
 



 

 MOTOROLA, 1996 All Rights Reserved.

  

µ

Motorola reserves the right to make changes without further notice to any products herein.  Motorola makes no warranty, representation or guarantee regarding 
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and 
specifically disclaims any and all liability, including without limitation consequential or incidental damages.  "Typical" parameters can and do vary in different 
applications.  All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.  Motorola does not 
convey any license under its patent rights nor the rights of others.  Motorola products are not designed, intended, or authorized for use as components in systems 
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola 
product could create a situation where personal injury or death may occur.  Should Buyer purchase or use Motorola products for any such unintended or 
unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, 
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such 
unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and      are 
registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

 

MCF5202

ColdFire

Integrated Microprocessor

User’s Manual

 

TM





 

MOTOROLA

 

MCF5202 USER’S MANUAL

 

iii

 

68K FAX-IT

 

Documentation Comments

 

FAX 512-891-8593—Documentation Comments Only

 

The Motorola High-Performance Embedded Systems Technical Communications Depart-
ment provides a fax number for you to submit any questions or comments about this docu-
ment or how to order other documents. We welcome your suggestions for improving our
documentation. Please do not fax technical questions.

Please provide the part number and revision number (located in upper right-hand corner of
the cover) and the title of the document. When referring to items in the manual, please ref-
erence by the page number, paragraph number, figure number, table number, and line num-
ber if needed.

When sending a fax, please provide your name, company, fax number, and phone number
including area code.

 

For Internet Access:

 

Telnet: pirs.aus.sps.mot.com (Login: pirs)
WWW: http: / / pirs.aus.sps.mot.com/aesop/hmpg.html
Query By Email: aesop_query@pirs.aus.sps.mot.com
(Type ‘‘HELP’’ in text body.)

 

For Dial-Up:

 

Phone: +1-512-891-3650
Phone (US or Canada): 1-800-843-3451
Connection Settings: N/8/1/F
Data Rate: < 14,400 bps
Terminal Emulation: VT100
Login: pirs

 

For AESOP Questions:

 

FAX: +1-512-891-8775
EMAIL: aesop_sysop@pirs.aus.sps.mot.com

 

For Hotline Questions:

 

FAX (US or Canada): 1-800-248-8567
EMAIL: aesop_support@pirs.aus.sps.mot.com



 

iv

 

MCF5202 USER’S MANUAL

 

MOTOROLA

 

Applications and Technical Information

 

For questions or comments pertaining to technical information, questions, and applications,
please contact one of the following sales offices nearest you.

 

— Sales Offices —

 

Field Applications Engineering Available Through All Sales Offices

 

UNITED STATES

 

ALABAMA

 

, Huntsville (205) 464-6800

 

ARIZONA

 

, Tempe (602) 897-5056

 

CALIFORNIA

 

, Agoura Hills (818) 706-1929

 

CALIFORNIA

 

, Los Angeles (310) 417-8848

 

CALIFORNIA

 

, Irvine (714) 753-7360

 

CALIFORNIA

 

, Rosevllle (916) 922-7152

 

CALIFORNIA

 

, San Diego (619) 541-2163

 

CALIFORNIA

 

, Sunnyvale (408) 749-0510

 

COLORADO

 

, Colorado Springs (719) 599-7497

 

COLORADO

 

, Denver (303) 337-3434

 

CONNECTICUT

 

, Wallingford (203) 949-4100

 

FLORIDA

 

, Maitland (407) 628-2636

 

FLORIDA

 

, Pompano Beach/
  Fort Lauderdale (305)  486-9776

 

FLORIDA

 

, Clearwater (813) 538-7750

 

GEORGlA

 

, Atlanta (404) 729-7100

 

IDAHO

 

, Boise (208) 323-9413

 

ILLINOIS

 

, Chicago/Hoffman Estates (708) 490-9500

 

INDlANA

 

, Fort Wayne (219) 436-5818

 

INDIANA

 

, Indianapolis (317) 571-0400

 

INDIANA

 

, Kokomo (317) 457-6634

 

IOWA

 

, Cedar Rapids (319) 373-1328

 

KANSAS

 

, Kansas City/Mission (913) 451-8555

 

MARYLAND

 

, Columbia (410) 381-1570

 

MASSACHUSETTS

 

, Marborough (508) 481-8100

 

MASSACHUSETTS

 

, Woburn (617) 932-9700

 

MICHIGAN

 

, Detroit (313) 347-6800

 

MINNESOTA

 

, Minnetonka (612) 932-1500

 

MISSOURI

 

, St. Louis (314) 275-7380

 

NEW JERSEY

 

, Fairfield (201) 808-2400

 

NEW YORK

 

, Fairport (716) 425-4000

 

NEW YORK

 

, Hauppauge (516) 361-7000

 

NEW YORK

 

, Poughkeepsie/Fishkill (914) 473-8102

 

NORTH CAROLINA

 

, Raleigh (919) 870-4355

 

OHIO

 

, Cleveland (216) 349-3100

 

OHIO

 

, Columbus/Worthington (614) 431-8492

 

OHIO

 

, Dayton (513) 495-6800

 

OKLAHOMA

 

, Tulsa (800) 544-9496

 

OREGON

 

, Portland (503) 641-3681

 

PENNSYLVANIA

 

, Colmar (215) 997-1020
  Philadelphia/Horsham (215) 957-4100

 

TENNESSEE

 

, Knoxville (615) 584-4841

 

TEXAS

 

, Austin (512) 873-2000

 

TEXAS

 

, Houston (800) 343-2692

 

TEXAS

 

, Plano (214) 516-5100

 

VIRGINIA

 

, Richmond (804) 285-2100

 

WASHINGTON

 

, Bellevue (206) 454-4160
  Seattle Access (206) 622-9960

 

WISCONSIN

 

, Milwaukee/Brookfield (414) 792-0122

 

CANADA
BRITISH COLUMBIA

 

, Vancouver (604) 293-7605

 

ONTARIO

 

, Toronto (416) 497-8181

 

ONTARIO

 

, Ottawa (613) 226-3491

 

QUEBEC

 

, Montreal (514) 731-6881

 

INTERNATIONAL
AUSTRALIA

 

, Melbourne (61-3)887-0711

 

AUSTRALIA

 

, Sydney (61(2)906-3855

 

BRAZIL

 

, Sao Paulo 55(11)815-4200

 

CHINA

 

, Beijing 86 505-2180

 

FINLAND

 

, Helsinki 358-0-35161191
  Car Phone 358(49)211501

 

FRANCE

 

, Paris/Vanves 33(1)40 955 900

 

GERMANY

 

, Langenhagen/ Hanover 49(511)789911

 

GERMANY

 

, Munich 49 89 92103-0

 

GERMANY

 

, Nuremberg 49 911 64-3044

 

GERMANY

 

, Sindelfingen 49 7031 69 910

 

GERMANY

 

, Wiesbaden 49 611 761921

 

HONG KONG

 

, Kwai Fong 852-4808333
 Tai Po 852-6668333

 

INDIA

 

, Bangalore (91-812)627094

 

ISRAEL

 

, Tel Aviv 972(3)753-8222

 

ITALY

 

, Milan 39(2)82201

 

JAPAN

 

, Aizu 81(241)272231

 

JAPAN

 

, Atsugi 81(0462)23-0761

 

JAPAN

 

, Kumagaya 81(0485)26-2600

 

JAPAN

 

, Kyushu 81(092)771-4212

 

JAPAN

 

, Mito 81(0292)26-2340

 

JAPAN

 

, Nagoya 81(052)232-1621

 

JAPAN

 

, Osaka 81(06)305-1801

 

JAPAN, 

 

Sendai 81(22)268-4333

 

JAPAN, 

 

Tachikawa 81(0425)23-6700

 

JAPAN, 

 

Tokyo 81(03)3440-3311

 

JAPAN

 

, Yokohama 81(045)472-2751

 

KOREA

 

, Pusan 82(51)4635-035

 

KOREA

 

, Seoul 82(2)554-5188

 

MALAYSIA

 

, Penang 60(4)374514

 

MEXICO

 

, Mexico City 52(5)282-2864

 

MEXICO

 

, Guadalajara 52(36)21-8977
 Marketing 52(36)21-9023
 Customer Service 52(36)669-9160

 

NETHERLANDS

 

, Best (31)49988 612 11

 

PUERTO RICO

 

, San Juan (809)793-2170

 

SINGAPORE

 

(65)2945438

 

SPAIN

 

, Madrid 34(1)457-8204
  or 34(1)457-8254

 

SWEDEN

 

, Solna 46(8)734-8800

 

SWITZERLAND

 

, Geneva 41(22)7991111

 

SWITZERLAND

 

, Zurich 41(1)730 4074

 

TAlWAN

 

, Taipei 886(2)717-7089

 

THAILAND

 

, Bangkok  (66-2)254-4910

 

UNITED KINGDOM

 

, Aylesbury 44(296)395-252

 

FULL LINE REPRESENTATIVES
COLORADO

 

, Grand Junction
 Cheryl Lee Whltely (303) 243-9658

 

KANSAS

 

, Wichita
 Melinda Shores/Kelly Greiving (316) 838 0190

 

NEVADA

 

, Reno
 Galena Technology Group (702) 746 0642

 

NEW MEXICO

 

, Albuquerque
 S&S Technologies, lnc. (505) 298-7177

 

UTAH

 

, Salt Lake City
 Utah Component Sales, Inc. (801) 561-5099

 

WASHINGTON

 

, Spokane
 Doug Kenley (509) 924-2322

 

ARGENTINA

 

, Buenos Aires
 Argonics, S.A. (541) 343-1787

HYBRID COMPONENTS RESELLERS
Elmo Semiconductor (818) 768-7400
Minco Technology Labs Inc. (512) 834-2022
Semi Dice Inc. (310) 594-4631



MOTOROLA MCF5202 USER’S MANUAL v

PREFACE

The MCF5202 ColdFire Integrated Microprocessor User’s Manual describes the
programming, capabilities, and operation of the MCF5202 device. Refer to the MCF5200
ColdFire Family Programmer’s Reference Manual for information on the ColdFire Family of
microprocessors.

TRADEMARKS

All trademarks reside with their respective owners.



 

MOTOROLA

 

MCF5202 USER’S MANUAL

 

xvii

 

ACRONYMS AND ABBREVIATIONS

 

The following acronyms and abbreviations are used throughout this manual:

 

ACR1, ACR2:

 

 Access Control Register 1; Access Control Register 2

 

BDM:

 

 Background Debug Mode

 

CACR:

 

 Cache Control Register

 

DS0:

 

 development serial ouput

 

DS1:

 

 development serial input

 

DSCLK:

 

 development serial clock

 

DRc:

 

 Debug Control Register

 

FIFO:

 

 first-in-first-out

 

IFP:

 

 instruction fetch pipeline

 

JTAG:

 

 Joint Test Action Group

 

LSB:

 

 least significant bit

 

MSB:

 

 most significant bit

 

OEP:

 

 operand execution pipeline

 

PC:

 

 program counter

 

SBC:

 

 system bus controller

 

SIM:

 

 system integration module

 

SR:

 

 status register

 

TAP:

 

 test access port

 

VBR:

 

 vector base register



 

MOTOROLA

 

MCF5202 USER’S MANUAL

 

vii

 

TABLE OF CONTENTS

 

Section 1
Introduction  

 

1.1 Features.................................................................................................................... 1-2
1.2 Functional Blocks.....................................................................................................  1-3
1.3 Processor States .....................................................................................................  1-4
1.4 Programming Model ................................................................................................  1-4
1.5 Data Format Summary ............................................................................................ 1-7
1.6 Addressing Capabilities Summary...........................................................................  1-7
1.7 Notational Conventions............................................................................................  1-9
1.8 Instruction Set Overview........................................................................................  1-12

 

 Section 2
Signal Description  

 

2.1 Introduction............................................................................................................... 2-1
2.2 Address And Control Signals ................................................................................... 2-3
2.2.1 Address/data Lines - (A/D[31:0]) ............................................................... 2-3
2.2.2 Read/write - (R/W) ..................................................................................... 2-3
2.2.3 Transfer Start - (TS) ................................................................................... 2-3
2.2.4 Address Acknowledge - (AA) ..................................................................... 2-3
2.2.5 Size - (SIZ[1:0]) .......................................................................................... 2-3
2.2.6 Transfer Type - (TT[1:0]) ........................................................................... 2-4
2.2.7 Access Type And Mode - (ATM) ................................................................ 2-4
2.2.8 Data Transfer In Progress - (DTIP) ............................................................ 2-4
2.2.9 Data Acknowledge - (DA[1:0]) ................................................................... 2-4
2.2.10 Transfer Error Acknowledge - (TEA) ......................................................... 2-6
2.2.11 Transfer Burst Inhibit - (TBI) ...................................................................... 2-6
2.3 Bus Arbitration ......................................................................................................... 2-6
2.3.1 Bus Request - (BR) .................................................................................... 2-6
2.3.2 Bus Grant - (BG) ........................................................................................ 2-6
2.3.3 Bus Driven - (BD) ....................................................................................... 2-6
2.4 Interrupt Control ....................................................................................................... 2-6
2.4.1 Interrupt Priority Level - (IPL[2:0]) .............................................................. 2-6
2.4.2 Autovector - (AVEC) .................................................................................. 2-6
2.5 Clock, Reset And Status .......................................................................................... 2-7
2.5.1 Clock Input - (CLK) .................................................................................... 2-7
2.5.2 Reset (RST) ............................................................................................... 2-7
2.5.3 Processor Status - (PST[3:0]) .................................................................... 2-7
2.6 Test ...................................................................................................................... 2-7
2.6.1 Motorola Test Mode - (MTMOD[2:0]) ......................................................... 2-8



 

Table of Contents

 

viii

 

MCF5202 USER’S MANUAL

 

MOTOROLA

 

2.6.2 Test Clock - (TCK) ..................................................................................... 2-8
2.6.3 Debug Data - DDATA[3:0] ......................................................................... 2-8
2.6.4 Test Reset/Development Serial Clock - (TRST/DSCLK) ........................... 2-8
2.6.5 Test Mode Select/ Break Point (TMS/BKPT) ............................................. 2-9
2.6.6 Test Data Input/Development Serial Input - (TDI/DSI) .............................. 2-9
2.6.7 Test Data Output/Development Serial Output - (TDO/DSO) ..................... 2-9
2.6.8 High Impedance - (HIZ) ........................................................................... 2-10
2.6.9 JTAG Compliance Enable - (JCE) ........................................................... 2-10

 

Section 3
ColdFire Core  

 

3.1 Processor Pipelines ................................................................................................. 3-1
3.2 Processor Register Description ............................................................................... 3-2
3.2.1 User Programming Model .......................................................................... 3-2
3.2.1.1 Data Registers (D0–D7) .......................................................................... 3-2
3.2.1.2 Address Registers (A0–A6) ..................................................................... 3-2
3.2.1.3 Stack Pointer (A7) ................................................................................... 3-2
3.2.1.4 Program Counter ..................................................................................... 3-2
3.2.1.5 Condition Code Register ......................................................................... 3-3
3.2.2 Supervisor Programming Model ................................................................ 3-4
3.2.2.1 Status Register ........................................................................................ 3-4
3.2.2.2 Vector Base Register (VBR) .................................................................... 3-5
3.3 Exception Processing Overview .............................................................................. 3-5
3.4 Exception Stack Frame Definition ........................................................................... 3-7
3.5 Processor Exceptions .............................................................................................. 3-8
3.5.1 Access Error Exception ............................................................................. 3-8
3.5.2 Address-Error Exception ........................................................................... 3-9
3.5.3 Illegal Instruction Exception ....................................................................... 3-9
3.5.4 Privilege Violation ...................................................................................... 3-9
3.5.5 Trace Exception ......................................................................................... 3-9
3.5.6 Debug Interrupt ........................................................................................ 3-10
3.5.7 RTE and Format Error Exceptions .......................................................... 3-10
3.5.8 TRAP Instruction Exceptions ................................................................... 3-10
3.5.9 Interrupt Exception .................................................................................. 3-10
3.5.10 Fault-on-Fault Halt ................................................................................... 3-11
3.5.11 Reset Exception ...................................................................................... 3-11
3.6 Instruction Execution Timing ................................................................................. 3-11
3.6.1 Timing Assumptions ................................................................................ 3-12
3.6.2 MOVE Instruction Execution Times ......................................................... 3-12
3.7 Standard One Operand Instruction Execution Times............................................. 3-14
3.8 Standard Two Operand Instruction Execution Times............................................. 3-15
3.9 Miscellaneous Instruction Execution Times............................................................ 3-16
3.10 Branch Instruction Execution Times....................................................................... 3-17



 

Table of Contents

 

MOTOROLA

 

MCF5202 USER’S MANUAL

 

ix

 

 Section 4
Cache  

 

4.1 Cache Organization .................................................................................................4-2
4.2 Cache Operation ......................................................................................................4-2
4.3 Cache Control Register ............................................................................................4-5
4.4 Access Control Registers .........................................................................................4-7
4.5 Cache Management .................................................................................................4-8
4.6 Caching Modes ........................................................................................................4-9
4.6.1 Cacheable Accesses ................................................................................4-10
4.6.1.1 Writethrough Mode ................................................................................4-10
4.6.1.2 Copyback Mode .....................................................................................4-10
4.6.2 Cache-Inhibited Accesses ........................................................................4-11
4.7 Cache Protocol .......................................................................................................4-11
4.7.1 Read Miss ................................................................................................4-12
4.7.2 Write Miss ................................................................................................4-12
4.7.3 Read Hit ...................................................................................................4-12
4.7.4 Write Hit ...................................................................................................4-12
4.8 Cache Coherency ..................................................................................................4-12
4.9 Memory Accesses for Cache Maintenance ............................................................4-12
4.9.1 Cache Filling ............................................................................................4-13
4.9.2 Cache Pushes ..........................................................................................4-13
4.10 Push and Store Buffers ..........................................................................................4-14
4.11 Push And Store Buffer Bus Operation ...................................................................4-14
4.12 Cache Operation Summary ....................................................................................4-15

 

Section 5
Bus Operations

 

5.1 Bus Characteristics ..................................................................................................5-1
5.2 Data Transfers .........................................................................................................5-2
5.3 Acknowledge Bus Cycles .........................................................................................5-5
5.4 Bus Arbitration ..........................................................................................................5-5
5.5 Reset Operation .......................................................................................................5-6 

 

 Section 6 
Debug Support

 

6.1 Real-Time Trace ......................................................................................................6-1
6.2 Background Debug Mode ........................................................................................6-4
6.2.1 CPU Halt ....................................................................................................6-5
6.2.2 BDM Serial Interface ..................................................................................6-6
6.2.3 BDM Command Set ...................................................................................6-7
6.2.3.1 BDM Command Set Summary ...................................................................6-7
6.2.3.2 ColdFire BDM Commands .........................................................................6-8
6.2.3.3 Command Sequence Diagram ...................................................................6-9
6.2.3.4 Command Set Descriptions .....................................................................6-10



 

Table of Contents

 

x

 

MCF5202 USER’S MANUAL

 

MOTOROLA

 

6.2.3.4.1 Read A/D Register .............................................................................. 6-10
6.2.3.4.2 Write A/D Register ............................................................................... 6-11
6.2.3.4.3 Read Memory Location (READ) .......................................................... 6-12
6.2.3.4.4 Write Memory Location (WRITE) ........................................................ 6-14
6.2.3.4.5 Dump Memory Block (DUMP) .............................................................. 6-16
6.2.3.4.6 Fill Memory Block (FILL) ...................................................................... 6-18
6.2.3.4.7 Resume Execution (GO) ..................................................................... 6-20
6.2.3.4.8 No Operation (NO) .............................................................................. 6-20
6.2.3.4.9 Read Control Register (RCREG) ........................................................ 6-21
6.2.3.4.10 Write Control Register (WCREG)......................................................... 6-22
6.2.3.4.11 Read Debug Module Register (RDMREG) .......................................... 6-23
6.2.3.4.12 Write Debug Module Register (WDMREG) .......................................... 6-23
6.2.3.4.13 Unassigned Opcodes........................................................................... 6-24
6.3 Real-Time Debug Support...................................................................................... 6-25
6.3.1 Programming Model ................................................................................. 6-25
6.3.1.1 Address Breakpoint Registers (ABLR, ABHR) ....................................... 6-26
6.3.1.2 Address Attribute Breakpoint Register (AABR) ...................................... 6-26
6.3.1.3 Program Counter Breakpoint Register (PBR, PBMR) ............................ 6-28
6.3.1.4 Data Breakpoint Register (DBR, DBMR)................................................ 6-28
6.3.1.5 Trigger Definition Register (TDR)........................................................... 6-29
6.3.1.6 Configuration/Status Register (CSR) ..................................................... 6-30
6.3.2 Theory of Operation.................................................................................. 6-33
6.3.2.1 Reuse of Debug Module Hardware ........................................................ 6-34
6.3.3 Concurrent BDM and Processor Operation.............................................. 6-35
6.4 Motorola Recommended BDM Pinout .................................................................... 6-35
6.4.1 Differences Between ColdFire BDM and a CPU32 BDM ......................... 6-36

 

Section 7
JTAG Specification

 

7.1 IEEE 1149.1 Test Access Port (JTAG) Specification ............................................... 7-1
7.2 Overview................................................................................................................... 7-2
7.2.1 JTAG Pin Descriptions ............................................................................... 7-3
7.3 JTAG Register Description....................................................................................... 7-4
7.3.1 JTAG Instruction Shift Register .................................................................. 7-4
7.3.1.1 Extest Instruction...................................................................................... 7-5
7.3.1.2 Sample/Preload Instruction ...................................................................... 7-5
7.3.1.3 HighZ Instruction ...................................................................................... 7-5
7.3.1.4 Clamp Instruction ..................................................................................... 7-6
7.3.1.5 Bypass Instruction .................................................................................... 7-6
7.3.2 JTAG Boundary Scan Register .................................................................. 7-6
7.3.3 JTAG Bypass Register ............................................................................... 7-7



 

Table of Contents

 

MOTOROLA

 

MCF5202 USER’S MANUAL

 

xi

 

Section 8
Porting from M68K Architecture 

 

8.1 C Compilers and Host Software................................................................................8-1
8.2 Target Software Port .................................................................................................8-1
8.3 Initialization Code .....................................................................................................8-2
8.4 Exception Handlers ..................................................................................................8-2
8.5 Supervisor Registers.................................................................................................8-3
8.6 Summary...................................................................................................................8-4

 

Section 9
Electrical Characteristics

 

9.1 Maximum Ratings .....................................................................................................9-1
9.2 Clock Input Specification...........................................................................................9-2
9.3 DC Electrical Specifications ......................................................................................9-3
9.4 Output AC Timing Specifications ..............................................................................9-4
9.5 Input AC Timing Specifications .................................................................................9-4
9.6 JTAG AC Timing Specifications................................................................................9-8

 

Section 10
Mechanical Data



 

Table of Contents

 

xii

 

MCF5202 USER’S MANUAL

 

MOTOROLA



 

MOTOROLA

 

MCF5202 USER’S MANUAL

 

xiii

 

LIST OF FIGURES

 

Section 1
Introduction  

 

1-1 Block Diagram .......................................................................................................... 1-3
1-2 Programming Model ................................................................................................  1-6

 

 Section 2
Signal Description  

 

2-1 MCF5202 Block Diagram.......................................................................................... 2-1
2-2 Data Bit Assignments to External Port Sizes ........................................................... 2-5

 

Section 3
ColdFire Core  

 

3-1 ColdFire Processor Core Pipeline ........................................................................... 3-1
3-2 User Programming Model ........................................................................................ 3-3
3-3 Supervisor Programming Model .............................................................................. 3-4
3-4 Status Register ........................................................................................................ 3-5
3-5 Exception Stack Frame Form ................................................................................... 3-7

 

 Section 4
Cache  

 

4-1 MCF5202 Unified Cache ......................................................................................... 4-1
4-2 Cache Organization and Line Format ...................................................................... 4-2
4-3 Caching Operation ................................................................................................... 4-3
4-4 Cache Control Register ........................................................................................... 4-5
4-5 Access Control Register Format .............................................................................. 4-7
4-6 Cache Line State Diagrams ................................................................................... 4-16

 

Section 5
Bus Operations

 

