0.64		0.90	0.025		0.035
B2	5.20		5.40	0.204		0.213
С	0.45		0.60	0.018		0.024
C2	0.48		0.60	0.019		0.024
D	6.00		6.20	0.236		0.244
Е	6.40		6.60	0.252		0.260
G	4.40		4.60	0.173		0.181
Н	9.35		10.10	0.368		0.398
L2		0.8			0.031	
L4	0.60		1.00	0.024		0.039
V2	0°		8°	0°		0°

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 2003 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