5-1 Signal Relationships to CLK .................................................................................... 5-1
5-2 Simple Transfer Followed by Transfer Containing Bus Error .................................. 5-2
5-3 Dynamically Sized Burst-Inhibited Read Access ..................................................... 5-3
5-4 Dynamically Sized Burst-Inhibited Write Access ..................................................... 5-3
5-5 Dynamically Sized Burst Read ................................................................................ 5-4
5-6 Dynamically Sized Burst Write.................................................................................. 5-4
5-7 Interrupt-Acknowledge Operation............................................................................. 5-5
5-8 Bus Arbitration Operation ......................................................................................... 5-6
5-9 Reset Operation........................................................................................................ 5-7 



 

List of Figures

 

xiv

 

MCF5202 USER’S MANUAL

 

MOTOROLA

 

 Section 6 
Debug Support

 

6-1 Processor/Debug Module Interface ......................................................................... 6-1
6-2 Pipeline Timing Example - Debug Output ............................................................... 6-3
6-3 BDM Signal Sampling............................................................................................... 6-6
6-4 Command Sequence Diagram .............................................................................. 6-10
6-5 Debug Programming Model.................................................................................... 6-25
6-6 CSR Bit Definitions ................................................................................................ 6-31

 

Section 7
JTAG Specification

 

7-1 JTAG Mode, JTAG Disabled .................................................................................... 7-2
7-2 Background Debug Mode, JTAG Disabled............................................................... 7-2
7-3 JTAG Test Logic Block Diagram .............................................................................. 7-4
7-4 JTAG TAP Controller State Machine........................................................................ 7-7

 

Section 8
Porting from M68K Architecture 

Section 9
Electrical Characteristics

 

9-1 Clock Input Timing.................................................................................................... 9-2
9-2 Bus Arbitration Timing .............................................................................................. 9-5
9-3 Read/Write Timing.................................................................................................... 9-6
9-4 Other Signals, Input Timing...................................................................................... 9-7
9-5 Other Signals, Output Timing ................................................................................... 9-7
9-6 HIZ Output Timing .................................................................................................... 9-7
9-7 JTAG Timing............................................................................................................. 9-9

 

Section 10
Mechanical Data

 

10-1 MCF5202 Mechanical Specs.................................................................................. 10-1
10-2 MCF5202 Pinout..................................................................................................... 10-2



 

MOTOROLA

 

MCF5202 USER’S MANUAL

 

xv

 

LIST OF TABLES

 

Section 1
Introduction  

 

1-1 ColdFire MCF5202 Data Formats............................................................................. 1-7
1-2 ColdFire Effective Addressing Modes......................................................................  1-8
1-3 Specific Effective Addressing Modes........................................................................ 1-8
1-4 MOVE Specific Effective Addressing Modes............................................................ 1-8
1-5 Notational Conventions............................................................................................. 1-9
1-6 Supervisor-Mode Instruction Summary .................................................................. 1-12
1-7 User Mode Instruction Summary ............................................................................ 1-12

 

 Section 2
Signal Description  

 

2-1 MCF5202 Signal Index ............................................................................................. 2-2
2-2 Bus Cycle Size Encodings ....................................................................................... 2-3
2-3 Bus Cycle Transfer Type Encoding .......................................................................... 2-4
2-4 Access/Mode Encodings .......................................................................................... 2-4
2-5 External Data Acknowledge Encodings.................................................................... 2-5
2-6 MCF5202 Processor PST Definition......................................................................... 2-7
2-7 MTMOD Definition .................................................................................................... 2-8

 

Section 3
ColdFire Core  

 

3-1 Exception Vector Assignments ................................................................................ 3-7
3-2 Format Field Encodings ........................................................................................... 3-8
3-3 Fault Status Encodings ............................................................................................ 3-8
3-4 Misaligned Operand References ............................................................................ 3-12
3-5 Move Byte and Word Execution Times................................................................... 3-13
3-6 Move Long Execution Times .................................................................................. 3-13
3-7 One Operand Instruction Execution Times............................................................. 3-14
3-8 Two Operand Instruction Execution Times............................................................. 3-15
3-9 Miscellaneous Instruction Execution Times............................................................ 3-16
3-10 General Branch Instruction Execution Times ......................................................... 3-17
3-11 BRA, Bcc Instruction Execution Times ................................................................... 3-17

 

 Section 4
Cache  

 

4-1 Cache Line State Transitions ................................................................................. 4-16



 

List of Tables

 

xvi

 

MCF5202 USER’S MANUAL

 

MOTOROLA

 

Section 5
Bus Operations

 Section 6 
Debug Support

 

6-1 Processor PST Definition ........................................................................................ 6-2
6-2 CPU-Generated Message Encoding ....................................................................... 6-7
6-3 BDM Command Summary........................................................................................ 6-7
6-4 BDM Size Field Encoding......................................................................................... 6-8
6-5 Control Register Map.............................................................................................. 6-21
6-6 Definition of DRc Encoding-Read .......................................................................... 6-23
6-7 Definition of DRc Encoding-Write ........................................................................... 6-24
6-8 SZ Encodings ......................................................................................................... 6-27
6-9 Transfer Type Encodings ....................................................................................... 6-27
6-10 Transfer Modifier Encodings for Normal Transfers................................................. 6-28
6-11 Transfer Modifier Encodings for Alternate Transfers.............................................. 6-28
6-12 Core Address, Access Size, and Operand Location .............................................. 6-28
6-13 DDATA, CSR[31:28] Breakpoint Response ........................................................... 6-33
6-14 Shared BDM/Breakpoint Hardware ........................................................................ 6-34

 

Section 7
JTAG Specification

 

7-1 JTAG Instructions..................................................................................................... 7-5

 

Section 8
Porting from M68K Architecture 

Section 9
Electrical Characteristics

 

9-1 Maximum Ratings..................................................................................................... 9-1
9-2 Operating Environment............................................................................................. 9-1
9-3 Thermal Characteristics............................................................................................ 9-2
9-4 Clock Input Specifications ........................................................................................ 9-2
9-5 DC Electrical Specifications...................................................................................... 9-3
9-6 Output AC Timing Specifications.............................................................................. 9-4
9-7 Input AC Timing Specifications................................................................................. 9-4
9-8 JTAG AC Input Timing Specification ........................................................................ 9-8
9-9 JTAG AC Output Timing Specification ..................................................................... 9-8

 

Section 10
Mechanical Data



          

Date: 7-28-98
Revision Number: 0.1
Pages affected: See change bars
SECTION 1
INTRODUCTION

ColdFireTM represents a revolutionary new microprocessor architecture that has been 
optimized for embedded processing applications. It brings new levels of price and 
performance to cost-sensitive high-volume markets. Based on the concept of variable-
length RISC technology, ColdFire combines the architectural simplicity of conventional 32-
bit RISC with a memory-saving, variable-length instruction set.

Employing a variable-length instruction set architecture, ColdFire RISC processors are 
tuned to offer embedded processor designers significant system-level advantages over 
conventional fixed-length RISC architectures. Softword code for ColdFire processors is 
denser and therefore takes up less memory than for any fixed-length instruction set RISC 
processor. This improved code density results in systems that require less memory for a 
given application and also allows the use of slower and less costly memory to achieve a 
given performance level. Denser code improves cache hit ratios and improves performance 
for a given size cache.

The MCF5202 processor is a ColdFire Family member that has been optimized for cost-
effective performance in deeply embedded applications. The MCF5202 processor can 
operate on a 32-, 16-, or 8-bit external data bus. 
MOTOROLA MCF5202 USER’S MANUAL 1-1



 

Introduction

     
1.1 FEATURES
The primary features of the MCF5202 processor include the following:

• Best-in-Class Code Density

— Requires less memory than fixed length RISC equivalents

— Allows use of slower memory for a given performance level than fixed-length RISCs

— Improves cache effectiveness

• Dynamic Bus Sizing

— 32-, 16-, and 8-bit bus support on the MCF5202 processor

• 2 kbyte On-Chip Unified Cache

— High performance 4-way set associative, non-blocking cache implementation

• Simple Instruction Set Architecture

— Optimized for high-level language constructs

— Requires minimal silicon area to implement processor core

— 16 user-visible 32-bit wide general-purpose registers

— Supervisor / user modes for system protection

— Vector base register to relocate exception-vector table

• Debug Module Including Background Debug and Real Time Debug Support

• Low Interrupt Latency

• Full Static Design Allows Operation Down to DC for Minimizing Power Consumption

• Three-State Pin

• JTAG IEEE 1149.1 Test Interface

• Single Clock Input
1-2 MCF5202 USER’S MANUAL MOTOROLA



 

Introduction

       
1.2 FUNCTIONAL BLOCKS
Figure 1-1 is a simplified block diagram of the MCF5202 processor. The MCF5202 device 
consists of a pipelined instruction execution unit, a two-kbyte unified cache, a debug 
module, and an external bus controller that supports the IEEE 1149.1 JTAG interface. The 
instruction execution unit is comprised of two separate pipelines that are decoupled by an 
instruction buffer. The instruction fetch pipeline (IFP) is responsible for instruction address 
generation and instruction fetch. The instruction buffer is a first-in-first-out (FIFO) buffer that 
holds prefetched instructions waiting for execution in the operand execution pipeline (OEP). 
The OEP includes two pipeline stages. The first decodes instructions and selects operands; 
the second calculates operand effective addresses, if needed, and performs instruction 
execution. 

Figure 1-1. Block Diagram

The MCF5202 processor uses a unified data/instruction cache to improve overall system 
performance. The primary improvement is because of the availability of the most recently 
used instructions and data in a memory that can be accessed by the processor core in a 
single cycle. A second improvement is the increased external bus bandwidth available for 
alternate bus masters in the system. The nonblocking cache is organized as 4-way set 
associative and is physically mapped, thereby reducing software support for multitasking 
operating systems. 

The bus controller performs bus transfers on the external bus. The MCF5202 bus controller 
supports a high-speed, multiplexed, synchronous, external bus interface. This interface in 
turn supports burst accesses for both reads and writes to provide high data transfer rates to 
and from the internal cache. The bus controller also supports the industry-standard IEEE 
1149.1 JTAG interface.

SYSTEM
BUS

CONTROLLER

ADDR/DATA

CONTROL

CACHE

CONTROL LOGIC

DIRECTORY 

DATA ARRAY

DATA PATH

COLDFIRE
PROCESSOR

CORE

ADDRESS PATH

CONTROL

DATA

ADDRESS

MBUS EXTERNAL
BUS

KBUS

INSTRUCTION 
FETCH PIPELINE

OPERAND
EXECUTION

PIPELINE

INSTRUCTION 
BUFFER

CONTROL

D
E
B
U
G

DATA ADDRESS

J
T
A
G

ARRAY
MOTOROLA MCF5202 USER’S MANUAL 1-3



 

Introduction

       
1.3 PROCESSOR STATES
The processor is always in one of four states: normal processing, exception processing, 
stopped, or halted. It is in the normal processing state when executing instructions, fetching 
instructions and operands, and storing instruction results. 

Exception processing is the transition from program processing to system, interrupt, and 
exception handling. Exception processing includes fetching the exception vector, stacking 
operations, and refilling the instruction fetch pipe after an exception. The processor enters 
exception processing when an exceptional internal condition arises such as tracing an 
instruction, an instruction resulting in a trap, or executing specific instructions. External 
conditions, such as interrupts and access errors, also cause exceptions. Exception 
processing ends when the first instruction of the exception handler enters the operand 
execution pipeline. 

Stopped mode is a reduced power mode of operation that causes the processor to remain 
quiescent until either a reset or nonmasked interrupt occurs. The STOP instruction is used 
to enter this operation mode.

The processor halts when it receives an access error or generates an address error while in 
the exception processing state. For example, if during exception processing of one access 
error another access error occurs, the MCF5202 processor cannot complete the transition 
to normal processing nor can it save the internal machine state. The processor assumes that 
the system is not operational and halts. Only an external reset can restart a halted 
processor. When the processor executes a STOP instruction, it is in a special type of normal 
processing state, e.g., one without bus cycles. The processor stops but it does not halt.

The processor can also halt in a restart mode because of Background Debug Mode events.

1.4 PROGRAMMING MODEL
The ColdFire programming model is separated into two privilege modes: supervisor and 
user. The S-bit in the status register (SR) indicates the current privilege mode. The 
processor identifies a logical address by accessing either the supervisor or user address 
space, which differentiates between supervisor and user modes. 

Programs access registers based on the indicated mode. User programs can access only 
registers specific to the user mode. System software executing in the supervisor mode can 
access all registers using the control registers to perform supervisory functions. User 
programs are thus restricted from accessing privileged information. The operating system 
performs management and service tasks for user programs by coordinating their activities. 
This difference allows the supervisor mode to protect system resources from uncontrolled 
accesses. 

Most instructions execute in either mode but some instructions that have important system 
effects are privileged and can only execute in the supervisor mode. For instance, user 
programs cannot execute the STOP instructions. To prevent a program executing in user 
mode from entering the supervisor mode, instructions that can alter the S-bit in the SR are 
privileged. The TRAP instructions provide controlled access to operating system services 
1-4 MCF5202 USER’S MANUAL MOTOROLA



 

Introduction

    
for user programs. 

The processor employs the user mode and the user programming model when it is in normal 
processing. During exception processing, the processor changes from user to supervisor 
mode. Exception processing saves the current SR value on the stack and then sets the S-
bit, forcing the processor into the supervisor mode. To return to the user mode, a system 
routine must execute a MOVE to SR, or an RTE, which operate in the supervisor mode, 
modifying the S-bit of the SR. After these instructions execute, the instruction fetch pipeline 
flushes and is refilled from the appropriate address space. 

The registers depicted in the programming model (see Figure 1-2) provide operand storage 
and control for the ColdFire processor core. The registers are partitioned into two levels of 
privilege modes: user and supervisor. The user programming model consists of 16 general-
purpose 32-bit registers and two control registers. The supervisor model consists of five 
more registers that can be accessed only by code running in supervisor mode.

Only system programmers can use the supervisor programming model to implement 
operating system functions and I/O control. This supervisor/user distinction allows for the 
coding of application software that will run without modification on any ColdFire Family 
processor. The supervisor programming model contains the control features that system 
designers would not want user code to erroneously access as this might effect normal 
system operation. Furthermore, the supervisor programming model may need to change 
slightly from ColdFire generation to generation to add features or improve performance as 
the architecture evolves.
MOTOROLA MCF5202 USER’S MANUAL 1-5



 

Introduction

      
 

Figure 1-2. Programming Model 

The user programming model includes eight data registers, seven address registers, and a 
stack pointer register. The address registers and stack pointer can be used as base address 
registers or software stack pointers, and any of the 16 registers can be used as index 
registers. Two control registers are available in the user mode—the program counter (PC), 
which contains the address of the instruction that the MCF5202 device is executing, and the 
lower byte of the SR, which is accessible as the Condition Code Register (CCR). The CCR 
contains the condition codes that reflect the results of a previous operation and can be used 
for conditional instruction execution in a program. 

The supervisor programming model includes the upper byte of the SR, which contains 
operation control information. The Vector Base Register (VBR) contains the upper 12 bits of 
the base address of the exception vector table, which is used in exception processing. The 

31 0

D0

D1

D2

DATA
REGISTERS

D3

D4

D5

D6

D7

31 0

A0

A1

A2

ADDRESS
REGISTERS

A3

A4

A5

A6

A7 STACK POINTER

PC PROGRAM COUNTER

CCR CONDITION CODE REGISTER

USER PROGRAMMING MODEL

15

31 19 (CCR) SR STATUS REGISTER

MUST BE ZEROS VBR VECTOR BASE REGISTER

CACR CACHE CONTROL REGISTER

ACR0 ACCESS CONTROL REGISTER 0

ACR1 ACCESS CONTROL REGISTER 1

SUPERVISOR PROGRAMMING MODEL
1-6 MCF5202 USER’S MANUAL MOTOROLA



 

Introduction

              
lower 20 bits of the VBR are forced to zero, allowing the vector table to reside on any 1 
Mbyte memory boundary.

The Cache Control Register (CACR) controls enabling of the on-chip cache of the MCF5202 
processor. There are two access control registers (ACR1, ACR0) that allow portions of the 
address space to be mapped as noncacheable. See Sections 4.3 and 4.4 for more details 
on these registers.

1.5 DATA FORMAT SUMMARY
The processor performs all arithmetic using 2’s complement, but operands may be signed 
or unsigned. Registers, memory, or instructions themselves can contain operands. The 
operand size for each instruction is either explicitly encoded in the instruction or implicitly 
defined by the instruction operation. Table1-1 lists a summary of the MCF5202 data formats.

1.6 ADDRESSING CAPABILITIES SUMMARY
The MCF5202 processor supports seven addressing modes. The register indirect 
addressing modes support postincrement, predecrement, offset, and indexing, which are 
particularly useful for handling data structures common to sophisticated embedded 
applications and high-level languages. The program counter indirect mode also has 
indexing and offset capabilities. This addressing mode is typically required to support 
position-independent software. Besides these addressing modes, the MCF5202 processor 
provides index scaling features. 

An instruction’s addressing mode can specify the value of an operand or a register 
containing the operand. It can also specify how to derive the effective address of an operand 
in memory. Each addressing mode has an assembler syntax. Some instructions imply the 
addressing mode for an operand. These instructions include the appropriate fields for 
operands that use only one addressing mode. Table 1-2 lists a summary of the effective 
addressing modes of ColdFire processors.

Table 1-1. ColdFire MCF5202 Data Formats
OPERAND DATA FORMAT SIZE

Bit 1 Bit
Byte 8 Bits
Word 16 Bits

Longword 32 Bits
MOTOROLA MCF5202 USER’S MANUAL 1-7



 

Introduction

                     
Table 1-2. ColdFire Effective Addressing Modes
ADDRESSING MODES SYNTAX

Register Direct 
Data 

Address
Dn
An

Register Indirect
Address

Address with Postincrement
Address with Predecrement
Address with Displacement

(An)
(An)+
–(An)

(d16,An)
Address Register Indirect with Index

8-Bit Displacement (d8,An,Xn)

Program Counter Indirect
with Displacement (d16,PC)

Program Counter Indirect with Index 
8-Bit Displacement (d8,PC,Xn)

Absolute Data Addressing  
Short
Long

(xxx).W
(xxx).L

Immediate #<xxx>

Table 1-3. Specific Effective Addressing Modes
ADDRESSING VARIANT ALLOWABLE MODES

<ea-1>

Dn
(An)

(An)+
-(An)

(d16,An)

<ea-2>
(An)

(d16,An)

Table 1-4. MOVE Specific Effective Addressing Modes 
SOURCE <EA> DESTINATION <EA>

Dn All
An All

(An) All
(An)+ All
1-8 MCF5202 USER’S MANUAL MOTOROLA



 

Introduction

                  
1.7 NOTATIONAL CONVENTIONS
Table 1-5 lists the notation conventions used throughout this manual, unless otherwise 
specified. 

-(An) All

(d16,An)

(d16,PC)

Dn
An

(An)
(An)+
-(An)

(d16,An)

(d8,An,Xn)

(d8,PC,Xn)

Dn
An

(An)
(An)+
-(An)

(xxx).W
(xxx).L

Dn
An

(An)
(An)+
-(An)

#<xxx>

Dn
An

(An)
(An)+
-(An)

Table 1-4. MOVE Specific Effective Addressing Modes (Continued)
SOURCE <EA> DESTINATION <EA>
MOTOROLA MCF5202 USER’S MANUAL 1-9



 

Introduction

                  
Table 1-5. Notational Conventions

OPCODE WILDCARDS

cc Logical Condition (example: NE for not equal)

REGISTER OPERANDS

An Any Address Register n (example: A3 is address register 3)
Ay,Ax Source and destination address registers, respectively

Dn Any Data Register n (example: D5 is data register 5)
Dy,Dx Source and destination data registers, respectively

Rn Any Address or Data Register
Ry,Rx Any source and destination registers, respectively

Rw Any second destination register
Rc Any Control Register (example VBR is the vector base register)

REGISTER/PORT NAMES

DDATA Debug Data Port
CCR Condition Code Register (lower byte of status register)
PC Program Counter

PST Processor Status Port
SR Status Register

MISCELLANEOUS OPERANDS

 #<data> Immediate data following the instruction word(s)
<ea> Effective Address

<ea>y,<ea>x Source and Destination Effective Addresses, respectively
<label> Assembly Program Label
<list> List of registers (example: D3–D0)

<size> Operand data size: Byte (B), Word (W), Longword (L)

OPERATIONS

+ Arithmetic addition or postincrement indicator
– Arithmetic subtraction or predecrement indicator
x Arithmetic multiplication
/ Arithmetic division
~ Invert; operand is logically complemented
& Logical AND
| Logical OR
~ Logical exclusive OR

<< Shift left (example: D0 << 3 is shift D0 left 3 bits)
>> Shift right (example: D0 >> 3 is shift D0 right 3 bits)

→ Source operand is moved to destination operand

←→ Two operands are exchanged
sign-extended All bits of the upper portion are made equal to the high-order bit of the lower portion
If <condition>

then <operations>
else <operations>

Test the condition. If true, the operations after ‘then’ are performed. If the condition is false and the optional ‘else’ clause
is present, the operations after ‘else’ are performed. If the condition is false and else is omitted, the instruction performs no
operation. Refer to the Bcc instruction description as an example.
1-10 MCF5202 USER’S MANUAL MOTOROLA



 

Introduction

           
SUBFIELDS AND QUALIFIERS

{} Optional Operation
() Identifies an indirect address
dn Displacement Value, n-Bits Wide (example: d16 is a 16-bit displacement)

Address Calculated Effective Address (pointer)
Bit Bit Selection (example: Bit 3 of D0)

LSB Least Significant Bit (example: MSB of D0)
LSW Least Significant Word
MSB Most Significant Bit
MSW Most Significant Word

CONDITION CODE REGISTER BIT NAMES

P Branch Prediction Bit in CCR
C Carry Bit in CCR
N Negative Bit in CCR
V Overflow Bit in CCR
X Extend Bit in CCR
Z Zero Bit in CCR
MOTOROLA MCF5202 USER’S MANUAL 1-11



 

Introduction

                                                                                                                    
1.8 INSTRUCTION SET OVERVIEW
The ColdFire instruction set supports high-level languages and is optimized for those 
instructions embedded code most commonly executes. Table 1-6Table 1-6 and Table 1-7 
provide an alphabetized listing of the ColdFire instruction set opcode, operation, and syntax. 
Refer to Table 1-5 for notations used in Table 1-4 and Table 1-7. The left operand in the 
syntax is always the source operand and the right operand is the destination operand. 

Table 1-6. Instruction Set Summary

INSTRUCTION OPERAND SYNTAX OPERAND SIZE OPERATION

ADD Dy,<ea>x
<ea>y,Dx

32
32

Source + Destination → Destination

ADDA <ea>y,Ax 32 Source + Destination → Destination
ADDI #<data>,Dx 32 Immediate Data + Destination → Destination
ADDQ #<data>,<ea>x 32 Immediate Data + Destination → Destination
ADDX Dy,Dx 32 Source + Destination + X → Destination
AND Dy,<ea>x

<ea>y,Dx
32
32

Source & Destination → Destination

ANDI #<data>,Dx 32 Immediate Data & Destination → Destination
ASL Dx,Dy

#<data>,Dx
32
32

X/C ← (Dy << Dx) ← 0
X/C ← (Dy << #<data>) ← 0

ASR Dx,Dy
<data>,Dx

32
32

MSB → (Dy >> Dx) → X/C
MSB → (Dy >> #<data>) → X/C

Bcc <label> 8,16 If Condition True, Then PC + dn → PC

BCHG Dy,<ea>x
#<data>,<ea>x

8,32
8,32

~(<Bit Number> of Destination) → Z, 
Bit of Destination

BCLR Dy,<ea>x
#<data>,<ea>x

8,32
8,32

~(<Bit Number> of Destination) → Z; 
0 → Bit of Destination

BRA <label> 8,16 PC + dn → PC

BSET Dy,<ea>x
#<data>,<ea>x

8,32
8,32

~(<Bit Number> of Destination) → Z; 
1→ Bit of Destination

BSR <label> 8,16 SP – 4 → SP; next sequential PC→ (SP); PC + dn → PC

BTST Dy,<ea>x
#<data>,<ea>x

8,32
8,32

~(<Bit Number> of Destination) → Z

CLR <ea>x 8,16,32 0 → Destination
CMPI #<data>,Dx 32 Destination – Immediate Data
CMP <ea>y,Dx 32 Destination – Source

CMPA <ea>y,Ax 32 Destination - Source
CPUSH (An) 32 Push and Invalidate Cache Line

EOR Dy,<ea>x 32 Source ~ Destination → Destination
EORI #<data>,Dx 32 Immediate Data ~ Destination → Destination
EXT Dx

Dx
8 → 16

16 → 32
Sign-Extended Destination → Destination

EXTB Dx 8 → 32 Sign-Extended Destination → Destination
HALT none none Enter Halted State
JMP <ea> none Address of <ea> → PC
JSR <ea> 32 SP– 4 → SP; next sequential PC → (SP); <ea> → PC
LEA <ea>y,Ax 32 <ea> → Ax
LINK Ax,#<data> 16 SP – 4 → SP; Ax → (SP); SP → Ax; SP + d16 → SP
LSL Dx,Dy

#<data>,Dx
32
32

X/C ← (Dy << Dx) ← 0
X/C ← (Dx << #<data>) ← 0

LSR Dx,Dy
#<data>,Dx

32
32

0 → (Dy >> Dx) → X/C
0 → (Dx >> #<data>) → X/C
1-12 MCF5202 USER’S MANUAL MOTOROLA



 

Introduction

                                                                                 
MOVE <ea>y,<ea>x 8,16,32 <ea>y → <ea>x
MOVE from CCR Dx 16 CCR → Dx
MOVE from SR Dx 16 SR → Dx
MOVE to CCR Dy,CCR

#<data>,CCR
8 Dy → CCR

#<data> → CCR
MOVE to SR Dy,SR

#<data>,SR
16 Source → SR

MOVEA <ea>y,Ax 16,32 → 32 Source → Destination
MOVEC Ry,Rc 32 Ry → Rc
MOVEM list,<ea>x

<ea>y,list
32
32

Listed Registers → Destination
Source → Listed Registers

MOVEQ #<data>,Dx 8 → 32 Sign-extended Immediate Data→ Destination
MULS <ea>y,Dx 16 x 16 → 32

32 x 32 → 32
Source × Destination → Destination

Signed operation
MULU <ea>y,Dx 16 x 16 → 32

32 x 32 → 32
Source × Destination → Destination

Unsigned operation
NEG <ea>x 32 0 – Destination → Destination

NEGX <ea>x 32 0 – Destination– X → Destination
NOP none none PC + 2 → PC; Synchronize Pipelines
NOT <ea> 32 ~ Destination → Destination
OR Dy,<ea>x

<ea>y,Dx
32 Source | Destination → Destination

ORI #<data>,Dx 32 Immediate Data | Destination → Destination
PEA <ea> 32 SP – 4 → SP; Address of <ea> → (SP)

PULSE none none Set PST= $4
RTE none none (SP+2) → SR; SP+4 → SP; (SP) → PC; SP + FormatField → SP
RTS none none (SP) → PC; SP + 4 → SP
Scc Dx 8 If Condition True, Then 1's → Destination;

Else 0's → Destination
STOP #<data> 16 Immediate Data → SR; Enter Stopped State
SUB Dy,<ea>x

<ea>y,Dx
32
32

Destination - Source→ Destination

SUBA <ea>y,Ax 32 Destination - Source→ Destination
SUBI #<data>,Dx 32 Destination – Immediate Data → Destination
SUBQ #<data>,<ea>x 32 Destination - Immediate data → Destination
SUBX Dy,Dx 32 Destination – Source – X → Destination
SWAP Dn 16 MSW of Dn ←→ LSW of Dn
TRAP none none SP – 4 → SP;PC → (SP);

SP – 2 → SP;SR → (SP);
SP – 2 → SP; Format → (SP);

Vector Address → PC
TRAPF none

#<data>
none

16
32

PC + 2 → PC
PC + 4 → PC
PC + 6 → PC

TST <ea>y 8,16,32 Set Condition Codes
UNLK Ax 32 Ax →SP; (SP) → Ax; SP + 4 → SP

WDDATA <ea>y 8,16,32 <ea>y →DDATA port
WDEBUG <ea>y 2 x 32 <ea>y → Debug Module

INSTRUCTION OPERAND SYNTAX OPERAND SIZE OPERATION
MOTOROLA MCF5202 USER’S MANUAL 1-13



 

MOTOROLA

 

MCF5202 USER’S MANUAL

 

2-1

 

SECTION 2
SIGNAL DESCRIPTION

 

2.1 INTRODUCTION

 

This section describes the specification for the external signals that will be used on the 
MCF5202 series of integrated circuits. A signal block diagram is shown in Figure 2-1 below.

 

Figure 2-1.  MCF5202 Block Diagram

A/D[31:0]

CLK

RST 

TCK

TMS/BKPT

TDI/DSI

TDO/DSO

TRST/DSCLK

DDATA[3:0]

PST[3:0]

MTMOD[2:0]

HIZ

R/W

TT[1:0]

SIZ[1:0]

ATM

TS

AA

DA[1:0]

TEA

TBI

BR

BD

BG

IPL[2:0]

AVEC

 MCF5202/3

TRANSFER
ATTRIBUTES

TRANSFER
CONTROL

ARBITRATION

INTERRUPT
CONTROL

TEST

DTIP

JCE



 

Signal Description  

 

2-2

 

MCF5202 USER’S MANUAL

 

MOTOROLA

 

Table 2-1: MCF5202 Signal Index 

 

SIGNAL NAME MNEMONIC FUNCTION

 

Clock Input CLK Input used to clock internal logic

Reset RST Processor Reset

Address, Data Lines A/D[31:0] Address/Data bus, time multiplexed providing access to 4Gbytes of memory

Read/Write R/W Identifies read and write transfers

Size SIZ[1:0] Indicates the data transfer size

Transfer Type TT[1:0] Indicates the transfer type, normal, CPU space or emulator mode

Access/Mode ATM Multiplexed output signal indicating access type (instruction or data) during 
address phase and access mode (supervisor or user) during data phase

Transfer Start TS Indicates the beginning of a bus transfer

Address Acknowledge AA Assertion terminates address phase of transfer

Data Transfer in Progress DTIP Assertion indicates access is in data phase

Data Acknowledge DA[1:0] Indicates an acknowledge of a data transfer from either a 32-bit, 16-bit or 8-bit 
data port

Transfer Error Acknowledge TEA Indicates an error condition for a bus transfer

Transfer Burst Inhibit TBI Assertion indicates slave cannot handle a burst access

Bus Request BR Indicates processor requires bus mastership

Bus Grant BG Asserted by arbiter to grant mastership to processor

Bus Driven BD Indicates processor is currently driving the bus

Interrupt Priority Level IPL[2:0] Provides encoded interrupt level to processor

Autovector AVEC Asserted during interrupt acknowledge cycle to request internal generation of 
vector number

Processor Status PST[3:0] Indicates internal processor status

Debug Data DDATA[3:0] Displays captured processor data and break-point status

Motorola Test Mode MTMOD[2:0] Test Mode signals tied to ground for normal usage

High ImpedAnce HIZ Assertion three-states all output signal pins 

Test Clock TCK Clock signal for IEEE 1149.1 Test Access Port (TAP)

Test Data Output/
Development Serial Output

TDO/DSO Serial output for the TAP and debug module

Test Mode Select/ 
Break Point 

TMS/BKPT TMS in JTAG mode and Hardware breakpoint in debug mode

Test Data Input / 
Development Serial Input

TDI/DSI Serial input for the TAP and debug module

Test Reset/Development Serial Clock TRST/DSCLK Asynchronous reset for TAP controller. Clock enable for debug module

JTAG Compliance Enable JCE Test mode signal; should always be tied to a logic 0



 

Signal Description

 

MOTOROLA

 

MCF5202 USER’S MANUAL

 

2-3

 

2.2  ADDRESS AND CONTROL SIGNALS

2.2.1 Address/Data Lines - (A/D[31:0])

 

These bidirectional signals multiplex the address and data buses to external memory. 
During a bus cycle, the address is driven first, then data. When not the bus master, the 
address/data lines are three-stated. The MCF5203 processor will multiplex address and 
data on 
A/D[31:16] and will maintain the valid address on A/D[15:0] for the duration of the bus cycle. 
During burst accesses, the MCF5203 device will increment A/D[3:0] to reflect the proper 
address for the current data acknowledge cycle. During interrupt-acknowledge cycles, the 
acknowledged level will be placed on A/D[4:2]; A/D[31:5] is driven high and

A/D[1:0] is driven low. For acknowledge cycles that are not autovectored, the vector number 
will be placed on the most significant bits (MSBs), A/D[31:24].

 

2.2.2 Read/Write - (R/W)

 

When the MCF5202 processor is the bus master, it drives the R/W signal to indicate the 
direction of subsequent data transfers. It is driven high during read bus cycles and driven 
low during write bus cycles. This signal is three-stated when the MCF5202 device is not the 
bus master.

 

2.2.3 Transfer Start - (TS)

 

The MCF5202 processor asserts this signal during the first clock cycle when a valid address 
is driven on A/D[31:0] and is negated in the following clock cycle. TS is three-stated when 
the MCF5202 device is not the bus master.

 

2.2.4 Address Acknowledge - (AA)

 

The external system drives this input signal to terminate the address phase of the bus 
transfer.   The address bus will continue to be driven until this synchronous signal is 
asserted. When it is asserted, the A/D bus will be driven with data if the access is a write or 
three-stated if the access is a read. The AA signal may be tied low if additional address valid 
time is not needed.

 

2.2.5 Size - (SIZ[1:0])

 

When it is the bus master, the MCF5202 processor outputs these signals to indicate the 
requested data transfer size. Table 2-2 shows the definition of the bus request size 
encodings. When the MCF5202 device is not the bus master, these signals are three-stated.



 

Signal Description  

 

2-4

 

MCF5202 USER’S MANUAL

 

MOTOROLA

 

2.2.6 Transfer Type - (TT[1:0])

 

These signals are output from the MCF5202 processor when it is the bus master indicating 
the type of access for the current bus access. Table 2-3 shows the encoding definitions.

 

2.2.7 Access Type and Mode - (ATM)

 

This output-only signal is time-multiplexed during bus transfers. During the address phase, 
ATM indicates whether the transfer is an instruction or data access. During the data phase, 
ATM indicates whether the transfer is a supervisor- or user-mode access. 

A write access will indicate a cache push, with SIZ = 11 and the address phase of ATM 
indicating an instruction access. 

During an interrupt-acknowledge cycle, the ATM address phase will indicate an instruction 
access. The data phase will default to user mode. 

During emulator accesses, the ATM address phase will indicate the appropriate instruction/
data access. The data phase will default to supervisor mode. Table 2-4 shows the encodings 
of this signal.

 

Table 2-2.  Bus Cycle Size Encodings

 

SIZ[1:0] BYTES
DATA BUS PORT SIZE

32-BIT (5202 ONLY) 16-BIT 8-BIT

 

00 4 Longword 2-Word Burst 4-Byte Burst

01 1 Byte Byte Byte

10 2 Word Word 2-Byte Burst

11 16 4 - Longword Burst 8 - Word Burst 16-Byte Burst

 

Table 2-3.  Bus Cycle Transfer Type Encoding

 

TT[1:0] TRANSFER TYPE

 

0 0 Normal Access

0 1 Reserved

1 0 Emulator Access

1 1 CPU Space or Interrupt Acknowledge

 

Table 2-4.  Access/Mode Encodings

 

ATM PHASE  INDICATION

 

1 Address Instruction Access

0 Address Data Access

1 Data Supervisor Mode Access

0 Data User Mode Access



 

Signal Description

 

MOTOROLA

 

MCF5202 USER’S MANUAL

 

2-5

 

2.2.8 Data Transfer in Progress - (DTIP)

 

The MCF5202 device asserts this signal to indicate that the bus cycle data phase is in 
progress. It is asserted on the rising CLK edge where AA is asserted. DTIP is negated at the 
completion of the current transfer. DTIP may be negated at any time in the bus cycle to 
indicate that the transfer has been aborted. When the MCF5202 processor is not the bus 
master, DTIP is three-stated.

 

2.2.9 Data Acknowledge - (DA[1:0])

 

Data acknowledge indicates the completion of a data transfer operation. The device being 
accessed can indicate the successful completion of the transfer as well as its port size using 
DA[1:0]. Table 2-5 shows the encodings for data-acknowledge signals.

 

*MCF5203 will default this to a data port size of 16 bits.

 

The slave device uses data acknowledge DA[1:0] to indicate the port size, not the size of 
data being transferred. A 32-bit port device should always respond DA[1:0]=00 regardless 
of the data size indicated for the transfer. In addition, a 32-bit port must always reside on
A/D[31:0], a 16-bit port on A/D[31:16] and an 8-bit port must reside on A/D[31:24], as shown 
in Figure 2-2. The MSB of a longword operand is byte 0, with byte 3 being the LSB. The first 
data-acknowledge determines the port size for all subsequent transfers if the port size is 
smaller than the requested data size. With the MCF5203 device, if a port responds with 
DA[1:0]=00, it will be treated as a 16-bit port.

 

Figure 2-2. Data Bit Assignments to External Port Sizes

Table 2-5. External Data Acknowledge Encodings

 

DA[1:0]

 

TRANSFER INDICATION

 

00 Cycle complete - Data port size is 32 bits*

01 Cycle complete - Data port size is 16 bits

10 Cycle complete - Data port size is 8 bits

11 Cycle not complete - Wait state

ADDRESS XXXX XXX0

XXXX XXX0
XXXX XXX2

XXXX XXX0
XXXX XXX1
XXXX XXX2
XXXX XXX3

8 BIT PORT

16 BIT PORT

32 BIT PORT
31 24  23 16  15 8  7 0A/D BITS

INTERNAL REGISTER BYTE 0 BYTE 1 BYTE 3

BYTE 0 BYTE 1 BYTE 2 BYTE 3

BYTE 0 BYTE 1

BYTE 2
BYTE 3

BYTE 0
BYTE 1

BYTE 2 BYTE 3

BYTE 2



 

Signal Description  

 

2-6

 

MCF5202 USER’S MANUAL

 

MOTOROLA

 

2.2.10 Transfer Error Acknowledge - (TEA)

 

The external device being accessed asserts this input-only signal to indicate an error 
condition for the current bus transaction. Assertion of TEA during either the address phase 
or data phase aborts the access.

 

2.2.11 Transfer Burst Inhibit - (TBI)

 

The device being accessed asserts this input-only signal to indicate it cannot support burst- 
mode accesses and that the requested burst transfer should be divided into individual 
transfers. TBI is sampled only on the first transfer of the burst cycle. If the first transfer of a 
burst cycle is terminated by asserting TBI with DA[1] and/or DA[0], the bus controller will 
terminate the burst cycle and access the remaining data as individual transfers.

 

2.3 BUS ARBITRATION

2.3.1 Bus Request - (BR)

 

This output signal indicates to an external arbiter that the processor needs to become bus 
master for one or more bus cycles. BR is negated when the MCF5202 processor begins an 
access to the external bus with no other internal accesses pending, and BR remains 
negated until another internal request occurs.

 

2.3.2  Bus Grant - (BG)

 

An external arbiter asserts this input signal to indicate the MCF5202 device can control the 
bus at the next rising edge of CLK. When the arbiter negates BG, the MCF5202 processor 
must relinquish the bus as soon as the current transfer is complete. The external arbiter 
must not grant the bus to any other master until both BD and BG are negated.

 

2.3.3 Bus Driven - (BD)

 

The MCF5202 device asserts this output signal to indicate that the MCF5202 is the current 
master.   If the MCF5202 processor loses bus mastership during a bus transfer, it will 
complete the last transfer of the current access, negate BD, and three-state all bus signals 
on the rising edge of CLK. DTIP will be driven to a high level and three-stated one clock after 
the other bus signals. If the MCF5202 device loses bus mastership during an idle clock 
cycle, it will three-state all bus signals on the rising edge of CLK.

 

2.4 INTERRUPT CONTROL

2.4.1 lnterrupt Priority Level - (IPL[2:0])

 

These input signals indicate the encoded priority level of a requested interrupt. IPL[2:0] = 
000 (Level 7) is the highest priority interrupt and cannot be internally masked. IPL[2:0] = 111 
(Level 0) indicates no interrupt is requested.

 

2.4.2 Autovector - (AVEC)

 

AVEC asserted concurrently with DA during an interrupt-acknowledge bus cycle indicates a 
request for internal generation of the vector number. The data bus is not required to be 



 

Signal Description

 

MOTOROLA

 

MCF5202 USER’S MANUAL

 

2-7

 

driven if AVEC is asserted. If autovectors are required for all interrupts, AVEC can be tied 
low.

 

2.5 CLOCK, RESET AND STATUS

2.5.1 Clock Input - (CLK)

 

CLK is the MCF5202 processor synchronous clock. CLK is used internally to clock or 
sequence the internal logic of the MCF5202 processor.

 

2.5.2 Reset (RST)

 

Asserting RST will cause the MCF5202 processor to enter reset exception processing. 
When RST is recognized, the A/D bus, TT, SIZ, R/W, DTIP, ATM and TS will be three-
stated. BR and BD will be negated.

 

2.5.3 Processor Status - (PST[3:0])

 

These outputs indicate the MCF5202 processor status. The timing is synchronous with the 
processor clock (CLK) and the status may not be related to the current bus transfer. Table 
2-6 shows the encodings of these signals.

.

 

2.6 TEST

 

The MCF5202 supports JTAG and contains an internal debug module. Several of the control 
pins for these modes are multiplexed, so users should be careful when the system requires 
both modes.

 

Table 2-6. MCF5202 Processor PST Definition

 

PST[3:0]

 

DEFINITION

 

0000 Continue execution

0001 Begin execution of an instruction

0010 Reserved

0011 Entry into user-mode

0100 Begin execution of 

 

PULSE 

 

instruction

0101 Begin execution of taken branch

0110 Reserved

0111 Begin execution of 

 

RTE

 

 instruction

1000 Begin 1-byte transfer on DDATA

1001 Begin 2-byte transfer on DDATA

1010 Begin 3-byte transfer on DDATA

1011 Begin 4-byte transfer on DDATA

1100 † Exception processing

1101 † Emulator-mode entry exception processing

1110 † Processor is stopped, waiting for interrupt

1111 † Processor is halted 

† These encodings are asserted for multiple cycles



 

Signal Description  

 

2-8

 

MCF5202 USER’S MANUAL

 

MOTOROLA

 

2.6.1 Motorola Test Mode - (MTMOD[2:0])

 

These asynchronous signals determine the mode of operation for the MCF5202. Table 
2-7 shows the encoding for these signals. For normal operations not using the debug 
module, tie these signals to a logic low.

 

2.6.2 Test Clock - (TCK)

 

TCK is the dedicated Test Access Port (TAP) clock that is independent of the MCF5202 
processor clock. Various TAP operations occur on the rising or falling edge of TCK. The 
internal TAP controller logic is designed in such a way that holding TCK high or low for an 
indefinite period of time will not cause the TAP test logic to lose state information. If TCK is 
not used, it should be tied to ground.

 

2.6.3 Debug Data - DDATA[3:0]

 

This nibble-wide bus displays captured processor data and breakpoint status. See

 

 Section 
6 Debug Support 

 

for additional information on this bus.

 

2.6.4 Test Reset/Development Serial Clock - (TRST/DSCLK)

 

The MTMODE[2:0] signals determine the function of this dual-purpose pin. If MTMODE[2:0] 
= 000, the TRST function is selected. If MTMODE[2:0] = 001, the DSCLK function is 
selected. MTMODE[2:0] should not be changed while RST = 1. When used as TRST, this 
pin will asynchronously reset the internal TAP controller to the test logic reset state, causing 
the TAP instruction register to choose the “bypass” command. When this occurs, all the TAP 
logic is benign and will not interfere with the normal functionality of the MCF5202 processor. 
Even with this asynchronous signal, Motorola recommends that TRST only make a 0 to 1 
(asserted to negated) transition while TMS is held at a logic 1 value. TRST has an internal 
pullup so that if it is not driven low its value will default to a logic level of 1. However, if TRST 
will not be used, it can either be tied to ground or, if TCK is clocked, it can be tied to VDD. 
The former connection will place the TAP controller in the test logic reset state immediately, 
while the later connection will cause the TAP controller (if TMS is a logic 1) to eventually end 
up in the test logic reset state after 5 clocks of TCK. 

 

Table 2-7.  MTMOD Definition

 

MTMOD[2:0]

 

MODE

 

000 Functional mode - JTAG enabled

001 Functional mode - Debug enabled

010 Motorola reserved test modes

011 Motorola reserved test modes

100 Motorola reserved test modes

101 Motorola reserved test modes

110 Motorola reserved test modes

111 Motorola reserved test modes



 

Signal Description

 

MOTOROLA

 

MCF5202 USER’S MANUAL

 

2-9

 

This pin is also used as the development serial clock (DSCLK) for the serial interface to the 
debug module.The maximum frequency for the DSCLK signal is 1/2 the CLK frequency. See 

 

Section 6 Debug Support 

 

for additional information on this signal.

 

2.6.5 Test Mode Select/ Break Point (TMS/BKPT)

 

The MTMODE[2:0] signals determine the function of this dual-purpose pin. If MTMODE[2:0] 
= 000, then the TMS function is selected. If MTMODE[2:0] = 001, the BKPT function is 
selected. MTMODE[2:0] should not change while RST = 1. When used as TMS, this input 
signal provides information to the TAP controller for determining which mode of test 
operation should be performed. The value of TMS and current state of the internal 16-state 
TAP controller state machine at the rising edge of TCK determine whether the TAP 
controller holds its current state or advances to a next state. This directly controls whether 
TAP data or instruction operations occur. TMS has an internal pullup so that if it is not driven 
low, its value will default to a logic level of 1. However, if TMS will not be used, it should be 
tied to VDD.

This pin also signals a hardware breakpoint to the processor when in the debug mode. See 

 

Section 6 Debug Support

 

 for additional information on this signal.

 

2.6.6 Test Data Input/Development Serial Input - (TDI/DSI)

 

This is a dual-function pin. If MTMODE[2:0] = 000, then TDI is selected. If MTMODE[2:0] = 
001, then DSI is selected. When used as TDI, this input signal provides the serial data port 
for loading the various JTAG shift registers composed of the Boundary Scan Register, the 
Bypass Register, and the Instruction Register. Shifting in of data depends on the state of the 
TAP controller state machine and the instruction currently in the Instruction Register, and 
occurs on the rising edge of TCK. TDI also has an internal pullup so that if it is not driven 
low, its value will default to a logic level of 1. However, if TDI will not be used, it should be 
tied to VDD. 

This pin also provides the single-bit communication for the debug module commands. See 

 

Section 6 Debug Support 

 

for additional information on this signal.

 

2.6.7 Test Data Output/Development Serial Output - (TDO/DSO)

 

This is a dual-function pin. When MTMODE[2:0] = 000, TDO is selected. When 
MTMODE[2:0] = 001, then DSO is selected. When used as TDO, this output signal provides 
the serial data port for outputting data from the TAP logic. Shifting out of data depends on 
the state of the TAP controller state machine and the instruction currently in the Instruction 
Register, and occurs on the falling edge of TCK. When TDO is not outputting test data, it is 
three-stated. TDO can also be placed in three-state mode to allow bussed or parallel 
connections to other devices that have a tap.

This signal also provides single-bit communication for the debug module responses. See 

 

Section 6 Debug Support

 

 for additional information on this signal.



 

Signal Description  

 

2-10

 

MCF5202 USER’S MANUAL

 

MOTOROLA

 

2.6.8 High Impedance - (HIZ)

 

The assertion of HIZ will force all output drivers to be in a high-impedance state. The timing 
on HIZ is independent of the clock. HIZ does not override the JTAG operation. TDO/DSO 
can be forced to high impedance by asserting

 

 

 

TRST.

 

2.6.9 JTAG Compliance Enable - (JCE)

 

This Motorola test pin should be tied to a logic 0 at all times in a system.



 

MOTOROLA

 

MCF5202 USERÕS MANUAL

 

3-1

 

SECTION 3
COLDFIRE CORE

 

This section describes the organization of the ColdFire 5200 processor core and presents a 
brief description of the program-visible registers. For detailed information on instructions, 
see the ColdFire ProgrammerÕs Reference Manual.

 

3.1 PROCESSOR PIPELINES

 

Figure 3-1 is a block diagram showing the processor pipelines of a ColdFire 5200 core.

 

Figure 3-1. ColdFire Processor Core Pipelines

IA GENERATION

INSTRUCTION
FETCH

FIFO
INSTRUCTION

BUFFER

DECODE & SELECT,
OPERAND FETCH

ADDRESS
GENERATION,

EXECUTE

IFP

OEP

 ADDRESS[31:0]

 DATA[31:0]

 

Date: 7-28-98
Document revision Number: 0.1
Pages affected: see change bars



 

ColdFire Core

 

3-2

 

MCF5202 USERÕS MANUAL

 

MOTOROLA

 

The processor core is comprised of two separate pipelines that are decoupled by an 
instruction buffer. The instruction fetch pipeline (IFP) is responsible for instruction address 
generation and instruction fetch. The instruction buffer is a first-in-first-out (FIFO) buffer that 
holds prefetched instructions awaiting execution in the operand execution pipeline (OEP). 
The OEP includes two pipeline stages. The first stage decodes instructions and selects 
operands (DSOC); the second stage (AGEX) performs instruction execution and calculates 
operand effective addresses, if needed.

 

3.2 PROCESSOR REGISTER DESCRIPTION

 

The following paragraphs describe the processor registers in the user and supervisor 
programming models. The appropriate programming model is selected based on the 
privilege level of the processor as defined by the S-bit of the status register, i.e., user mode 
or supervisor mode.

 

3.2.1 User Programming Model

 

Figure 3-2 illustrates the user programming model. The model is the same as for M68000
Family microprocessors, consisting of the following registers: 

¥ 16 general-purpose 32-bit registers (D0ÐD7, A0ÐA7)

¥ 32-bit program counter (PC)

¥ 8-bit condition code register (CCR)

 

3.2.1.1 DATA REGISTERS (D0ÐD7). 

 

Registers D0ÐD7 are used as data registers for bit (1 
bit), byte (8 bit), word (16 bit) and longword (32 bit) operations and may also be used as 
index registers. 

 

3.2.1.2 ADDRESS REGISTERS (A0ÐA6). 

 

These registers can be used as software stack 
pointers, index registers, or base address registers and may be used for word and longword 
operations.

 

3.2.1.3 STACK POINTER (A7). 

 

ColdFire supports a single hardware stack pointer (A7) for 
explicit references or implicit ones during stacking for subroutine calls and returns, and 
exception handling. The initial value of A7 is loaded from the reset exception vector, address 
$0. The same register is used for both user and supervisor mode and can be used for word 
and longword operations.

A subroutine call saves the PC on the stack and the return restores it from the stack. Both 
the PC and the SR are saved on the stack during the processing of exceptions and 
interrupts. The return from exception instruction restores the SR and PC values from the 
stack.

 

3.2.1.4 PROGRAM COUNTER. 

 

The PC contains the address of the currently executing 
instruction. During instruction execution and exception processing, the processor 
automatically increments the contents of the PC or places a new value in the PC, as 
appropriate. For some addressing modes, the PC can be used as a pointer for PC-relative 
operand addressing. 



 

ColdFire Core

 

MOTOROLA

 

MCF5202 USERÕS MANUAL

 

3-3

 

3.2.1.5 CONDITION CODE REGISTER . 

 

The CCR is the least significant byte of the 
processor status register (SR), as shown. Bits 4Ð0 represent indicator flags based on results 
generated by processor operations. Bit 4, the extend bit (X-bit), is also used as an input 
operand during multiprecision arithmetic computations. 

Set to the value of the C-bit for arithmetic operations; otherwise not affected.

 

Figure 3-2. User Programming Model

 

4 3 2 1 0
X N Z V C

 

 

D0
D1
D2
D3
D4
D5
D6
D7

A0
A1
A2
A3
A4
A5
A6

A7

CCR

PC

15 7 0

15 031

DATA
REGISTERS

ADDRESS
REGISTERS

STACK
POINTER

PROGRAM
COUNTER

CONDITION
CODE
REGISTER

7



 

ColdFire Core

 

3-4

 

MCF5202 USERÕS MANUAL

 

MOTOROLA

 

XÑ extend condition code bit

NÐ negative condition code bit
Set if the most significant bit of the result is set; otherwise cleared

ZÐ zero condition code bit
Set if the result equals zero; otherwise cleared

VÐ overflow condition code bit
Set if an arithmetic overflow occurs implying that the result cannot be represented in the
operand size; otherwise cleared

CÐ carry condition code bit
Set if a carryout of the operand MSB occurs for an addition, or if a borrow occurs in a sub-
traction; otherwise cleared

 

3.2.2 Supervisor Programming Model

 

Only system programmers use the supervisor programming model (see Figure 3-3) to 
implement sensitive operating system functions, I/O control, and memory management. All 
accesses that affect the control features of ColdFire 5200 processors are in the supervisor 
programming model, which consists of the registers available to users as well as the 
following control registers: 

¥ 16-bit status register (SR)

¥ 32-bit vector base register (VBR)

 

Figure 3-3. Supervisor Programming Model

 

Additional registers may be supported on a part basis.

The following paragraphs describe the supervisor programming model registers. 

 

3.2.2.1 STATUS REGISTER. 

 

The SR (see Figure 3-4) stores the processor status and 
includes the CCR, the interrupt priority mask, and other control bits. In the supervisor mode, 
software can access the entire SR. In user mode, only the lower 8 bits are accessible (CCR). 

 

31 20 19 0
MUST BE ZEROS VBR VECTOR BASE REGISTER

15 8 7 0
System Byte CCR SR STATUS REGISTER



 

ColdFire Core

 

MOTOROLA

 

MCF5202 USERÕS MANUAL

 

3-5

 

The control bits indicate the following states for the processor: trace mode (T-bit), supervisor 
or user mode (S-bit), and master or interrupt state (M).

TÐ trace enable
When set, the processor will perform a trace exception after every instruction.

SÐ supervisor / user state
Denotes whether the processor is in supervisor mode (S=1) or user mode (S=0).

MÐ master / interrupt state
This bit is cleared by an interrupt exception, and can be set by software during execution
of the RTE or move to SR instructions.

I[2:0]Ð interrupt priority mask
Defines the current interrupt priority. Interrupt requests are inhibited for all priority levels
less than or equal to the current priority, except the edge-sensitive level 7 request, which
cannot be masked.

 

3.2.2.2 VECTOR BASE REGISTER (VBR). 

 

The Vector Base Register in the ColdFire 
architecture is a 32-bit address register with only the upper 12 bits physically implemented 
in hardware. The low-order 20 bits are forced to zero when the CPU uses the VBR to 
calculate the exception vector address, effectively placing the vector table on a 0-modulo-1 
MByte address. 

The VBR may be written using the MOVEC instruction from the CPU, or from a BDM serial 
command. The register may be read from the BDM only. When a BDM read of the VBR is 
performed, the contents of the register are returned in the upper12 bits of the 32-bit result, 
with the low-order 20 bits being UNDEFINED.

The ColdFire 5200 processors provide a simplified exception processing model. The next 
section details the model.

 

3.3 EXCEPTION PROCESSING OVERVIEW

 

Exception processing for ColdFire processors is streamlined for performance. Differences 
from previous 68000 Family processors include:

¥ A simplified exception vector table

¥ Reduced relocation capabilities using the vector base register 

¥ A single exception stack frame format

¥ Use of a single self-aligning system stack

 

SYSTEM BYTE CONDITION CODE REGISTER (CCR)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T 0 S M 0 I[2:0] 0 0 0 X N Z V C

 

Figure 3-4. Status Register



 

ColdFire Core

 

3-6

 

MCF5202 USERÕS MANUAL

 

MOTOROLA

 

ColdFire 5200 processors use an instruction restart exception model but do require more 
software support to recover from certain access errors. See 

 

3.5.1 Access Error Exception

 

 
for details.

Exception processing is comprised of four major steps and can be defined as the time from 
the detection of the fault condition until the fetch of the first handler instruction has been 
initiated.

First, the processor makes an internal copy of the SR and then enters supervisor mode by 
asserting the S-bit and disabling trace mode by negating the T-bit. The occurrence of an 
interrupt exception also forces the M-bit to be cleared and the interrupt priority mask to be 
set to the level of the current interrupt request

Second, the processor determines the exception vector number. For all faults 

 

except

 

 
interrupts, the processor performs this calculation based on the exception type. For 
interrupts, the processor performs an interrupt-acknowledge (IACK) bus cycle to obtain the 
vector number from a peripheral device. The IACK cycle is mapped to a special 
acknowledge address space with the interrupt level encoded in the address.

Third, the processor saves the current context by creating an exception stack frame on the 
system stack. ColdFire 5200 processors support a single stack pointer in the A7 address 
register; therefore, there is no notion of separate supervisor or user stack pointers. As a 
result, the exception stack frame is created at a 0-modulo-4 address on the top of the current 
system stack. Additionally, the processor uses a simplified fixed-length stack frame for all 
exceptions. The exception type determines whether the program counter placed in the 
exception stack frame defines the location of the faulting instruction (fault) or the address of 
the next instruction to be executed (next).

Fourth, the processor calculates the address of the first instruction of the exception handler. 
By definition, the exception vector table is aligned on a 1 Mbyte boundary. This instruction 
address is generated by fetching an exception vector from the table located at the address 
defined in the vector base register. The index into the exception table is calculated as (4 x 
vector_number). Once the exception vector has been fetched, the contents of the vector 
determine the address of the first instruction of the desired handler. After the instruction 
fetch for the first opcode of the handler has been initiated, exception processing terminates 
and normal instruction processing continues in the handler.

ColdFire 5200 processors support a 1024-byte vector table aligned on any 1 Mbyte address 
boundary (see Table 3-1). The table contains 256 exception vectors where the first 64 are 
defined by Motorola and the remaining 192 are user-defined interrupt vectors.



 

ColdFire Core

 

MOTOROLA

 

MCF5202 USERÕS MANUAL

 

3-7

 

ColdFire 5200 processors inhibit sampling for interrupts during the first instruction of all 
exception handlers. This allows any handler to effectively disable interrupts, if necessary, by 
raising the interrupt mask level contained in the status register.

 

3.4 EXCEPTION STACK FRAME DEFINITION

 

The exception stack frame is shown in Figure 3-5. The first longword of the exception stack 
frame contains the 16-bit format/vector word (F/V) and the 16-bit status register, and the 
second longword contains the 32-bit program counter address.

The 16-bit format/vector word contains 3 unique fields:

¥ A 4-bit format field at the top of the system stack is always written with a value of 
{4,5,6,7} by the processor indicating a two-longword frame format. See Table 3-2.

 

Table 3-1. Exception Vector Assignments

 

VECTOR
NUMBER(S)

VECTOR
OFFSET (HEX)

STACKED
PROGRAM
COUNTER

ASSIGNMENT

 

0 $000 - Initial stack pointer
1 $004 - Initial program counter
2 $008 Fault Access error
3 $00C Fault Address error
4 $010 Fault Illegal instruction

5-7 $014-$01C - Reserved
8 $020 Fault Privilege violation
9 $024 Next Trace
10 $028 Fault Unimplemented line-a opcode
11 $02C Fault Unimplemented line-f opcode
12 $030 Next Debug interrupt
13 $034 - Reserved
14 $038 Fault Format error
15 $03C Next Uninitialized interrupt

16-23 $040-$05C - Reserved
24 $060 Next Spurious interrupt

25-31 $064-$07C Next Level 1-7 autovectored interrupts
32-47 $080-$0BC Next Trap # 0-15 instructions
48-63 $0C0-$0FC - Reserved
64-255 $100-$3FC Next User-defined interrupts

ÒFaultÓ refers to the PC of the instruction that caused the exception
ÒNextÓ refers to the PC of the next instruction that follows the instruction that caused the fault.

 

Figure 3-5. Exception Stack Frame Form

FORMAT FS[3:2] VECTOR[7:0] FS[1:0] STATUS REGISTER 

PROGRAM COUNTER[31:0]

A7

+ $04

31 17 15 027 25



 

ColdFire Core

 

3-8

 

MCF5202 USERÕS MANUAL

 

MOTOROLA

 

¥ A 4-bit fault status field, FS[3:0], at the top of the system stack. This field is defined for 
access and address errors only and written as zeros for all other types of exceptions. 
See Table 3-3.

¥ The 8-bit vector number, vector[7:0], defines the exception type and is calculated by the 
processor for all internal faults and represents the value supplied by the peripheral in 
the case of an interrupt. Refer to Table 3-1.

 

3.5 PROCESSOR EXCEPTIONS

3.5.1 Access Error Exception

 

The exact processor response to an access error depends on the type of memory reference 
being performed. For an instruction fetch, the processor postpones the error reporting until 
the faulted reference is needed by an instruction for execution. Therefore, faults that occur 
during instruction prefetches that are then followed by a change of instruction flow will not 
generate an exception. When the processor attempts to execute an instruction with a faulted 
opword and/or extension words, the access error will be signaled and the instruction 
aborted. For this type of exception, the programming model has not been altered by the 
instruction generating the access error.

If the access error occurs on an operand read, the processor immediately aborts the current 
instructionÕs execution and initiates exception processing. In this situation, any address 
register updates attributable to the auto-addressing modes, {e.g., (An)+,-(An)}, will already 

 

Table 3-2. Format Field Encodings

 

ORIGINAL A7 @ TIME OF 
EXCEPTION, BITS 1:0

A7 @ 1ST INSTRUCTION 
OF HANDLER

FORMAT FIELD

 

00 Original A7 - 8 4
01 Original A7 - 9 5
10 Original A7 - 10 6
11 Original A7 - 11 7

 

Table 3-3. Fault Status Encodings

 

FS[3:0] DEFINITION

 

00xx Reserved

0100 Error on instruction fetch

0101 Reserved

011x Reserved

1000 Error on operand write

1001 Attempted write to write-protected space

101x Reserved

1100 Error on operand read

1101 Reserved

111x Reserved



 

ColdFire Core

 

MOTOROLA

 

MCF5202 USERÕS MANUAL

 

3-9

 

have been performed. So, the programming model contains the updated An value. In 
addition, if an access error occurs during the execution of a MOVEM instruction loading from 
memory, any registers already updated 

 

before

 

 the fault occurs will contain the operands 
from memory.

The ColdFire processor uses an imprecise reporting mechanism for access errors on 
operand writes. Because the actual write cycle may be decoupled from the processorÕs 
issuing of the operation, the signaling of an access error appears to be decoupled from the 
instruction that generated the write. Accordingly, the PC contained in the exception stack 
frame merely represents the location in the program when the access error was signaled. 
All programming model updates associated with the write instruction are completed. The 
NOP instruction can collect access errors for writes. This instruction delays its execution 
until all previous operations, including all pending write operations, are complete. If any 
previous write terminates with an access error, it is guaranteed to be reported on the NOP 
instruction.

 

3.5.2 Address-Error Exception

 

Any attempted execution transferring control to an odd instruction address (i.e., if bit 0 of the 
target address is set) results in an address-error exception.

Any attempted use of a word-sized index register (Xn.w) or a scale factor of 8 on an indexed 
effective addressing mode generates an address error as does an attempted execution of a 
full-format indexed addressing mode.

 

3.5.3 Illegal Instruction Exception

 

The attempted execution of the $0000 and the $4AFC opwords generates an illegal 
instruction exception. Additionally, the attempted execution of any line A and most line F 
opcode generates their unique exception types, vector numbers 10 and 11 respectively. 
ColdFire 5200 processors do not provide illegal instruction detection on the extension words 
on any instruction, including MOVEC. If any other nonsupported opcode is executed, the 
resulting operation is undefined.

 

3.5.4 Privilege Violation

 

The attempted execution of a supervisor mode instruction while in user mode generates a 
privilege violation exception. See the 

 

ColdFire ProgrammerÕs Reference Manual

 

 for lists of 
supervisor- and user-mode instructions.

 

3.5.5 Trace Exception

 

To aid in program development, the ColdFire 5200 processors provide an instruction-by-
instruction tracing capability. While in trace mode, indicated by the assertion of the T-bit in 
the status register (SR[15] = 1), the completion of an instruction execution signals a trace 
exception. This functionality allows a debugger to monitor program execution.

The single exception to this definition is the STOP instruction. When the STOP opcode is 
executed, the processor core waits until an unmasked interrupt request is asserted, then 
aborts the pipeline and initiates interrupt exception processing. 



 

ColdFire Core

 

3-10

 

MCF5202 USERÕS MANUAL

 

MOTOROLA

 

Because ColdFire processors do not support any hardware stacking of multiple exceptions, 
it is the responsibility of the operating system to check for trace mode after processing other 
exception types. As an example, consider the execution of a TRAP instruction while in trace 
mode. The processor will initiate the TRAP exception and then pass control to the 
corresponding handler. If the system requires that a trace exception be processed, it is the 
responsibility of the TRAP exception handler to check for this condition (SR[15] in the 
exception stack frame asserted) and pass control to the trace handler before returning from 
the original exception.

 

3.5.6 Debug Interrupt

 

This special type of program interrupt is discussed in detail in 

 

Section 6, Debug Support

 

. 
This exception is generated in response to a hardware breakpoint register trigger. The 
processor does not generate an IACK cycle, but rather calculates the vector number 
internally (vector number 12).

 

3.5.7 RTE and Format Error Exceptions

 

When an RTE instruction is executed, the processor first examines the 4-bit format field to 
validate the frame type. For a ColdFire 5200 processor, any attempted execution of an RTE 
where the format is not equal to {4,5,6,7} generates a format error. The exception stack 
frame for the format error is created without disturbing the original RTE frame and the 
stacked PC pointing to the RTE instruction.

The selection of the format value provides some limited debug support for porting code from 
68000 applications. On 680x0 Family processors, the SR was located at the top of the stack. 
On those processors, bit[30] of the longword addressed by the system stack pointer is 
typically zero. Thus, if an RTE is attempted using this ÒoldÓ format, it generates a format error 
on a ColdFire 5200 processor.

If the format field defines a valid type, the processor: (1) reloads the SR operand, (2) fetches 
the second longword operand, (3) adjusts the stack pointer by adding the format value to 
the auto-incremented address after the fetch of the first longword, and then (4) transfers 
control to the instruction address defined by the second longword operand within the stack 
frame.

 

3.5.8 TRAP Instruction Exceptions

 

The TRAP #n

 

 

 

instruction always forces an exception as part of its execution and is useful 
for implementing system calls. 

 

3.5.9 Interrupt Exception

 

The interrupt exception processing, with interrupt recognition and vector fetching, includes 
uninitialized and spurious interrupts as well as those where the requesting device supplies 
the 8-bit interrupt vector. Autovectoring may optionally be supported through the System 
Integration Module (SIM). Refer to the SIM section to see if this is supported on this device.



 

ColdFire Core

 

MOTOROLA

 

MCF5202 USERÕS MANUAL

 

3-11

 

3.5.10 Fault-on-Fault Halt

 

If a ColdFire 5200 processor encounters any type of fault during the exception processing 
of another fault, the processor immediately halts execution with the catastrophic Òfault-on-
faultÓ condition. A reset is required to force the processor to exit this halted state.

 

3.5.11 Reset Exception

 

Asserting the reset input signal to the processor causes a reset exception. The reset 
exception has the highest priority of any exception; it provides for system initialization and 
recovery from catastrophic failure. Reset also aborts any processing in progress when the 
reset input is recognized. Processing cannot be recovered.

The reset exception places the processor in the supervisor mode by setting the S-bit and 
disables tracing by clearing the T-bit in the SR. This exception also clears the M-bit and sets 
the processorÕs interrupt priority mask in the SR to the highest level (level 7). Next, the VBR 
is initialized to zero ($00000000). The control registers specifying the operation of any 
memories (e.g., cache and/or RAM modules) connected directly to the processor are 
disabled.

 

Note

 

Other implementation-specific supervisor registers are also 
affected. Refer to the specific userÕs manual for details.

Once the processor is granted the bus and it does not detect any other alternate masters 
taking the bus, the core then performs two longword read bus cycles. The first longword at 
address 0 is loaded into the stack pointer and the second longword at address 4 is loaded 
into the program counter. After the initial instruction is fetched from memory, program 
execution begins at the address in the PC. If an access error or address error occurs before 
the first instruction is executed, the processor enters the fault-on-fault halted state.

 

3.6 INSTRUCTION EXECUTION TIMING

 

This section presents ColdFire 5200 Family processor instruction execution times in terms 
of processor core clock cycles. The number of operand references for each instruction is 
enclosed in parentheses following the number of clock cycles. Each timing entry is 
presented as 

 

C

 

(r/w) where:

¥

 

C 

 

  - number of processor clock cycles, including all applicable operand fetches and 
writes, and all internal core cycles required to complete the instruction execution.

¥ r/w - number of operand reads (r) and writes (w) required by the instruction. An opera-
tion performing a read-modify-write function is denoted as (1/1).

This section includes the assumptions concerning the timing values and the execution time 
details.



 

ColdFire Core

 

3-12

 

MCF5202 USERÕS MANUAL

 

MOTOROLA

 

3.6.1 Timing Assumptions

 

For the timing data presented in this section, the following assumptions are made:

1. The operand execution pipeline (OEP) is loaded with the opword and all required ex-
tension words at the beginning of each instruction execution. This implies that the OEP 
does not wait for the instruction fetch pipeline (IFP) to supply opwords and/or exten-
sion words.

2. The OEP does not experience any sequence-related pipeline stalls. For ColdFire 5200 
processors, the most common example of this type of stall involves consecutive store 
operations, excluding the MOVEM instruction. For all STORE operations (except 
MOVEM), certain hardware resources within the processor are marked as ÒbusyÓ for 
two clock cycles after the final DSOC cycle of the store instruction. If a subsequent 
STORE instruction is encountered within this 2-cycle window, it will be stalled until the 
resource again becomes available. Thus, the maximum pipeline stall involving con-
secutive STORE operations is 2 cycles. The MOVEM instruction uses a different set 
of resources and this stall does not apply.

3. The OEP completes all memory accesses without any stall conditions caused by the 
memory itself. Thus, the timing details provided in this section assume that an infinite 
zero-wait state memory is attached to the processor core.

4. All operand data accesses are aligned on the same byte boundary as the operand 
size, i.e., 16-bit operands aligned on 0-modulo-2 addresses, 32-bit operands aligned 
on 0-modulo-4 addresses.

If the operand alignment fails these guidelines, it is misaligned. The processor core 
decomposes the misaligned operand reference into a series of aligned accesses as shown 
in Table 3-4.

 

3.6.2 MOVE Instruction Execution Times

 

The execution times for the MOVE.{B,W} instructions are shown in Table 3-5, while Table 
3-6 provides the timing for MOVE.L.

For all

 

 

 

tables in this section, the execution time of any instruction using the PC-relative 
effective addressing modes is the same for the comparable An-relative mode.

The nomenclature Òxxx.wlÓ refers to both forms of absolute addressing, xxx.w and xxx.l. 

 

Table 3-4. Misaligned Operand References

 

ADDRESS[1:0] SIZE
KBUS 

OPERATIONS
ADDITIONAL 

C(R/W)

 

X1 Word Byte, Byte 2(1/0) if read
1(0/1) if write

X1 Long Byte, Word, Byte 3(2/0) if read
2(0/2) if write

10 Long Word, Word 2(1/0) if read
1(0/1) if write



 

ColdFire Core

 

MOTOROLA

 

MCF5202 USERÕS MANUAL

 

3-13

 

Table 3-5. Move Byte and Word Execution Times

 

SOURCE
DESTINATION 

Rx (Ax) (Ax)+ -(Ax) (d16,Ax) (d8,Ax,Xn*SF) xxx.wl

 

Dy 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)
Ay 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)

(Ay) 3(1/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1)
(Ay)+ 3(1/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1)
-(Ay) 3(1/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1)

(d16,Ay) 3(1/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) Ñ Ñ
(d8,Ay,Xn*SF) 4(1/0) 4(1/1) 4(1/1) 4(1/1) Ñ Ñ Ñ

xxx.w 3(1/0) 3(1/1) 3(1/1) 3(1/1) Ñ Ñ Ñ
xxx.l 3(1/0) 3(1/1) 3(1/1) 3(1/1) Ñ Ñ Ñ

(d16,PC) 3(1/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) Ñ Ñ
(d8,PC,Xn*SF) 4(1/0) 4(1/1) 4(1/1) 4(1/1) Ñ Ñ Ñ

#xxx 1(0/0) 3(0/1) 3(0/1) 3(0/1) Ñ Ñ Ñ

 

Table 3-6.  Move Long Execution Times 

 

SOURCE
DESTINATION

Rx (Ax) (Ax)+ -(Ax) (d16,Ax) (d8,Ax,Xn*SF) xxx.wl

 

Dy 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)
Ay 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)

(Ay) 2(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)
(Ay)+ 2(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)
-(Ay) 2(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)

(d16,Ay) 2(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) Ñ Ñ
(d8,Ay,Xn*SF) 3(1/0) 3(1/1) 3(1/1) 3(1/1) Ñ Ñ Ñ

xxx.w 2(1/0) 2(1/1) 2(1/1) 2(1/1) Ñ Ñ Ñ
xxx.l 2(1/0) 2(1/1) 2(1/1) 2(1/1) Ñ Ñ Ñ

(d16,PC) 2(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) Ñ Ñ
(d8,PC,Xn*SF) 3(1/0) 3(1/1) 3(1/1) 3(1/1) Ñ Ñ Ñ

#xxx 1(0/0) 2(0/1) 2(0/1) 2(0/1) Ñ Ñ Ñ



 

ColdFire Core

 

3-14

 

MCF5202 USERÕS MANUAL

 

MOTOROLA

 

3.7 STANDARD ONE OPERAND INSTRUCTION EXECUTION TIMES

 

Table 3-7. One Operand Instruction Execution Times

 

OPCODE <EA>
EFFECTIVE ADDRESS

Rn (An) (An)+ -(An) (d16,An) (d8,An,Xn*SF) xxx.wl #xxx

 

CLR.B <ea> 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) Ñ
CLR.W <ea> 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) Ñ
CLR.L <ea> 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) Ñ
EXT.W Dx 1(0/0) Ñ Ñ Ñ Ñ Ñ Ñ Ñ
EXT.L Dx 1(0/0) Ñ Ñ Ñ Ñ Ñ Ñ Ñ

EXTB.L Dx 1(0/0) Ñ Ñ Ñ Ñ Ñ Ñ Ñ
NEG.L Dx 1(0/0) Ñ Ñ Ñ Ñ Ñ Ñ Ñ

NEGX.L Dx 1(0/0) Ñ Ñ Ñ Ñ Ñ Ñ Ñ
NOT.L Dx 1(0/0) Ñ Ñ Ñ Ñ Ñ Ñ Ñ

scc Dx 1(0/0) Ñ Ñ Ñ Ñ Ñ Ñ Ñ
SWAP Dx 1(0/0) Ñ Ñ Ñ Ñ Ñ Ñ Ñ
TST.B <ea> 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)
TST.W <ea> 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)
TST.L <ea> 1(0/0) 2(1/0) 2(1/0) 2(1/0) 2(1/0) 3(1/0) 2(1/0) 1(0/0)



 

ColdFire Core

 

MOTOROLA

 

MCF5202 USERÕS MANUAL

 

3-15

 

3.8 STANDARD TWO OPERAND INSTRUCTION EXECUTION TIMES 

 

Table 3-8. Two Operand Instruction Execution Times

OPCODE <EA>
EFFECTIVE ADDRESS

Rn (An) (An)+ -(An)
(d16,An)
(d16,PC)

(d8,An,Xn*SF) 
(d8,PC,Xn*SF) 

xxx.wl #xxx

ADD.L <ea>,Rx 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)
ADD.L Dy,<ea> Ñ 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) Ñ
ADDI.L #imm,Dx 1(0/0) Ñ Ñ Ñ Ñ Ñ Ñ Ñ
ADDQ.L #imm,<ea> 1(0/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) Ñ
ADDX.L Dy,Dx 1(0/0) Ñ Ñ Ñ Ñ Ñ Ñ Ñ
AND.L <ea>,Rx 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)
AND.L Dy,<ea> Ñ 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) Ñ
ANDI.L #imm,Dx 1(0/0) Ñ Ñ Ñ Ñ Ñ Ñ Ñ
ASL.L <ea>,Dx 1(0/0) Ñ Ñ Ñ Ñ Ñ Ñ 1(0/0)
ASR.L <ea>,Dx 1(0/0) Ñ Ñ Ñ Ñ Ñ Ñ 1(0/0)
BCHG Dy,<ea> 2(0/0) 4(1/1) 4(1/1) 4(1/1) 4(1/1) 5(1/1) 4(1/1) Ñ
BCHG #imm,<ea> 2(0/0) 4(1/1) 4(1/1) 4(1/1) 4(1/1) Ñ Ñ Ñ
BCLR Dy,<ea> 2(0/0) 4(1/1) 4(1/1) 4(1/1) 4(1/1) 5(1/1) 4(1/1) Ñ
BCLR #imm,<ea> 2(0/0) 4(1/1) 4(1/1) 4(1/1) 4(1/1) Ñ Ñ Ñ
BSET Dy,<ea> 2(0/0) 4(1/1) 41/1) 4(1/1) 4(1/1) 5(1/1) 4(1/1) Ñ
BSET #imm,<ea> 2(0/0) 4(1/1) 4(1/1) 4(1/1) 4(1/1) Ñ Ñ Ñ
BTST Dy,<ea> 2(0/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) Ñ
BTST #imm,<ea> 1(0/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) Ñ Ñ 1(0/0)
CMP.L <ea>,Rx 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)
CMPI.L #imm,Dx 1(0/0) Ñ Ñ Ñ Ñ Ñ Ñ Ñ
EOR.L Dy,<ea> 1(0/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) Ñ
EORI.L #imm,Dx 1(0/0) Ñ Ñ Ñ Ñ Ñ Ñ Ñ

LEA <ea>,Ax Ñ 1(0/0) Ñ Ñ 1(0/0) 2(0/0) 1(0/0) Ñ
LSL.L <ea>,Dx 1(0/0) Ñ Ñ Ñ Ñ Ñ Ñ 1(0/0)
LSR.L <ea>,Dx 1(0/0) Ñ Ñ Ñ Ñ Ñ Ñ 1(0/0)

MOVEQ #imm,Dx Ñ Ñ Ñ Ñ Ñ Ñ Ñ 1(0/0)
MULS.W <ea>,Dx 9(0/0) 11(1/0) 11(1/0) 11(1/0) 11(1/0) 12(1/0) 11(1/0) 9(0/0)
MULU.W <ea>,Dx 9(0/0) 11(1/0) 11(1/0) 11(1/0) 11(1/0) 12(1/0) 11(1/0) 9(0/0)
MULS.L <ea>,Dx £ 18(0/0) £ 20(1/0) £ 20(1/0) £ 20(1/0) £ 20(1/0) Ñ Ñ Ñ
MULU.L <ea>,Dx £ 18(0/0) £ 20(1/0) £ 20(1/0) £ 20(1/0) £ 20(1/0) Ñ Ñ Ñ

OR.L <ea>,Rx 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)
OR.L Dy,<ea> Ñ 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) Ñ
ORI.L #imm,Dx 1(0/0) Ñ Ñ Ñ Ñ Ñ Ñ Ñ
SUB.L <ea>,Rx 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)
SUB.L Dy,<ea> Ñ 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) Ñ
SUBI.L #imm,Dx 1(0/0) Ñ Ñ Ñ Ñ Ñ Ñ Ñ
SUBQ.L #imm,<ea> 1(0/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) Ñ
SUBX.L Dy,Dx 1(0/0) Ñ Ñ Ñ Ñ Ñ Ñ Ñ



ColdFire Core

3-16 MCF5202 USERÕS MANUAL MOTOROLA

3.9 MISCELLANEOUS INSTRUCTION EXECUTION TIMES 

Table 3-9. Miscellaneous Instruction Execution Times

OPCODE <EA>
EFFECTIVE ADDRESS

Rn (An) (An)+ -(An) (d16,An) (d8,An,Xn*SF) xxx.wl #xxx
LINK.W Ay,#imm 2(0/1) Ñ Ñ Ñ Ñ Ñ Ñ Ñ

MOVE.W CCR,Dx 1(0/0) Ñ Ñ Ñ Ñ Ñ Ñ Ñ
MOVE.W <ea>,CCR 1(0/0) Ñ Ñ Ñ Ñ Ñ Ñ 1(0/0)
MOVE.W SR,Dx 1(0/0) Ñ Ñ Ñ Ñ Ñ Ñ Ñ

MOVE.W <ea>,SR 7(0/0) Ñ Ñ Ñ Ñ Ñ Ñ 7(0/0) 1

MOVEC Ry,Rc 9(0/1) Ñ Ñ Ñ Ñ Ñ Ñ Ñ
MOVEM.L <ea>,&list Ñ 1+n(n/0) Ñ Ñ 1+n(n/0) Ñ Ñ Ñ
MOVEM.L &list,<ea> Ñ 1+n(0/n) Ñ Ñ 1+n(0/n) Ñ Ñ Ñ

NOP 3(0/0) Ñ Ñ Ñ Ñ Ñ Ñ Ñ

PEA <ea> Ñ 2(0/1) Ñ Ñ 2(0/1) 3 3(0/1) 4 2(0/1) Ñ

PULSE 1(0/0) Ñ Ñ Ñ Ñ Ñ Ñ Ñ

STOP #imm Ñ Ñ Ñ Ñ Ñ Ñ Ñ 3(0/0) 2

TRAP #imm Ñ Ñ Ñ Ñ Ñ Ñ Ñ 15(1/2)
TRAPF 1(0/0) Ñ Ñ Ñ Ñ Ñ Ñ Ñ

TRAPF.W 1(0/0) Ñ Ñ Ñ Ñ Ñ Ñ Ñ
TRAPF.L 1(0/0) Ñ Ñ Ñ Ñ Ñ Ñ Ñ

UNLK Ax 2(1/0) Ñ Ñ Ñ Ñ Ñ Ñ Ñ
WDDATA <ea> Ñ 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 3(1/0)
WDEBUG <ea> Ñ 5(2/0) Ñ Ñ 5(2/0) Ñ Ñ Ñ

n is the number of registers moved by the MOVEM opcode.
1If a MOVE.W #imm,SR instruction is executed and imm[13] = 1, the execution time is 1(0/0).
2The execution time for STOP is the time required until the processor begins sampling continuously for interrupts.
3 PEA execution times are the same for (d16,PC)
4 PEA execution times are the same for (d8,PC,Xn*SF)



ColdFire Core

MOTOROLA MCF5202 USERÕS MANUAL 3-17

3.10 BRANCH INSTRUCTION EXECUTION TIMES

Table 3-10. General Branch Instruction Execution Times

OPCODE <EA>
EFFECTIVE ADDRESS

Rn (An) (An)+ -(An)
(d16,An)
(d16,PC)

(d8,An,Xi*SF) 
(d8,PC,Xi*SF) 

xxx.wl #xxx

BSR Ñ Ñ Ñ Ñ 3(0/1) Ñ Ñ Ñ
JMP <ea> Ñ 3(0/0) Ñ Ñ 3(0/0) 4(0/0) 3(0/0) Ñ
JSR <ea> Ñ 3(0/1) Ñ Ñ 3(0/1) 4(0/1) 3(0/1) Ñ
RTE Ñ Ñ 10(2/0) Ñ Ñ Ñ Ñ Ñ
RTS Ñ Ñ 5(1/0) Ñ Ñ Ñ Ñ Ñ

Table 3-11. BRA, Bcc Instruction Execution Times

OPCODE
FORWARD

TAKEN
FORWARD

NOT TAKEN
BACKWARD

TAKEN
BACKWARD
NOT TAKEN

BRA 2(0/0) Ñ 2(0/0) Ñ
Bcc 3(0/0) 1(0/0) 2(0/0) 3(0/0) 



 

MOTOROLA 

 

MCF5202 USER’S MANUAL

 

4-1

 

 

 

SECTION 4
CACHE

 

The MCF5202 contains a nonblocking, 2-kbyte, 4-way set-associative, unified (instruction 
and data) cache with a 16-byte line size. The cache improves system performance by 
providing low latency data to the MCF5202 instruction and data pipes. This decouples 
processor performance from system memory performance

 

 

 

and increases bus availability for 
alternate bus masters.

The MCF5202 nonblocking cache services read hits or write hits from the processor while a 
fill (caused by a cache allocation) is in progress.

As shown in Figure 4-1, both instruction and data accesses are performed using a single 
bus connected to the cache. All addresses from the processor to the cache are physical 
addresses. If the address matches one of the cache entries, the access hits in the cache. 
For a read operation, the cache supplies the data to the processor, and for a write operation, 
the data from the processor updates the cache. If the access does not match one of the 
cache entries (misses in the cache) or a write access must be written through to memory, 
the cache performs a bus cycle on the MBUS and correspondingly on the external bus by 
way of the system bus controller (SBC). Throughout this chapter, all cache accesses on the 
MBUS have a corresponding access on the external bus by way of the SBC.

 

Figure 4-1. MCF5202 Unified Cache

SYSTEM
BUS

CONTROLLER
ADDRESS/

CONTROL

CACHE

CONTROL LOGIC

DIRECTORY ARRAY

DATA ARRAY

DATA PATH

COLDFIRE
PROCESSOR

CORE

ADDRESS PATH

CONTROL

DATA

ADDRESS

MBUS

EXTERNAL
BUS

KBUS DATA



 

Cache  

 

4-2

 

MCF5202 USER’S MANUAL

 

MOTOROLA

 

 

 

The MCF5202 does not implement a bus snooper. Users must maintain cache coherency 
with other possible bus masters via software.

 

4.1 CACHE ORGANIZATION

 

The 4-way set associative cache is organized as four levels of 32 lines each with each line 
containing 16 bytes of storage. Figure 4-2 illustrates the cache organization (as well as the 
terminology used) along with the cache line format.

Address bits A8–A4 provide an index to select a row. Levels are selected according to the 
rules of set association (discussed under 

 

4.2 Cache Operation

 

).

Each line consists of an address tag (upper 23 bits of the address), two status bits and four 
longwords of data. The two status bits consist of a valid bit and a dirty bit for the line. Address 
bits A3 and A2 select the longword within the line.

 

4.2 CACHE OPERATION

 

The cache stores an entire line, thereby providing validity on a line-by-line basis. For burst- 
mode accesses, only those that successfully read four longwords can be cached.

A cache line is always in one of three states: invalid, valid, or dirty. For invalid lines, the V-
bit is clear, causing the cache line to be ignored during lookups. Valid lines have their V-bit 
set and D-bit cleared, indicating the line contains valid data consistent with memory. Dirty 
cache lines have the V-bit and D-bit set, indicating that the line has valid entries that have 
not been written to memory. A cache line changes states from valid or dirty to invalid if the 
execution of the CPUSHL instruction explicitly invalidates the cache line

 

. 

 

The cache should 
be explicitly cleared by setting the CINVA bit of the CACR

 

 

 

after a hardware reset of the 
processor because reset does not invalidate the cache lines.

 

Figure 4-2. Cache Organization and Line Format

LEVEL 0 LEVEL 1 LEVEL 2 LEVEL 3

LINE

ROW 0
ROW 1

ROW 30
ROW 31

•
•
•

•
•
•

•
•
•

•
•
•

TAG V D LW0 LW1 LW2 LW3

WHERE:
TAG—23-BIT ADDRESS TAG
V—VALID BIT FOR LINE
D—DIRTY BIT FOR LINE
LWn—LONG WORD n (32-BIT) DATA 
ENTRY

CACHE LINE FORMAT



 

 Cache

 

MOTOROLA 

 

MCF5202 USER’S MANUAL

 

4-3

 

Figure 4-3 illustrates the general flow of a caching operation. To determine if the address is 
already allocated in the cache, the lower address bits 8–4 index into the cache and select 
one of 32 rows. A row is defined as the grouping of four lines, one from each level, 
corresponding to the same index into the cache array. Address bits 31–9 are used as a tag 
reference or to update the cache line tag field. The four tags from the selected cache row 
are compared with the tag reference. If any one of the four tags matches the tag reference 
and the tag status is either valid or dirty, then a cache hit has occurred. A cache hit indicates 
that the data entries (LW0–LW3) in that cache line contain valid data (for a read access) or 
can be written with new data (for a write access).

To allocate an entry into the cache, the address bits 8–4 index into the cache and select one 
of the 32 rows. The status of each of the four cache lines for the selected row is examined. 
The cache control logic first looks for an invalid cache line to use for the new entry. If no 
invalid cache lines are available, a line from one of the four levels must be deallocated to 
host the new entry. The cache controller uses a pseudorandom replacement algorithm to 
determine which cache line will be deallocated and replaced. After a cache line is allocated, 

 

Figure 4-3. Caching Operation

0348931

INDEXTAG DATA / TAG REFERENCE

MUX

COMPARATOR
0

1

2

3

LOGICAL OR

HIT 3

HIT 2

HIT 1

HIT 0

HIT

LINE SELECT

ROW 0

ROW 1

ROW 31

•
•
•

ADDRESS 
A31–A9

LEVEL 0
LEVEL 1

LEVEL 2
LEVEL 3

DATA OR
INSTRUCTION

TAG STATUS LW0 LW1 LW2 LW3

TAG STATUS LW0 LW1 LW2 LW3

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

ADDRESS

ROW
SELECT 
A8-A4



 

Cache  

 

4-4

 

MCF5202 USER’S MANUAL

 

MOTOROLA

 

 

 

the replacement pointer increments to point to the next level. During half-cache lock 
operation (HLCK equal to 1), the replacement pointer is forced to point to either level 2 or 
level 3. 

In the process of deallocation, a cache line that is valid and not dirty is invalidated. A dirty 
cache line is placed in a push buffer (to do an external cache line push) before being 
invalidated. Once a cache line is invalidated, it can be replaced with a new entry.

When a cache line is selected to host a new cache entry, the new address bits 31–9 are 
written to the tag, the data bits LW3–LW0 are updated with the new memory data, and the 
cache line status changes to a valid state. 

Read cycles that miss in the cache allocate normally as previously described. Write cycles 
that miss in the cache do not allocate on a cachable writethrough region, but do allocate for 
addresses in a cachable copyback region

 

.

 

 A copyback byte, word, or longword write miss 
will cause the cache to initiate a line fill, allocate space for the new line, set the status bits 
to indicate valid and dirty, and write the data into the allocated space. No MBUS write to 
memory occurs. A copyback line write miss will not initiate a line fill, but will allocate space 
for the new line, set status bits to indicate valid and dirty, and write the data into the allocated 
space. No MBUS write to memory occurs and no MBUS line fill occurs.

Read hits do not change the status of the cache line and no deallocation or replacement 
occurs. Write hits in cacheable writethrough regions perform an MBUS write cycle; write hits 
in cacheable copyback regions do not perform an MBUS write cycle.

If the cache hits on a read access, data is driven back to the processor core. If the cache 
hits on a write access, the data is written to the appropriate portion of the accessed cache 
line. If the data access is misaligned, then the misalignment module breaks up the access 
into a sequence of smaller aligned cache accesses. Any misaligned operand reference 
generates at least 2 cache accesses. Because entry validity is provided only on a line basis, 
the entire line must be loaded from system memory on a cache miss for the cache to contain 
any valid information for that line address.

Noncacheable write accesses (i.e., those designated as cache-inhibited by the Cache 
Control Register (CACR) or Access Control Register (ACR)) bypass the cache and a 
corresponding MBUS write is performed. Normally, noncacheable read accesses bypass 
the cache and the read access is performed on the MBUS. The exception to this normal 
operation occurs when all of the following conditions are true during a noncacheable read:

• The appropriate noncacheable fill buffer bit (DNFB or NFB) is set

• Access is an instruction read

• Access is normal (i.e., transfer type (TT) equals 0)

• Access longword address is 0, 4, or 8 (i.e., the access is not referencing any of the last 
four bytes of a line)

In this case, an entire line is fetched and stored in the fill buffer. It remains valid there and 
the cache can service additional read accesses from this buffer until another fill occurs or a 
MOVEC occurs.



 

 Cache

 

MOTOROLA 

 

MCF5202 USER’S MANUAL

 

4-5

 

Valid cache entries that match during noncachable address accesses are neither pushed 
nor invalidated. This scenario suggests that the associated cache mode for this address 
space was changed.

 

 

 

Use the CPUSHL instruction to push and/or invalidate the cache entry, 
or set the CINVA bit of the CACR to invalidate the entire cache before switching cache 
modes.

 

4.3 CACHE CONTROL REGISTER (CACR)

 

The CACR is a 32-bit register that contains control information for the cache. The CACR can 
be written via the MOVEC register (register control field of the MOVEC instruction = $002). 
A hardware reset clears the CACR, disabling the cache; however, reset does not affect the 
tags, state information, and data within the cache. The CACR is illustrated in Figure 4-4.

EC—Enable Cache
0 = cache disabled 
1 = cache enabled 

Bit 30—Reserved 

ESB — Enable Store Buffer
0 = all writes to writethrough or noncachable imprecise space will bypass the store 

buffer and generate bus cycles directly.
1 = the 4 entry first-in-first-out (FIFO) store buffer is enabled; this buffer defers pending 

writes to writethrough or cache-inhibited imprecise regions to maximize perfor-
mance

Accesses to cache-inhibited precise space always bypass the store buffer. 

DPI—Disable CPUSHL Invalidation
0 = each cache line is invalidated as it is pushed 
1 = CPUSHLed lines remain valid in the cache 

HLCK—1/2 Cache Lock Mode
0 = cache operates in normal, full cache mode
1 = cache operates in one-half cache lock mode 

When this mode is enabled, levels 0 and 1 of the cache are locked such that their lines
will never be displaced. Invalid entries in levels 0 and 1 can still be allocated. This 
implementation allows maximum use of the available cache memory and also provides

 

31 30 29 28 27 26 24 16 15 14 10 9 8 7 6 5 4 0
EC 0 ESB DPI HLCK 0 0 CINVA 0 0 0 0 0 0 0 0 0 0 0 DNFB DCM 0 0 DW 0 0 0 0 0

 

Figure 4-4. Cache Control Register (CACR)



 

Cache  

 

4-6

 

MCF5202 USER’S MANUAL

 

MOTOROLA

 

 

 

the flexibility of asserting the HLCK bit before, during, or after the needed allocations 
occur.

Bits 26–25—Reserved 

CINVA—Cache Invalidate All
0 = no invalidation is performed 
1 = initiate an invalidation of the entire cache 

Writing a 1 to this bit will initiate entire cache invalidation. Once invalidation is complete,
this bit will automatically return to 0 (i.e., users do not have to set it back to 0). This bit is
always read as a 0.

Bits 23–11—Reserved

DNFB—Default Noncacheable Fill Buffer
0 = fill buffer is not used to store noncacheable accesses
1 = fill buffer is used to store noncacheable accesses
—fill buffer used only for normal (TT = 0) instruction reads of a noncacheable region 

from longword addresses of 0, 4, or 8
—the instructions are loaded into the fill buffer via a burst access (same as a line fill)

 

Note

 

It is possible that this feature can cause a coherency problem for
self-modifying code. If enabled and a noncacheable access oc-
curs that uses the fill buffer, the instructions remain valid in the
fill buffer until a MOVEC, another noncacheable burst, or any
miss that initiates a fill occurs. If a write occurs to the line in the
fill buffer, the write will go to the MBUS without updating or inval-
idating the fill buffer. Any subsequent reads of that written data
will be serviced by the fill buffer and receive stale information.

DCM—Default Cache Mode
This field selects the default cache mode and access precision as follows: 

00 = cacheable, writethrough
01 = cacheable, copyback
10 = cache-inhibited, precise exception model
11 = cache-inhibited, imprecise exception model

Bits 7,6—Reserved

DW—Default Write Protect
This bit indicates the default write privilege. 

0 = read and write accesses permitted 
1 = write accesses not permitted



 

 Cache

 

MOTOROLA 

 

MCF5202 USER’S MANUAL

 

4-7

 

Bits 4–0—Reserved

 

4.4 ACCESS CONTROL REGISTERS

 

The 32-bit Access Control Registers (ACR0 and ACR1) assign access control attributes to 
specific regions of address space. The ACR registers can be written via the MOVEC 
instruction. (ACR0 has register control field of the MOVEC instruction = $004; ACR1 has 
register control field of the MOVEC instruction = $005). For overlapping regions, ACR0 
takes priority. The control attributes are cache-mode and write-protection. Data transfers to 
and from these registers are longword transfers. Figure 4-5 illustrates ACR format. The 
paragraphs that follow describe the fields within the ACR. Bits 12–7, 4, 3, 1, and 0 always 
read as zero. At reset, all bits are reset to zero.

Bits 31–24— Address Base
This 8-bit field is compared with address bits A31–A24. Addresses that match in this com-
parison (and are otherwise eligible) are assigned the access control attributes of this 
register.

Bits 23–16— Address Mask
Because this 8-bit field contains a mask for the address base field, setting a bit in this field
causes the corresponding bit in the address base field to be ignored. Regions of memory
larger than 16 Mbytes can be assigned the access control attributes of this register by set-
ting some of the address mask bits to ones (1’s). The low-order bits of this field can be set
to define contiguous regions larger than 16 Mbytes. The mask can define multiple non-
contiguous regions of memory.

E—Enable 
This bit enables or disables the access control attributes of the region defined by this 
register: 

0 = access control attributes disabled
1 = access control attributes enabled 

S—Supervisor Mode
This field specifies the way FC2 matches an address: 

00 = match only if FC2 = 0 (user mode access) 
01 = match only if FC2 = 1 (supervisor mode access) 
1X = ignore FC2 when matching

Bits 12–8—Reserved by Motorola

NFB—Noncacheable Fill Buffer
0 = fill buffer is not used to store noncacheable accesses
1 = fill buffer is used to store noncacheable accesses

 

31 24 23 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADDRESS BASE ADDRESS MASK E S-
FIELD 0 0 0 0 0 NFB CM 0 0 W 0 0

 

Figure 4-5. Access Control Register Format (ACR0, ACR1)



 

Cache  

 

4-8

 

MCF5202 USER’S MANUAL

 

MOTOROLA

 

 

 

—fill buffer used only for normal (TT = 0) instruction reads of a noncacheable region 
from longword addresses of 0, 4, or 8 

—the instructions are loaded into the fill buffer via a burst access (same as a line fill)

 

Note

 

It is possible this feature can cause a coherency problem for
self-modifying code. If enabled and a noncacheable access oc-
curs that uses the fill buffer, the instructions remain valid in the
fill buffer until a MOVEC, another noncacheable burst, or any
miss that initiates a fill occurs. If a write occurs to the line in the
fill buffer, the write will go to the MBUS without updating or inval-
idating the fill buffer. Any subsequent reads of that written data
will be serviced by the fill buffer and receive stale information.

CM—Cache Mode 
This field selects the cache mode and access precision as follows: 

00 = cachable, writethrough
01 = cachable, copyback
10 = cache-inhibited, precise exception model
11 = cache-inhibited, imprecise exception model

W—Write Protect 
This bit indicates the write privilege of the ACR region. 

0 = read and write accesses permitted 
1 = write accesses not permitted

Bits 4,3,1,0—Reserved by Motorola

 

4.5 CACHE MANAGEMENT

 

The cache is enabled and configured by using the MOVEC instruction to access the CACR. 
A hardware reset clears the CACR, disabling the cache and removing all configuration 
information; however, reset does not affect the tags, state information, and data within the 
cache. Users must set the CINVA bit in the CACR to invalidate the cache before enabling it.

The CINVA bit of the CACR allows invalidation of the entire cache only. The privileged 
CPUSHL instruction supports cache management by selectively pushing and invalidating an 
individual cache line. The address register used with the CPUSHL instruction directly 
addresses the cache’s directory array. The CPUSHL instruction will either push and 
invalidate a line, or push and leave the line valid, depending on the state of the DPI bit of the 
CACR. To push the entire cache, users must implement a software loop to index through all 
32 rows and each of the 4 lines within each row (for a total of 128 lines). The state of the 
cache enable bit in the CACR does not affect the operation of CPUSHL instruction nor the 
CINVA bit of the CACR.

The CPUSHL instruction flushes the MCF5202 cache. The instruction format is shown 
below.



 

 Cache

 

MOTOROLA 

 

MCF5202 USER’S MANUAL

 

4-9

 

where An is an address register.

The contents of An used with the CPUSHL instruction specify cache row and line indexes. 
This differs from the MC68040 where An specifies a physical address. The format for An is

Bits 8-4 specify a row index and bits 3-0 specify a line index. On the MCF5202, only cache 
lines 0, 1, 2, and 3 are valid.

The following code example flushes the entire MCF5202 unified cache:

 

_cache_flush:
nop ; synchronize - flush store buffer
moveq.l #0,d0 ; disable cache
dc.l 0x4e7b0002 ; movec d0, cacr

moveq.l #0, d0 ; zero line counter
moveq.l #0, d1 ; zero row counter
move.l d0, a0 ; initialize An

rowloop:
dc.w 0xf4e8 ; cpushl a0
add.l #0x0010, a0 ; increment row index by 1
addq.l #1, d1 ; increment row counter
cmpi.l #32, d1 ; check if rows for current line are done
bne rowloop ; more rows to flush

moveq.l #0, d1 ; zero row counter
addq.l #1, d0 ; increment line counter
add.l d0, d1 ; form row and line for An
move.l d1, a0 ; initialize An
cmpi.l #4, d0 ; check if lines are done
bne rowloop

rts

 

4.6 CACHING MODES

 

Every cache access has an associated caching mode that determines how the cache 
handles the access. An access can be cacheable in either the writethrough or copyback 
modes, or it can be cache-inhibited in precise or imprecise modes. For normal accesses, 
the CM field (from the ACR) corresponding to the address of the access specifies one of 
these caching modes. When the access address does not match either of the ACRs, the 
default caching mode defined by the DCM field of the CACR is used.

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 1 1 0 1 An

31 9 8 7 6 5 4 3 2 1 0

0 Row Index Line Index



 

Cache  

 

4-10

 

MCF5202 USER’S MANUAL

 

MOTOROLA

 

 

 

Addresses matching an ACR can also be write-protected using the W bit of that ACR. 
Address that do not match either of the ACRs can be write-protected using the DW bit of the 
CACR.

Reset disables the cache and places 0’s in all CACR and ACR bits. Consequently, after 
reset, the defaults are writethrough cache mode and no addresses are write-protected. Note 
that users—and not reset—invalidate cache entries. 

The ACRs allow the defaults to be overridden. In addition, some instructions (e.g., CPUSHL) 
and processor core operations perform accesses that have an implicit caching mode 
associated with them. The following paragraphs discuss the different caching accesses and 
their related cache modes.

 

4.6.1 Cacheable Accesses

 

If the CM field of an ACR or the default field of the CACR indicates writethrough or copyback, 
then the access is cacheable. A read access to a writethrough or copyback region is read 
from the cache if matching data is found. Otherwise, the data is read from memory and 
updates the cache. When a line is being read from memory, for both a writethrough read 
miss and a copyback read miss, the longword within the line that contains the core-
requested data is fetched first and the requested data is given immediately to the processor. 
This releases the processor while the remaining three longwords of the line are read from 
memory and stored in the cache. 

The following paragraphs describe the writethrough and copyback modes in detail.

 

4.6.1.1 WRITETHROUGH MODE. 

 

Write accesses to regions specified as writethrough are 
always passed on to the MBUS, although the cycle can be buffered (depending on the state 
of the ESB bit in the CACR). Writes in writethrough mode are handled with a no-write-
allocate policy—i.e., writes that miss in the cache are written to the MBUS, but do not cause 
the corresponding line in memory to be loaded into the cache. Write accesses that hit always 
write through to memory and update matching cache lines. The cache supplies data to 
instruction or data-read accesses that hit in the cache; read misses cause a new cache line 
to be loaded into the cache.

 

4.6.1.2 COPYBACK MODE. 

 

Copyback regions are typically used for local data structures 
or stacks to minimize external bus use and reduce write-access latency. Write accesses to 
regions specified as copyback that hit in the cache update the cache line and set the 
corresponding D-bit without an MBUS bus access. The dirty cache data is written to memory 
only if the line is replaced because of a miss or a CPUSHL instruction pushes the line. If a 
byte, word, or longword write access misses in the cache, then the required cache line is 
read from memory, thereby updating the cache. If a line write access misses in the cache, 
the cache line will be completely sourced by the core and thus a cache line read from 
memory is avoided. When a miss causes a dirty cache line to be selected for replacement, 
the current cache data moves to the push buffer. The replacement line is read into the cache 
and the push buffer contents are then written to memory.



 

 Cache

 

MOTOROLA 

 

MCF5202 USER’S MANUAL

 

4-11

 

4.6.2 Cache-Inhibited Accesses

 

Address space regions containing targets such as I/O devices and shared data structures 
in multiprocessing systems can be designated as cache-inhibited. If the corresponding CM 
field (of the ACR) or DCM field (of the CACR) indicate precise or imprecise, then the access 
is cache-inhibited. The caching operation is identical for both cache-inhibited modes. The 
difference between these inhibited cache modes has to do with recovery from an external 
bus error.

Noncacheable write accesses bypass the cache and a corresponding MBUS write is 
performed. Normally, noncacheable read accesses bypass the cache and the read access 
is performed on the MBUS. The exception to this normal operation occurs when all of the 
following conditions are true during a noncacheable read:

• The appropriate noncacheable fill buffer bit (DNFB or NFB) is set

• Access is an instruction read

• Access is normal (i.e., transfer type (TT) equals 0)

• Access longword address is 0, 4, or 8 (i.e., the access is not referencing any of the last 
four bytes of a line)

In this case, an entire line is fetched and stored in the fill buffer. It remains valid there and 
the cache can service additional read accesses from this buffer until another fill occurs or a 
MOVEC occurs.

If the CM field indicates either noncacheable precise or noncacheable imprecise modes, the 
cache controller bypasses the cache and performs an MBUS transfer. If a cache line 
matching the current address is already resident in the cache and the cache mode for that 
region is cache-inhibited, the cache does not automatically push the line if it is dirty, nor does 
it invalidate the line if it is valid. Users should first execute a CPUSHL instruction or set the 
CINVA bit of the CACR (to invalidate the entire cache) prior to switching the cache mode.

If the CM field indicates precise mode, then the sequence of read and write accesses to the 
region is guaranteed to match the sequence of the instruction order. In imprecise mode, the 
processor core allows read accesses that hit in the cache to occur before completion of a 
pending write from a previous instruction. Writes will not be deferred past operand-read 
accesses that miss in the cache (i.e., that must be read from the bus). Precise operation 
forces operand-read accesses for an instruction to occur only once by preventing the 
instruction from being interrupted after the operand-fetch stage. Otherwise, 

 

if not in precise 
mode

 

 and an exception occurs, the instruction is aborted and the operand may be accessed 
again when the instruction is restarted. These guarantees apply only when the CM field 
indicates the precise mode and the accesses are aligned.

All CPU space-register accesses (e.g. MOVEC) are always treated as noncacheable 
precise.

 

4.7 CACHE PROTOCOL

 

The following paragraphs describe the cache protocol for processor accesses and assumes 
that the data is cacheable (i.e., writethrough or copyback).



 

Cache  

 

4-12

 

MCF5202 USER’S MANUAL

 

MOTOROLA

 

 

 

4.7.1 Read Miss

 

A processor read that misses in the cache causes the cache controller to request a bus 
transaction. This bus transaction reads the needed line from memory and supplies the 
required data to the processor core. The line is placed in the cache in the valid state. 

 

4.7.2 Write Miss

 

The cache controller handles processor writes that miss in the cache differently for 
writethrough and copyback regions. Byte, word, or longword write misses to copyback 
regions cause an MBUS line read to load the cache line. Line write misses to copyback 
regions do not cause an MBUS line read to load the cache line. The line is completely 
sourced by the core, avoiding the line read from memory. The new cache line is then 
updated with write data and the D-bit for the line is set, leaving the cache line in the dirty 
state. Write misses to writethrough regions write directly to memory without loading the 
corresponding cache line into the cache. 

 

4.7.3 Read Hit

 

On a read hit, the cache provides the data to the processor core.

 

 

 

No MBUS transaction is 
performed and the state of the cache line remains unchanged. If the cache mode changes 
for a specific region of address space, lines in the cache corresponding to that region 
containing dirty data will not be pushed out to memory when a read hit occurs within that 
line. Users should first execute a CPUSHL instruction or set the CINVA bit of the CACR (to 
invalidate the entire cache) before switching the cache mode.

 

4.7.4 Write Hit

 

The cache controller handles processor writes that hit in the cache differently for 
writethrough and copyback regions. For write hits to a writethrough region, the portions of 
the cache line(s) corresponding to the size of the access are updated with the data. The data 
is also written to the MBUS. The cache line state remains unchanged. If the access is 
copyback, the cache controller updates the cache line and sets the D-bit for the line. An 
MBUS write is not performed and the cache line state changes to, or remains in, the dirty 
state.

 

4.8 CACHE COHERENCY

 

The MCF5202 provides limited support for maintaining cache coherency in multimaster 
environments. Both writethrough and copyback memory update techniques are supported 
to maintain coherency between the cache and memory.

The MCF5202 cache does not support snooping (i.e., cache coherency is not supported 
while alternate masters are using the bus).

 

4.9 MEMORY ACCESSES FOR CACHE MAINTENANCE

 

The cache controller performs all maintenance activities that supply data from the cache to 
the processor core. The activities include requesting accesses to the SBC for reading new 
cache lines and writing dirty cache lines to memory. The following paragraphs describe the 



 

 Cache

 

MOTOROLA 

 

MCF5202 USER’S MANUAL

 

4-13

 

memory accesses resulting from cache-fill and push operations. Refer to 

 

Section 5 Bus 
Operation

 

 for detailed information about the bus cycles required.

 

4.9.1 Cache Filling

 

When a new cache line is required, the cache controller requests a line read from the SBC. 
The SBC requests a burst read transfer by indicating a line access with the size signals 
(SIZ[1:0]).

The responding device supplies 4 longwords of data in sequence. If the responding device 
does not support the burst mode, it should assert the TBI signal for the first longword of the 
line access. The SBC responds by terminating the line access and completes the remainder 
of the line read as 3 sequential longword reads.

SBC line accesses implicitly request burst-mode operations from memory. For more 
information regarding burst mode accesses on the external bus, see 

 

Section 5 Bus 
Operation

 

.

When a cache line read is initiated, the first cycle attempts to load the longword entry 
corresponding to the address requested by the processor core. Subsequent transfers are 
for the remaining longword entries in the cache line.

A bus error occurring during a burst operation aborts the operation. If the bus error occurs 
during the first cycle of a burst, the data from the bus is ignored and the line is not cached. 
If the access is a data cycle, exception processing proceeds immediately. If the cycle is for 
an instruction prefetch, a bus-error exception is not taken immediately, but will be taken if 
the instruction flow subsequently causes an attempt of the instruction. Refer to 

 

Section 5 
Bus Operation

 

 for more information about this operation.

When a bus error occurs on the second cycle or later, the burst operation aborts and the line 
is not cached. The processor may or may not take an exception, depending on the status of 
the pending data request. If the bus-error cycle contains a portion of a data operand that the 
processor is specifically waiting for (e.g., the second half of a misaligned operand), the 
processor immediately takes an exception. Otherwise, no exception occurs and the cache 
line fill is repeated the next time data within the line is required.

 

4.9.2 Cache Pushes

 

When the cache controller selects a dirty cache line for replacement, memory must be 
updated with the dirty data before the line is replaced. Cache pushes occur for line 
replacement and as required for the execution of the CPUSHL instruction. To reduce the 
requested data’s latency in the new line, the dirty line being replaced is temporarily placed 
in the push buffer while the new line is fetched from memory. After the bus transfer for the 
new line completes, the dirty cache line is written back to memory and the push buffer is 
invalidated. 



 

Cache  

 

4-14

 

MCF5202 USER’S MANUAL

 

MOTOROLA

 

 

 

4.10 PUSH AND STORE BUFFERS

 

The push buffer reduces latency for requested new data on a cache miss by temporarily 
placing displaced dirty data into the push buffer while the new data is fetched from memory. 
The push buffer contains 16 bytes of storage (one displaced cache line).

If a cache miss displaces a dirty line, the miss reference is immediately placed on the MBUS. 
While waiting for the response, the current contents of the cache location are loaded into the 
push buffer. Once the bus transaction (burst read) completes, the cache controller can 
generate the appropriate line-write bus transaction to write the contents of the push buffer 
into memory.

The store buffer implements a FIFO buffer that can defer pending writes to imprecise 
regions in order to maximize performance. The store buffer can support as many as 4 
entries (16 bytes maximum) for this purpose.

For operand writes destined for the store buffer, the processor core incurs no stalls. The 
store buffer effectively provides a measure of decoupling between the pipeline’s ability to 
generate writes (1 write per cycle maximum) and the ability of the MBUS to retire those 
writes. When writing to imprecise regions, a stall will occur only in the event of a full store 
buffer and there is a write operation on the KBUS. The KBUS write cycle is held, stalling the 
operand execution pipeline.

If the store buffer is not used (i.e., store buffer disabled or cache- inhibited precise mode), 
MBUS cycles are generated directly for each pipeline write operation. The instruction is held 
in the EX cycle of the operand execution pipeline (OEP) until external bus transfer 
termination is received. This means each write operation is stalled for 3 cycles, making the 
minimum write time equal to 4 cycles when the store buffer is not used.

The store buffer enable bit (bit ESB of the CACR) controls the enabling of the store buffer. 
This bit can be set and cleared via the MOVEC instruction. At reset, this bit is cleared and 
all writes are precise. The ACR CM field or CACR DCM field generates the mode used when 
this bit is set. The cacheable writethrough and the cache-inhibited imprecise modes use the 
store buffer.

The store buffer can queue data up to 4 bytes wide per entry. Each entry matches a 
corresponding bus cycle it will generate; therefore, a misaligned longword write to a 
writethrough region will create 2 entries if the address is to an odd-word boundary, 3 entries 
if to an odd-byte boundary—1 per bus cycle.

 

4.11 PUSH AND STORE BUFFER BUS OPERATION

 

Once the push or store buffer has valid data, the cache controller uses the next available 
MBUS cycle to generate the appropriate write cycles. In the event that another cache fill is 
required (e.g., cache miss to process) during the continued instruction execution by the 
processor pipeline, the pipeline will stall until the push and store buffers are empty before 
generating the required MBUS transaction.



 

 Cache

 

MOTOROLA 

 

MCF5202 USER’S MANUAL

 

4-15

 

Certain instructions and exception processing that synchronize the processor core 
guarantee the push and store buffers are empty before proceeding.

 

4.12 CACHE OPERATION SUMMARY

 

The following paragraphs discuss the operational details for the cache and present state 
diagrams depicting the cache line state transitions.

The cache supports a line-based protocol allowing individual cache lines to be in one of 
three states: invalid, valid, or dirty. To maintain coherency with memory, the cache supports 
both writethrough and copyback modes, specified by the CM field for the matched ACR or 
the DCM field of the CACR if no ACR matches.

Read misses and write misses to copyback regions cause the cache controller to read a new 
cache line from memory into the cache. If available, an invalid line in the selected row is 
updated with the tag and data from memory. The line state then changes from invalid to valid 
by setting the V-bit for the line. If all lines in the row are already valid or dirty, the pseudo 
random replacement algorithm selects 1 of the 4 lines and replaces the tag and data 
contents of the line with the new line information. Before replacement, dirty lines are 
temporarily buffered and later copied back to memory after the new line has been read from 
memory. Figure 4-6 illustrates the 3 possible states for a cache line, with the possible 
transitions caused by the processor. Transitions are labeled with a capital letter, indicating 
the previous state, followed by a number indicating the specific case listed in Table 4-1.  



 

Cache  

 

4-16

 

MCF5202 USER’S MANUAL

 

MOTOROLA

 

 

Figure 4-6. Cache Line State Diagrams

Table 4-1. Cache Line State Transitions 

 

CACHE 
OPERATION

CURRENT STATE
INVALID CASES VALID CASES DIRTY CASES

 

READ MISS (C,W)I1
Read line from memory and 
update cache; 
Supply data to processor; Go 
to valid state.

(C,W)V1
Read new line from memory 
and update cache; supply data 
to processor; Remain in cur-
rent state.

CD1

Push dirty cache line to push 
buffer; Read new line from 
memory and update cache; 
Supply data to processor; Write 
push buffer contents to memo-
ry; Go to valid state.

READ HIT (C,W)I2 Not possible. (C,W)V2 Supply data to processor; Re-
main in current state. CD2 Supply data to processor; Re-

main in current state.

WRITE MISS 
(COPYBACK 

MODE)
CI3

Read line from memory and 
update cache; Write data to 
cache; Go to dirty state.

CV3
Read new line from memory 
and update cache; Write data 
to cache; Go to dirty state.

CD3

Push dirty cache line to push 
buffer; Read new line from 
memory and update cache; 
Write push buffer contents to 
memory; Remain in current 
state.

WI1— CPU READ MISS

WI6—CPUSHL & DPI WV4—CPU WRITE HIT

WV5— CINVA
WV6— CPUSHL & DPI

WI5—CINVA
WI3—CPU WRITE MISS

WV3—CPU WRITE MISS
WV2—CPU READ HIT
WV1—CPU READ MISS

COPYBACK

CI6— CPUSHL & DPI
CI5— CINVA

CV2—CPU READ HIT
CV1—CPU READ MISS

CD3—CPU WRITE MISS
CD2— CPU READ HIT

CD4—CPU WRITE HIT

CV5—CINVA
CV6—CPUSHL & DPI

CI1—CPU READ MISS

CD1—CPU
CD5—CINVA
CD6—CPUSHL

CV3—CPU WRITE MISS
CV4—CPU WRITE HIT

CI3— CPU

INVALID
COPYBACK

VALID

COPYBACK
DIRTY

WRITE-
THROUGH
INVALID VALID

WRITE-
THROUGH

WRITE MISS

CI7—CPUSHL & DPI CV7—CPUSHL & DPI

& DPI

READ MISS 
CD7—CPUSHL & DPI

WV7—CPUSHL & DPIWI7—CPUSHL & DPI

WRITETHROUGH CACHING MODE

COPYBACK CACHING MODE



 

 Cache

 

MOTOROLA 

 

MCF5202 USER’S MANUAL

 

4-17

Note

The shaded areas indicate that the cache mode has changed for
the region corresponding to this cache line. In writethrough
mode, a cache line should never be dirty. 

To avoid these states,

1. First execute a CPUSHL instruction, or 

2. Set the CINVA bit of the CACR (to invalidate the entire cache)
before switching the cache mode.

WRITE MISS 
(WRITE-

THROUGH 
MODE)

WI3 Write data to memory; Remain 
in current state. WV3 Write data to memory; Remain 

in current state. WD3 Write data to memory; Remain 
in current state.

WRITE HIT 
(COPYBACK 

MODE)
CI4 Not possible. CV4 Write data to cache; Go to dirty 

state. CD4 Write data to cache; Remain in 
current state.

WRITE HIT 
(WRITE-

THROUGH 
MODE)

WI4 Not possible. WV4 Write data to memory and to 
cache; Remain in current state. WD4 Write data to memory and to 

cache; Go to valid state.

CACHE 
INVALIDATE (C,W)I5 No action; Remain in 

current state. (C,W)V5 No action; Go to invalid state. CD5 No action (dirty data lost); Go to 
invalid state.

CACHE 
PUSH (C,W)I6 No action; Remain in

current state. (C,W)V6 No action; Go to invalid state. CD6 Push dirty cache line to memo-
ry; Go to invalid state.

CACHE
PUSH (C,W)I7 No action; Remain in 

current state. (C,W)V7 No action; Remain in
current state. CD7 Push dirty cache line to memo-

ry; Go to valid state

Table 4-1. Cache Line State Transitions (Continued)

CACHE 
OPERATION

CURRENT STATE
INVALID CASES VALID CASES DIRTY CASES



 

MOTOROLA

 

MC5202 USERÕS MANUAL

 

5-1

 

SECTION 5   
BUS OPERATIONS

 

The MCF5202 bus interface supports synchronous, dynamic bus-size and bursted data 
transfers between the processor and other devices in the system.

This section provides a functional description of the bus, the signals that control the bus, 
and the bus cycles provided for data transfer operations. The waveforms in this document 
show the bus activity for an MCF5202 processor. Descriptions of bus arbitration and the 
reset operation are also included. 

 

5.1  BUS CHARACTERISTICS

 

The MCF5202 processor uses a single clock signal CLK to generate its internal clocks as 
well as the bus clock. Therefore, the external bus operates at the same speed as the 
processor's internal clock rate, where all bus operations are synchronous to the rising 
edge of CLK. Figure 5-1 illustrates the general relationship between CLK and most input 
and output signals.

 

Figure 5-1.  Signal Relationships to CLK

tsi thi

tvo tho

OUTPUTS

INPUTS

NOTES:

1. tVO = PROPAGATION DELAY OF SIGNAL RELATIVE TO CLK RISING EDGE.

2. tHO= OUTPUT HOLD TIME RELATIVE TO CLK RISING EDGE.

3. tSI = REQUIRED INPUT SETUP TIME RELATIVE TO CLK RISING EDGE.

4. tHI  = REQUIRED INPUT HOLD TIME RELATIVE TO CLK RISING EDGE. 

CLK

 

Date: 7-28-98
Revision Number: 0.1
Pages affected: See change bars



 

Bus Operations 

 

5-2

 

MC5202 USERÕS MANUAL

 

MOTOROLA

 

The synchronously sampled MCF5202 processor inputs (other than IPL[2:0], BKPT, and 
RST signals) must be stable during the sample window defined by t

 

si

 

 and t

 

hi

 

 (see Figure 5-
1) to guarantee proper operation. The internally synchronized IPL[2:0], BKPT, and RST 
signals resolve the input to a valid level before being used.

The MCF5202 outputs begin to transition on the rising edge of CLK.

 

5.2  DATA TRANSFERS

 

Data transfer between the processor and other devices involves the address/data bus, 
bus attributes and control signals. The MCF5202 device will multiplex only addresses and 
data on A/D[31:16]. A/D[15:0] will drive the current address for the duration of the transfer, 
incrementing A/D[3:0] on burst accesses. Figure 5-2 displays a simple example of the 
MCF5202 processor executing a longword write followed by a longword read terminated 
with a bus error. The assertion of TEA during any portion of the transfer will abort the 
transfer. All figures display logical waveforms and do not indicate any timing relationships 
unless noted.
 

 

Figure 5-2.  Simple Transfer Followed By Transfer Containing Bus Error

 

The MCF5202 device bursts all accesses to a port smaller than the transfer size accesses 
unless TBI is asserted during the first data acknowledge cycle of the transfer. The level of 
TBI during the remainder of the access has no affect on the transfer. Figures 
5-3 through 5-6 show examples of various types of burst read/write cycles to dynamically 
sized ports, including burst-inhibited cycles. In these figures, AA is tied low.

CLK

TS

R/W

A/D

ATTRs

DTIP

SIZ[1:0]

DA[1:0]

LONG WORD READ

ADDR WRITE DATA

LONG WORD WRITE

TEA

ADDR

AA

READ DATA



 

Bus Operations

 

MOTOROLA

 

MC5202 USERÕS MANUAL

 

5-3

 

Figure 5-3.  Dynamically Sized Burst-Inhibited Read Access

Figure 5-4.  Dynamically Sized Burst-Inhibited Write Access

 

* 

 

Recovery states are not necessary on write cycles because the processor never gives up control of the bus

 

.

CLK

TS

R/W

A/D

ATTRs

DTIP

SIZ1

LONG WORD

DA1

DA0

SIZ0

NEW CYCLE

[31:16]

A/D
[15:0]

TBI

D[31:16] D[15:0]

ADDR ADDR

ADDR ADDR ADDR

ADDR

CLK

TS

R/W

A/D

ATTRs

DTIP

SIZ1

LONGWORD

DA1

DA0

SIZ0

NEW CYCLE

[31:16]
A/D

[15:0]

TBI

ADDR

ADDR WRITE DATA

WRITE DATA

ADDR

ADDR

WRITE DATA

ADDR

ADDR



 

Bus Operations 

 

5-4

 

MC5202 USERÕS MANUAL

 

MOTOROLA

 

Figure 5-5.  Dynamically Sized Burst Read

Figure 5-6.  Dynamically Sized Burst Write

CLK

TS

R/W

A/D

ATTRs

ADDR

DTIP

RD RD RD RD

SIZ1

LONGWORD

DA1

DA0

SIZ0

[31:24]
A/D

ADDR ADDRRd Rd Rd Rd[23:0]

TBI

NEW CYCLE

ADDR

CLK

TS

R/W

A/D

ATTRs

DTIP

SIZ1

LONGWORD

DA1

DA0

SIZ0

NEW CYCLE

[31:24]

A/D
[23:0]

TBI

ADDR

ADDR

WRITE DATA WRITE DATA WRITE DATA

WRITE DATA

WRITE DATA

ADDR

ADDR



 

Bus Operations

 

MOTOROLA

 

MC5202 USERÕS MANUAL

 

5-5

 

If the external port is 32-bits: for reads with 8 bit transfer:      
Addr 0: AD[31:24]: Byte 0       
Addr 1: AD[23:16]: Byte 1      
Addr 2: AD[15:8]: Byte 2
Addr 3: AD[7:0]: Byte 3

For 16 bit transfers:
Addr 0: AD[31:16]: Byte 0, Byte 1
Addr 2: AD[15:0]: Byte 2, Byte 3

For writes if the external port is 32 bits:

 

NOTE:

 

The 5202 does not perform line bursts across a line boundary
nor does it stop at the line boundary and continue on a new line.
The 5202 fills the entire line within the boundaries of that partic-
ular line. If the line transfer starts on a mis-aligned line boundary
it wraps around the same line to complete the transfer. 

 

31 0

OP0 OP1 OP2 OP3 Longword Operand

15 0

OP2 OP3 Word Operand

7 0

OP3 Byte Operand

 

Table 5-1. Transfer Size Chart

 

Transfer Size Size Address External Data Bus Connection

 

SIZ1 SIZ2 A1 A0 D[31:24] D[23:16] D[15:8] D[7:0]

Byte

0 1 0 0 OP3 X X X
0 1 0 1 OP3 OP3 X X
0 1 1 0 OP3 X OP3 X
0 1 1 1 OP3 OP3 X OP3

Word

1 0 0 0 OP2 OP3 X X
1 0 0 1 OP3 X X X
1 0 1 0 OP2 OP3 OP2 OP3
1 0 1 1 OP3 X X X

Longword

0 0 0 0 OP0 OP1 OP2 OP3
0 0 1 OP1 X X X

0 0 1 0 OP2 OP3 X X
0 0 1 1 OP3 X X X

Line

1 1 0 0 OP0 OP1 OP2 OP3
1 1 0 1 OP1 X X X
1 1 1 0 OP2 OP3 X X
1 1 1 1 OP3 X X X



 

Bus Operations 

 

5-6

 

MC5202 USERÕS MANUAL

 

MOTOROLA

 

NOTE:

 

DA[1:0], TEA, and TBI can be synchronous as long as they are
negated before the 5202 samples them for the next bus cycle.
Please refer to figure 9-3 on page 9-6 of the Electrical Charac-
teristics section of the user's manual.

 

5.3  ACKNOWLEDGE BUS CYCLES

 

The MCF5202 processor supports both interrupt- and autovector-acknowledge cycles. In 
either case, if the transfer is terminated with the assertion of TEA, a spurious interrupt 
exception is taken. Figure 5-7 displays an interrupt-acknowledge cycle. The cycle is 
similar to a byte read, except the access is in CPU space, TT = 11. The interrupt level 
being acknowledged is driven onto A/D[4:2], while A/D[31:5] are driven high and A/D[1:0] 
are driven low. The system drives the interrupt vector onto A/D[31:24], asserting DA, to 
terminate the access. During the acknowledge cycle, AVEC can be asserted, forcing 
internal generation of the vector number. If AVEC is asserted, vector data is not required 
to be driven. The IPL signals should remain valid until the acknowledge cycle is complete.

 

Figure 5-7.  Interrupt-Acknowledge Operation

 

5.4  BUS ARBITRATION

 

The MCF5202 processor supports multimaster system designs by requesting the bus from 

CLK

TS

DTIP

A/D[31:24]

DA1 and/

R/W

IPL[2:0]

SIZ[1:0]

TT[1:0]

AVEC

SIZE = 01 - BYTE

TT = 11 - CPU SPACE

A/D[4:2]

A/D[23:5]

A/D[1:0]

IPL LEVEL

VECTOR

or DA0



 

Bus Operations

 

MOTOROLA

 

MC5202 USERÕS MANUAL

 

5-7

 

an external arbiter. The arbiter must monitor the signals bus request (BR) and bus driven 
(BD) to properly arbitrate the bus. There is a minimum one-clock dead time to arbitrate the 
bus from the MCF5202 device to another master. The external arbiter may offer the bus to 
another master any time both BD and BG are negated. The MCF5202 monitors its bus 
grant (BG) signal to determine when it should become bus master and will start to drive 
the bus at the rising edge of the clock in which BG is recognized asserted. Figure 5-8 
shows two scenarios of BG being negated. In the first, the MCF5202 is bus master and 
the bus is idle.   On the rising CLK edge where BG is recognized negated, the MCF5202 
device will drive the bus to a high-impedance level. In the second case, BG is negated 
within a bus cycle. The MCF5202 processor will complete the bus access by driving BD 
negated and driving all bus signals to a high-impedance level. If DTIP is tied to another 
master, there may be some period of time when this signal may be driven high by 2 
separate drivers with both pins driving high before the previous master places its pin in a 
three-state mode.

 

Figure 5-8.  Bus Arbitration Operation

 

5.5  RESET OPERATION

 

An external device asserts the RST signal to reset the processor. When power is applied 
to the system, external circuitry should assert RST for a minimum of 6 CLK cycles after 
VCC is within tolerance. CLK is required to be stable by the time VCC

 

 

 

reaches the 
minimum operating specification. CLK should start oscillating as VCC is ramped up to 
resolve contention internal to the part caused by the random manner in which internal flip-
flops power-up. RST is internally synchronized for 2 CLK cycles before being used, and 
must meet the specified setup and hold times to CLK only if recognition by a specific CLK 
rising edge is required.

CLK

BG

TS

BD

A/D

TRANSFER

AM_BG

DA

ADDR DATA 

ATTRIBUTES

NOTE: Transfer Attribute Signals = SIZ, TT, ATM, R/W

BR

PROCESSOR IS
MASTER

ALTERNATE MASTER 
COULD DRIVE HERE

PROCESSOR IS
MASTER

ALTERNATE MASTER 
COULD DRIVE HERE

DTIP



 

Bus Operations 

 

5-8

 

MC5202 USERÕS MANUAL

 

MOTOROLA

 

Figure 5-9 shows the general relationship between VCC, RST, and the bus signals during 
the power-on reset operation. Processor resets during normal operation must follow the 
same requirements as those for power-on reset.

 

Figure 5-9.  Reset Operation

CLK

VCC 0v

+5v

BR

BUS

RST

SIGNALS

t >= 6
CLK CYCLES

t >= 22
CLK CYCLES

BD



 

MOTOROLA

 

MCF5202 USER’S MANUAL

 

6-1

 

SECTION 6
DEBUG SUPPORT

 

This section details the hardware debug support functions within the ColdFire 5200 Family 
of processors.

The general topic of debug support has been divided into three separate areas: 

• Real-Time Trace Support

• Background Debug Mode (BDM)

• Real-Time Debug Support

Each of the three areas is addressed in detail in the following sections.

The logic required to support these three areas is contained in a debug module, which is 
shown in the system block diagram in Figure 6-1. 

 

6.1  REAL-TIME TRACE

 

In the area of debug functions, one fundamental requirement is support for real-time trace 
functionality, i.e., definition of the dynamic execution path. The ColdFire solution is to include 
a parallel output port providing encoded processor status and data to an external 
development system. This port is partitioned into two 4-bit nibbles: one nibble allows the 
processor to transmit information concerning the execution status of the core (processor 
status

 

,

 

 PST), while the other nibble allows operand data to be displayed (debug data

 

, 

 

DDATA).

 

Figure 6-1. Processor/Debug Module Interface

COLDFIRE CPU 

DEBUG
MODULE

BDM PORT
DDATA, PST

DSCLK, DSI, DSO
TRACE PORT

INTERNAL BUSESCORE



 

Debug SupportDebug Support

 

6-2

 

MCF5202 USER’S MANUAL

 

MOTOROLA

 

The processor status outputs can be used with an external image of the program to 
completely track the dynamic execution path of the machine. The tracking of this dynamic 
path is naturally complicated by any change-of-flow operation. Within the ColdFire 
instruction set architecture, most branch instructions are implemented using PC-relative 
addressing. Accordingly, the external program image can determine branch target 
addresses. Additionally, there are a number of instructions that use some type of variant 
addressing, i.e., the calculation of the target instruction address is not PC-relative or 
absolute, but involves the use of a program-visible register.

The processor status timing is synchronous with the processor clock (CLK) and the status 
may not be related to the current bus transfer. Table 6-1 below shows the encodings of 
these signals.

The simplest example of a branch instruction using a variant addressing mode is the 
compiled code for a C language

 

 case 

 

statement. Typically, the evaluation of this statement 
uses the variable of an expression as an index into a table of offsets, where each offset 
points to a unique case within the structure. For these types of change-of-flow operations, 
the ColdFire processor uses the debug pins to output a sequence of information. 

1. Identify a taken branch has been executed using the PST

 

 

 

pins.

2. Using the PST

 

 

 

pins, signal the target address is to be displayed on the DDATA pins. 
The encoding identifies the number of bytes that are displayed and is optional

 

.

 

3. The new target address is optionally available on subsequent cycles using the nibble-
wide DDATA port. The number of bytes of the target address displayed on this port is 
a configurable parameter (2, 3, or 4 bytes).

 

Table 6-1.  Processor PST Definition

 

PST[3:0]

 

DEFINITION

 

0000 Continue execution

0001 Begin execution of an instruction

0010 Reserved

0011 Entry into user-mode

0100 Begin execution of 

 

PULSE 

 

instruction

0101 Begin execution of taken branch

0110 Reserved

0111 Begin execution of 

 

RTE

 

 instruction

1000 Begin 1-byte transfer on ddata

1001 Begin 2-byte transfer on ddata

1010 Begin 3-byte transfer on ddata

1011 Begin 4-byte transfer on ddata

1100 † Exception processing

1101 † Emulator-mode entry exception processing

1110 † Processor is stopped, waiting for interrupt

1111 † Processor is halted 

† These encodings are asserted for multiple cycles.



 

Debug Support

 

MOTOROLA

 

MCF5202 USER’S MANUAL

 

6-3

 

The nibble-wide DDATA port includes two 32-bit storage elements for capturing the CPU 
core bus information. These two elements effectively form a FIFO buffer connecting the core 
bus to the external development system. The FIFO buffer captures variant branch target 
addresses along with certain operand read/write data for eventual display on the DDATA

 

 

 

output port. The execution speed of the ColdFire processor is affected only when both 
storage elements contain valid data

 

 

 

waiting to be dumped onto the DDATA port. In this case, 
the processor core is stalled until one FIFO entry is available. In all other cases, data output 
on the DDATA port does not impact execution speed.

From the processor core perspective, the PST outputs signal the

 

 

 

first AGEX cycle

 

 

 

of an 
instruction’s execution. Most single-cycle instructions begin and complete their execution 
within a given machine cycle. 

Because the status values of $C, $D, $E and $F define a multicycle mode or a special 
operation, the

 

 

 

PST outputs are driven with these values until the mode is exited or the 
operation completed. All the remaining fields specify information that is updated each 
machine cycle.

The status values of $8, $9, $A and $B qualify the contents of the DDATA

 

 

 

output bus. These 
encodings are driven onto the PST port one machine cycle before the actual data is 
displayed on DDATA.

Figure 6-2 shows the execution of an indirect JMP

 

 

 

instruction with the lower 16 bits of the 
target address being displayed on the DDATA output. In this diagram, the indirect JMP 
branches to address “target.” The processor internally forms the PST marker ($9) one cycle 
before the address begins to appear on the DDATA

 

 

 

port. The target address is displayed on 
DDATA for four consecutive clocks, starting with the least-significant nibble. The processor 
continues execution, unaffected by the DDATA

 

 

 

bus activity. 

 

Figure 6-2. Pipeline Timing Example - Debug Output

  

 

LAST

 

DSOC AGEX

 

JMP (A0)

 

DSOC AGEX

 

TARGET

 

IAG IC DSOC AGEX

 

TARGET + $4

 

IAG IC DSOC AGEX

 

INTERNAL PST

 

$5 $9 $0 TARGET

 

INTERNAL DDATA

 

$0 $0 3:0 7:4 11:8 15:12

 

PST PINS

 

$5 $9 $0 TARGET

 

DDATA PINS

 

$0 $0 3:0 7:4 11:8 15:12



 

Debug SupportDebug Support

 

6-4

 

MCF5202 USER’S MANUAL

 

MOTOROLA

 

The ColdFire instruction set architecture includes a PULSE opcode. This opcode generates 
a unique PST encoding when executed (PST = $4). This instruction can define logic 
analyzer triggers for debug and/or performance analysis. 

Additionally, a WDDATA instruction is supported that allows the processor core to write any 
operand (byte, word, long) directly to the DDATA port, independent of any debug module 
configuration. This opcode also generates the special PST = $4 encoding when executed.

 

6.2 BACKGROUND DEBUG MODE (BDM)

 

ColdFire 5200 processors support a modified version of the background debug mode (BDM) 
functionality found on Motorola’s CPU32 Family of parts. BDM implements a low-level 
system debugger in the microprocessor hardware. Communication with the development 
system is handled via a dedicated, high-speed serial command interface.

Unless noted otherwise, the BDM functionality provided by ColdFire 5200 processors is a 
proper subset of the CPU32 functionality. The main differences include the following:

• ColdFire implements the BDM controller in a dedicated hardware module. Although 
some BDM operations do require the CPU to be halted (e.g. CPU register accesses), 
other BDM commands such as memory accesses can be executed while the processor 
is running.

• DSCLK, DSI

 

 

 

and DSO

 

 

 

are treated as synchronous signals, where the inputs (DSCLK 
and DSI) must meet the required input setup and hold timings, and the output (DSO) is 
specified as a delay relative to the rising edge of the processor clock.

• On CPU32 parts, DSO could signal hardware that a serial transfer can start. ColdFire 
clocking schemes restrict the use of this bit. Because DSO changes only when DSCLK 
is high, DSO cannot be used to indicate the start of a serial transfer. The development 
system should use either a free-running DSCLK or count the number of clocks in any 
given transfer.

• The Read/Write System Register commands (RSREG/WSREG) have been replaced 
by Read/Write Control Register commands (RCREG/WCREG). These commands use 
the register coding scheme from the MOVEC instruction.

• Read/Write Debug Module Register commands (RDMREG/WDMREG) have been add-
ed to support debug module register accesses.

• CALL and RST commands are not supported.

• Illegal command responses can be returned using the FILL and DUMP commands.

• For any command performing a byte-sized memory read operation, the upper 8 bits of 
the response data are undefined. The referenced data is returned in the lower 8 bits of 
the response.

• The debug module forces alignment for memory-referencing operations: long accesses 
are forced to a 0-modulo-4 address; word accesses are forced to a 0-modulo-2 
address. An address error response can no longer be returned.



 

Debug Support

 

MOTOROLA

 

MCF5202 USER’S MANUAL

 

6-5

 

6.2.1 CPU Halt

 

Although some BDM operations can occur in parallel with CPU operation, unrestricted BDM 
operation requires the CPU to be halted. A number of sources can cause the CPU to halt, 
including the following as shown in order of priority:

1. The occurrence of the catastrophic fault-on-fault condition automatically halts the 
processor. The halt status is posted on the PST port ($F).

2. The occurrence of a hardware breakpoint can be configured to generate a pending halt 
condition in a manner similar to the assertion of the BKPT signal. In some cases, the 
occurrence of this type of breakpoint halts the processor in an imprecise manner. 
Once the hardware breakpoint is asserted, the processor halts at the next sample 
point. See section 

 

6.3.2 Theory of Operation 

 

for more detail.

3. The execution of the HALT

 

 

 

(also known as BGND on the 683xx devices) instruction 
immediately suspends execution and posts the halt status ($F) on the PST

 

 

 

outputs. 
By default this is a supervisor instruction, and attempted execution while in user mode 
generates a privilege-violation exception. A User Halt Enable (UHE) control bit is 
provided in the Configuration/Status Register (CSR) to allow execution of HALT in 
user mode.

4. The assertion of the BKPT

 

 

 

input pin is treated as an pseudo-interrupt, i.e., the halt 
condition is made pending until the processor core samples for halts/interrupts. The 
processor samples for these conditions once during the execution of each instruction. 
If there is a pending halt condition at the sample time, the processor suspends 
execution and enters the halted state. The halt status ($F) is reflected in the PST 
outputs. 

The halt source is indicated in CSR[27:24]; for simultaneous halt conditions, the highest 
priority source is indicated.

There are two special cases involving the assertion of the BKPT pin to be considered.

After RSTI is negated, the processor waits for 16 clock cycles before beginning reset 
exception processing. If the BKPT input pin is asserted within the first eight cycles after RSTI 
is negated, the processor will enter the halt state, signaling that status on the PST outputs 
($F). While in this state, all resources accessible via the debug module can be referenced. 
Once the system initialization is complete, the processor response to a BDM GO command 
depends on the set of BDM commands performed while breakpointed. Specifically, if the 
processor’s PC register was loaded, the GO command causes the processor to exit the halt 
state and pass control to the instruction address contained in the PC. In this case, the 
normal reset exception processing is bypassed. Conversely, if the PC register was not 
loaded, the GO BDM command causes the processor to exit the halt state and continue with 
reset exception processing.

ColdFire 5200 processors also handle a special case with the assertion of BKPT while the 
processor is stopped by execution of the STOP instruction. For this case, the processor exits 
the stopped mode and enters the halted state. Once halted, the standard BDM commands 
may be exercised. When the processor is restarted, it continues with the execution of the 
next sequential instruction, i.e., the instruction following the STOP opcode.



 

Debug SupportDebug Support

 

6-6

 

MCF5202 USER’S MANUAL

 

MOTOROLA

 

The debug module CSR register maintains status defining the condition that caused the 
CPU to halt.

 

6.2.2 BDM Serial Interface

 

Once the CPU is halted and the halt status reflected on the PST outputs, the development 
system may send unrestricted commands to the debug module. The debug module 
implements a synchronous protocol using a three-pin interface: development serial clock 
(DSCLK), development serial input (DSI), and

 

 

 

development serial output

 

 

 

(DSO). The 
development system serves as the serial communication channel master and is responsible 
for generation of the clock (DSCLK). The operating range of the serial channel is DC to 1/2 
of the processor frequency. The channel uses a full duplex mode, where data is transmitted 
and received simultaneously by both master and slave devices.

Both DSCLK and DSI are synchronous inputs and must meet input setup and hold times 
with respect to CLK. DSCLK essentially acts as a pseudo “clock enable” and is sampled on 
the rising edge of CLK. If the setup time of DSCLK is met, then the internal logic transitions 
on the rising edge of CLK, and DSI is sampled on the same CLK rising edge. The DSO 
output is specified as a delay from the DSCLK-enabled CLK rising edge. All events in the 
debug module’s serial state machine are based on the rising edge of the microprocessor 
clock (see Figure 6-3 below).

 

Figure 6-3. BDM Signal Sampling

 

The basic packet of information is a 17-bit word (16 data bits plus a status/control bit), as 
shown below.

 

16 15 0

S/C DATA FIELD [15:0]

 

 

CLK

DSCLK

DSI

DSO



 

Debug Support

 

MOTOROLA

 

MCF5202 USER’S MANUAL

 

6-7

 

Status/Control
The status/control bit indicates the status of CPU-generated messages as listed in Table
6-2. Command and data transfers initiated by the development system should clear bit 16.
The current implementation ignores this bit; however, Motorola reserves the right to use
this bit for future enhancements.The response message is always a single word, with the

data field encoded as shown in Table 6-2.

Data Field
The data field contains the message data to be communicated between the development
system and the debug module.

 

6.2.3 BDM Command Set

 

ColdFire 5200 processors support a subset of BDM instructions from the current 683xx 
parts, as well as extensions to provide access to new hardware features.

 

6.2.3.1 BDM COMMAND SET SUMMARY. 

 

The BDM command set is summarized in 
Table 6-3. Subsequent paragraphs contain detailed descriptions of each command. 

 

Table 6-2.  CPU-Generated Message Encoding

 

S/C BIT DATA MESSAGE TYPE

 

0 xxxx Valid data transfer
0 $FFFF Command complete; status OK
1 $0000 Not ready with response; come again
1 $0001 TEA-terminated bus cycle; data invalid
1 $FFFF Illegal command

 

Table 6-3.  BDM Command Summary 

 

COMMAND MNEMONIC DESCRIPTION
CPU

 

 

 

IMPACT

 

1

 

PAGE

 

Read A/D Register RAREG/RDREG Read the selected address or data register and return the 
result via the serial interface Halted 8-10

Write A/D Register WAREG/WDREG The data operand is written to the specified address or 
data register Halted 8-11

Read Memory Location READ Read the sized data at the memory location specified by 
the longword address Steal 8-12

Write Memory Location WRITE Write the operand data to the memory location specified 
by the longword address Steal 8-14

Dump Memory Block DUMP

Used in conjunction with the READ command to dump 
large blocks of memory. An initial READ is executed to 
set up the starting address of the block and to retrieve the 
first result. Subsequent operands are retrieved with the 
DUMP command.

Steal 8-16

Fill Memory Block FILL

Used in conjunction with the WRITE command to fill large 
blocks of memory. An initial WRITE is executed to set up 
the starting address of the block and to supply the first op-
erand. Subsequent operands are written with the FILL 
command.

Steal 8-18

Resume Execution GO The pipeline is flushed and refilled before resuming in-
struction execution at the current PC Halted 8-20

No Operation NOP NOP performs no operation and may be used as a null 
command Parallel 8-20

Read Control Register RCREG Read the system control register Halted 8-21
Write Control Register WCREG Write the operand data to the system control register Halted 8-22



 

Debug SupportDebug Support

 

6-8

 

MCF5202 USER’S MANUAL

 

MOTOROLA

 

6.2.3.2 COLDFIRE BDM COMMANDS. 

 

All ColdFire Family BDM commands include a 16-
bit operation word followed by an optional set of one or more extension words. 

Operation Field
The operation field specifies the command.

R/W Field
The R/W field specifies the direction of operand transfer. When the bit is set, the transfer
is from the CPU to the development system. When the bit is cleared, data is written to the
CPU or to memory from the development system.

Operand Size
For sized operations, this field specifies the operand data size. All addresses are ex-
pressed as 32-bit absolute values. The size field is encoded as listed in Table 6-4.

Address / Data (A/D) Field
The A/D field is used in commands that operate on address and data registers in the pro-
cessor. It determines whether the register field specifies a data or address register. A one
indicates an address register; zero, a data register.

Register Field
In commands that operate on processor registers, this field specifies which register is se-
lected. The field value contains the register number.

 

Read Debug Module Register RDMREG Read the Debug Module register Halted 8-23
Write Debug 

Module Register WDMREG Write the operand data to the Debug Module register Halted 8-23

Note 1: 

 

General

 

 command effect and/or requirements on CPU operation:
Halted - The CPU must be halted to perform this command
Steal - Command generates bus cycles which can be interleaved with CPU accesses
Parallel - Command is executed in parallel with CPU activity
Refer to command summaries for detailed operation descriptions.

 

15 10 9 8 7 6 5 4 3 2 0

OPERATION 0 R/W OP SIZE 0 0 A/D REGISTER

EXTENSION WORD(S)

 

 

Table 6-4. BDM Size Field Encoding

 

ENCODING OPERAND SIZE

 

00 Byte
01 Word
10 Long
11 Reserved

 

Table 6-3.  BDM Command Summary (Continued)

 

COMMAND MNEMONIC DESCRIPTION
CPU

 

 

 

IMPACT

 

1

 

PAGE



 

Debug Support

 

MOTOROLA

 

MCF5202 USER’S MANUAL

 

6-9

 

Extension Word(s) (as required):
Certain commands require extension words for addresses and/or immediate data. Ad-
dresses require two extension words because only absolute long addressing is permitted.
Immediate data can be either one or two words in length; byte and word data each require
a single extension word; longword data requires two words. Both operands and address-
es are transferred by most significant word first. In the following descriptions of the BDM
command set, the optional set of extension words are defined as the ‘‘Operand Data.’’

 

6.2.3.3  Command Sequence Diagram. 

 

A command sequence diagram (see Figure 6-4) 
illustrates the serial bus traffic for each command. Each bubble in the diagram represents a 
single 17-bit transfer across the bus. The top half in each diagram corresponds to the data 
transmitted by the development system to the debug module; the bottom half corresponds 
to the data returned by the debug module in response to the development system 
commands. Command and result transactions are overlapped to minimize latency. 

The cycle in which the command is issued contains the development system command 
mnemonic (in this example, “read memory location”). During the same cycle, the debug 
module responds with either the lowest order results of the previous command or with a 
command complete status (if no results were required).

During the second cycle, the development system supplies the high-order 16 bits of the 
memory address. The debug module returns a "not ready" response unless the received 
command was decoded as unimplemented, in which case the response data is the illegal 
command encoding. If an illegal command response occurs, the development system 
should retransmit the command.

 

NOTE

 

The “not ready” response can be ignored unless a memory bus
cycle is in progress. Otherwise, the debug module can accept a
new serial transfer after eight system clock periods.

In the third cycle, the development system supplies the low-order 16 bits of a memory 
address. The debug module always returns the “not ready” response in this cycle. At the 
completion of the third cycle, the debug module initiates a memory read operation. Any 
serial transfers that begin while the memory access is in progress return the “not ready” 
response.

Results are returned in the two serial transfer cycles following the completion of memory 
access. The data transmitted to the debug module during the final transfer is the opcode for 
the following command. Should a memory access generate a bus error, an error status is 
returned in place of the result data.



 

Debug SupportDebug Support

 

6-10

 

MCF5202 USER’S MANUAL

 

MOTOROLA

 

Figure 6-4. Command Sequence Diagram  

6.2.3.4  Command Set Descriptions. 

 

The BDM command set is summarized on pages 
6-7 and 6-8. Subsequent paragraphs contain detailed descriptions of each command. 

 

Note 

 

All the accompanying BDM results are defined with the most 
significant bit of the 17-bit response (S/C) as 0.

Unassigned command opcodes are reserved by Motorola for future expansion. All unused
command formats within any revision level will perform a NOP and return the ILLEGAL com-
mand response.

 

6.2.3.4.1 Read A/D Register (RAREG/RDREG). 

 

Read the selected address or data 
register and return the 32-bit result. A bus error response is returned if the CPU core is not 
halted.

 COMMANDS TRANSMITTED TO THE DEBUG MODULE

COMMAND CODE TRANSMITTED DURING THIS CYCLE

HIGH-ORDER 16 BITS OF MEMORY ADDRESS

LOW-ORDER 16 BITS OF MEMORY ADDRESS

SEQUENCE TAKEN IF
OPERATION HAS NOT
COMPLETED

DATA UNUSED FROM
THIS TRANSFER

SEQUENCE TAKEN IF
ILLEGAL COMMAND
IS RECEIVED BY DEBUG MODULE

RESULTS FROM PREVIOUS COMMAND

 RESPONSES FROM THE DEBUG MODULE

NONSERIAL-RELATED ACTIVITY

MS ADDR
"NOT READY"

XXX
"ILLEGAL"

LS ADDR
"NOT READY"

NEXT CMD
"NOT READY"

READ (LONG)
???

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXXXX

XXX
BERR

MS RESULT
NEXT CMD
LS RESULT

READ
MEMORY

LOCATION

NEXT
COMMAND

CODE

SEQUENCE TAKEN IF BUS

 ERROR OCCURS ON
MEMORY ACCESS

HIGH- AND LOW-ORDER
16 BITS OF RESULT

XXX



 

Debug Support

 

MOTOROLA

 

MCF5202 USER’S MANUAL

 

6-11

 

Formats:

Command Sequence:

Operand Data:
None

Result Data:
The contents of the selected register are returned as a longword value. The data is re-
turned most significant word first.

 

6.2.3.4.2 Write A/D Register (WAREG/WDREG). 

 

The operand (longword) data is written 
to the specified address or data register. All 32 register bits are altered by the write. A bus 
error response is returned if the CPU core is not halted.

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$2 $1 $8 A/D REGISTER

 

 RAREG/RDREG Command

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA [31:16]

DATA [15:0]

 

 RAREG/RDREG Result

XXX
MS RESULT

NEXT CMD
LS RESULT

RAREG/RDREG
???

XXX
BERR

NEXT CMD
"NOT READY"



 

Debug SupportDebug Support

 

6-12

 

MCF5202 USER’S MANUAL

 

MOTOROLA

 

Command Formats:

Command Sequence:

Operand Data:
Longword data is written into the specified address or data register. The data is supplied
most significant word first.

Result Data:
Command complete status ($0FFFF) is returned when register write is complete.

 

6.2.3.4.3 Read Memory Location (READ). 

 

Read the operand data from the memory 
location specified by the longword address. The address space is defined by the contents 
of the low-order 5 bits {TT, TM} of the address attribute register. The hardware forces the 
low-order bits of the address to zeros for word and longword accesses to ensure that 
operands are always accessed on natural boundaries: words on 0-modulo-2 addresses, 
longwords on 0-modulo-4 addresses. 

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$2 $0 $8 A/D REGISTER

DATA [31:16]

DATA [15:0]

 

  WAREG/WDREG Command

MS DATA
"NOT READY"

XXX

LS DATA
"NOT READY"

NEXT CMD
"NOT READY"

WDREG/WAREG
???

NEXT CMD
"CMD COMPLETE"

BERR



 

Debug Support

 

MOTOROLA

 

MCF5202 USER’S MANUAL

 

6-13

 

Formats:

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $9 $0 $0

ADDRESS [31:16]

ADDRESS [15:0]

 

 Byte READ Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X DATA [7:0]

 Byte READ Result

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $9 $4 $0

ADDRESS [31:16]

ADDRESS [15:0]

  Word READ Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA [15:0]

 Word READ Result

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $9 $8 $0

ADDRESS [31:16]

ADDRESS [15:0]

 Long READ Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA [31:16]

DATA [15:0]

 Long READ Result



Debug SupportDebug Support

6-14 MCF5202 USER’S MANUAL MOTOROLA

Command Sequence:

Operand Data:
The single operand is the longword address of the requested memory location.

Result Data:
The requested data is returned as either a word or longword. Byte data is returned in the
least significant byte of a word result, with the upper byte undefined. Word results return
16 bits of significant data; longword results return 32 bits.
A successful read operation returns data bit 16 cleared. If a bus error is encountered, the
returned data is $10001.

6.2.3.4.4 Write Memory Location (WRITE). Write the operand data to the memory 
location specified by the longword address. The address space is defined by the contents 
of the low-order 5 bits {TT, TM} of the address attribute register. The hardware forces the 
low-order bits of the address to zeros for word and longword accesses to ensure that 
operands are always accessed on natural boundaries: words on 0-modulo-2 addresses, 
longwords on 0-modulo-4 addresses. 

Formats: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $8 $0 $0

ADDRESS [31:16]

ADDRESS [15:0]

X X X X X X X X DATA [7:0]

 Byte WRITE Command

MS ADDR
"NOT READY"

LS ADDR
"NOT READY"

READ (B/W)
???

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXX

XXX
BERR

   RESULT
NEXT CMD

READ
MEMORY

LOCATION

MS ADDR
"NOT READY"

LS ADDR
"NOT READY"

READ (LONG)
???

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXX

XXX
BERR

  MS RESULT
XXX

READ
MEMORY

LOCATION

NEXT CMD
LS RESULT



Debug Support

MOTOROLA MCF5202 USER’S MANUAL 6-15

Command Sequence:

Operand Data:
Two operands are required for this instruction. The first operand is a longword absolute
address that specifies a location to which the operand data is to be written. The second
operand is the data. Byte data is transmitted as a 16-bit word, justified in the least signif-
icant byte; 16- and 32-bit operands are transmitted as 16 and 32 bits, respectively.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $8 $4 $0

ADDRESS [31:16]

ADDRESS [15:0]

DATA [15:0]

 Word WRITE Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $8 $8 $0

ADDRESS [31:16]

ADDRESS [15:0]

DATA [31:16]

DATA [15:0]

  Long WRITE Command

MS ADDR
"NOT READY"

LS ADDR
"NOT READY"

WRITE (B/W)
???

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXX

XXX
BERR

   "CMD COMPLETE"
NEXT CMD

WRITE
MEMORY

LOCATION

DATA
"NOT READY"

MS ADDR
"NOT READY"

LS ADDR
"NOT READY"

WRITE (LONG)
???

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXX

XXX
BERR

   "CMD COMPLETE"
NEXT CMD

WRITE
MEMORY

LOCATION

MS DATA
"NOT READY"

LS DATA
"NOT READY"



Debug SupportDebug Support

6-16 MCF5202 USER’S MANUAL MOTOROLA

Result Data:
Successful write operations return a status of $0FFFF. A bus error on the write cycle is
indicated by the assertion of bit 16 in the status message and by a data pattern of $0001.

6.2.3.4.5 Dump Memory Block (DUMP). DUMP is used in conjunction with the READ 
command to dump large blocks of memory. An initial READ is executed to set up the starting 
address of the block and to retrieve the first result. The DUMP command retrieves 
subsequent operands. The initial address is incremented by the operand size (1, 2, or 4) and 
saved in a temporary register (Address Breakpoint High (ABHR)). Subsequent DUMP 
commands use this address, perform the memory read, increment it by the current operand 
size, and store the updated address in ABHR.

NOTE

The DUMP command does not check for a valid address in
ABHR—DUMP is a valid command only when preceded by
another DUMP, NOP or by a READ command. Otherwise, an
illegal command response is returned. The NOP command can
be used for intercommand padding without corrupting the
address pointer. 

The size field is examined each time a DUMP command is given, allowing the operand size 
to be dynamically altered.



Debug Support

MOTOROLA MCF5202 USER’S MANUAL 6-17

Command Formats:

Command Sequence:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $D $0 $0

 Byte DUMP Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X DATA [7:0]

 Byte DUMP Result

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $D $4 $0

 Word DUMP Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA [15:0]

 Word DUMP Result

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $D $8 $0

  Long DUMP Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA [31:16]

DATA [15:0]

  Long DUMP Result



Debug SupportDebug Support

6-18 MCF5202 USER’S MANUAL MOTOROLA

Operand Data:
None

Result Data:
Requested data is returned as either a word or longword. Byte data is returned in the least
significant byte of a word result. Word results return 16 bits of significant data; longword
results return 32 bits. Status of the read operation is returned as in the READ command:
$0xxxx for success, $10001 for a bus error.

6.2.3.4.6 Fill Memory Block (FILL). FILL is used in conjunction with the WRITE command 
to fill large blocks of memory. An initial WRITE is executed to set up the starting address of 
the block and to supply the first operand. The FILL command writes subsequent operands. 
The initial address is incremented by the operand size (1, 2, or 4) and is saved in ABHR after 
the memory write. Subsequent FILL commands use this address, perform the write, 
increment it by the current operand size, and store the updated address in ABHR.

NOTE

The FILL command does not check for a valid address in
ABHR—FILL is a valid command only when preceded by
another FILL, NOP or by a WRITE command. Otherwise, an
illegal command response is returned. The NOP command can
be used for intercommand padding without corrupting the
address pointer. 

The size field is examined each time a FILL command is processed, allowing the operand 
size to be altered dynamically. 

XXX
"NOT READY"

NEXT CMD
 RESULT

XXX
BERR

XXX
"ILLEGAL"

NEXT CMD
"NOT READY"

NEXT CMD
"NOT READY"

READ

MEMORY


LOCATION

DUMP (B/W)
???

XXX
"NOT READY"

NEXT CMD
 MS RESULT

XXX
BERR

XXX
"ILLEGAL"

NEXT CMD
"NOT READY"

NEXT CMD
"NOT READY"

READ

MEMORY


LOCATION

DUMP (LONG)
???

NEXT CMD
LS RESULT



Debug Support

MOTOROLA MCF5202 USER’S MANUAL 6-19

Formats: 

Command Sequence:

Operand Data:
A single operand is data to be written to the memory location. Byte data is transmitted as
a 16-bit word, justified in the least significant byte; 16- and 32-bit operands are transmitted
as 16 and 32 bits, respectively.

Result Data:
Status is returned as in the WRITE command: $0FFFF for a successful operation and
$10001 for a bus error during a write.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $C $0 $0

X X X X X X X X DATA [7:0]

  Byte FILL Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $C $4 $0

DATA [15:0]

 Word FILL Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $C $8 $0

DATA [31:16]

DATA [15:0]

  Long FILL Command

NEXT CMD
"NOT READY"

"NOT READY"

XXX
BERR

"CMD COMPLETE"

DATA
"NOT READY"

XXX

NEXT CMDXXX
"ILLEGAL"

NEXT CMD
"NOT READY"

FILL (LONG)
???

WRITE

MEMORY


LOCATION

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXX
BERR

"CMD COMPLETE"

MS DATA
"NOT READY"

NEXT CMDXXX
"ILLEGAL"

NEXT CMD
"NOT READY"

LS DATA
"NOT READY"

WRITE

MEMORY


LOCATION

FILL (B/W)
???



Debug SupportDebug Support

6-20 MCF5202 USER’S MANUAL MOTOROLA

6.2.3.4.7 Resume Execution (GO). The pipeline is flushed and refilled before resuming 
normal instruction execution. Prefetching begins at the current PC and current privilege 
level. If either the PC or SR is altered during BDM, the updated value of these registers is 
used when prefetching begins.

Formats: 

Command Sequence:

Operand Data:
None

Result Data:
The “command complete” response ($0FFFF) is returned during the next shift operation.

6.2.3.4.8 No Operation (NOP). NOP performs no operation and may be used as a null 
command where required.

Formats: 

Command Sequence:

Operand Data:
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$0 $C $0 $0

  GO Command

15 12 11 8 7 4 3 0

$0 $0 $0 $0

  NOP Command

GO
???

NEXT CMD
"CMD COMPLETE"

NOP
???

NEXT CMD

"CMD COMPLETE"



Debug Support

MOTOROLA MCF5202 USER’S MANUAL 6-21

Result Data:
The “command complete” response ($0FFFF) is returned during the next shift operation.

6.2.3.4.9 Read Control Register (RCREG). Read the selected control register and return 
the 32-bit result. Accesses to the processor/memory control registers are always 32 bits in 
size, regardless of the implemented register width. The second and third words of the 
command effectively form a 32-bit address used by the debug module to generate a special 
bus cycle to access the specified control register. The 12-bit Rc field is the same as that 
used by the MOVEC instruction.

Formats

Rc encoding:

Command Sequence:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$2 $9 $8 $0

$0 $0 $0 $0

$0 RC

 RCREG Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA [31:16]

DATA [15:0]

 RCREG Result

Table 6-5. Control Register Map
Rc REGISTER DEFINITION

$002 Cache Control Register (CACR)
$004 Access Control Unit 0 (ACR0)
$005 Access Control Unit 1 (ACR1)
$801 Vector Base Register (VBR)
$80E Status Register (SR)
$80F Program Counter (PC)

EXT WORD
"NOT READY"

EXT WORD
"NOT READY"

RCREG
???

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXX

XXX
BERR

MS RESULT

READ
MEMORY

LOCATION
NEXT CMD
LS RESULT

XXX



Debug SupportDebug Support

6-22 MCF5202 USER’S MANUAL MOTOROLA

Operand Data:
The single operand is the 32-bit Rc control register select field.

Result Data:
The contents of the selected control register are returned as a longword value. The data
is returned by most significant word first. For those control register widths less than 32
bits, only the implemented portion of the register is guaranteed to be correct. The remain-
ing bits of the longword are undefined. As an example, a read of the 16-bit SR will return
the SR in the lower word and undefined data in the upper word.

6.2.3.4.10 Write Control Register (WCREG). The operand (longword) data is written to 
the specified control register. The write alters all 32 register bits. 

Formats:

Command Sequence:

Operand Data:
Two operands are required for this instruction. The first long operand selects the register
to which the operand data is to be written. The second operand is the data.

Result Data:
Successful write operations return a status of $0FFFF. Bus errors on the write cycle are
indicated by the assertion of bit 16 in the status message and by a data pattern of $0001.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$2 $8 $8 $0

$0 $0 $0 $0

$0 RC

DATA [31:16]

DATA [15:0]

  WCREG Command

EXT WORD
"NOT READY"

EXT WORD
"NOT READY"

WCREG
???

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXX

XXX
BERR

   "CMD COMPLETE"
NEXT CMD

WRITE
MEMORY

LOCATION

MS DATA
"NOT READY"

LS DATA
"NOT READY"



Debug Support

MOTOROLA MCF5202 USER’S MANUAL 6-23

6.2.3.4.11  Read Debug Module Register (RDMREG). Read the selected Debug Module 
Register and return the 32-bit result. The only valid register selection for the RDMREG 
command is the CSR (DRc = $0).

Command Formats:

DRc encoding:

Command Sequence:

Operand Data:
None

Result Data:
The contents of the selected debug register are returned as a longword value. The data
is returned most significant word first.

6.2.3.4.12  Write Debug Module Register (WDMREG). The operand (longword) data is 
written to the specified Debug Module Register. All 32 bits of the register are altered by the 
write. The DSCLK signal must be inactive while CPU accesses are being performed.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$2 $D $8 DRc

  RDMREG BDM Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA [31:16]

DATA [15:0]

  RDMREG BDM Result

Table 6-6.  Definition of DRc Encoding - Read

DRC[3:0] DEBUG REGISTER DEFINITION MNEMONIC
INITIAL 
STATE

$0 CONFIGURATION/STATUS CSR $0

$1-$F RESERVED - –

XXX
MS RESULT

XXX
"ILLEGAL"

NEXT CMD
LS RESULT

NEXT CMD
"NOT READY"

RDMREG
???



Debug SupportDebug Support

6-24 MCF5202 USER’S MANUAL MOTOROLA

Command Format:

DRc encoding:

Command Sequence:

Operand Data:
Longword data is written into the specified debug register. The data is supplied most sig-
nificant word first.

Result Data:
Command complete status ($0FFFF) is returned when register write is complete.

6.2.3.4.13  Unassigned Opcodes. Unassigned command opcodes are reserved by 
Motorola. All unused command formats within any revision level will perform a NOP and 
return the ILLEGAL command response.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$2 $C $8 DRC

DATA [31:16]

DATA [15:0]

 WDMREG BDM Command

Table 6-7.  Definition of DRc Encoding - Write

DRc[3:0] DEBUG REGISTER DEFINITION MNEMONIC
INITIAL 
STATE

$0 Configuration/Status CSR $0

$1-$5 Reserved - –

$6 Bus Attributes And Mask AABR $0005

$7 Trigger Definition TDR $0

$8 PC Breakpoint PBR –

$9 PC Breakpoint Mask PBMR –

$A-$B Reserved – –

$C Operand Address High Breakpoint ABHR –

$D Operand Address Low Breakpoint ABLR –

$E Data Breakpoint DBR –

$F Data Breakpoint Mask DBMR –

MS DATA
"NOT READY"

XXX
"ILLEGAL"

LS DATA
"NOT READY"

NEXT CMD
"NOT READY"

WDMREG
???

NEXT CMD
"CMD COMPLETE"



Debug Support

MOTOROLA MCF5202 USER’S MANUAL 6-25

6.3  REAL-TIME DEBUG SUPPORT
ColdFire processors provide support for the debug of real-time applications. For these types 
of embedded systems, the processor cannot be halted during debug, but must continue to 
operate. The foundation of this area of debug support is that while the processor cannot be 
halted to allow debugging, the system can tolerate small intrusions into the real-time 
operation.

As discussed in the previous section, the debug module provides a number of hardware 
resources to support various hardware breakpoint functions. Specifically, three types of 
breakpoints are supported: PC with mask, operand address range, and data with mask. 
These three basic breakpoints can be configured into one- or two-level triggers with the 
exact trigger response also programmable. 

6.3.1 Programming Model
In addition to the existing BDM commands that provide access to the processor’s registers 

and the memory subsystem, the debug module contains a number of registers to support 
the required functionality. All of these registers are treated as 32-bit quantities, regardless 
of the actual number of bits in the implementation. The registers, known as the Debug 
Control Registers (DRc), are addressed using a 4-bit value as part of two new BDM 
commands (WDREG, RDREG).

These registers are also accessible from the processor’s supervisor programming model 
through the execution of the WDEBUG instruction. Thus, the breakpoint hardware within the 
debug module may be accessed by the external development system using the serial 
interface, or by the operating system running on the processor core. It is the responsibility 
of the software to guarantee that all accesses to these resources are serialized and logically 
consistent. The hardware provides a locking mechanism in the CSR to allow the external 

Figure 6-5. Debug Programming Model

ADDRESS
BREAKPOINT REGISTERS

PC BREAKPOINT
REGISTERS

DATA BREAKPOINT
REGISTERS

ABLR
ABHR

PBR
PBMR

DBMR
DBR

TDR

15

0

31

TRIGGER DEFINITION
REGISTER

ADDRESS ATTRIBUTE
BREAKPOINT REGISTERAABR

7

0

15

CSR
CONFIGURATION/
STATUS



Debug SupportDebug Support

6-26 MCF5202 USER’S MANUAL MOTOROLA

development system to disable any attempted writes by the processor to the Breakpoint 
Registers (setting IPW =1).

Figure 6-5 illustrates the debug module programming model.

6.3.1.1 ADDRESS BREAKPOINT REGISTERS (ABLR, ABHR). The Address Breakpoint 
Registers define an upper (ABHR) and a lower (ABLR) boundary for a region in the operand 
logical address space of the processor that can be used as part of the trigger. The ABLR 
and ABHR values are compared with the ColdFire CPU core address signals, as defined by 
the setting of the TDR.

6.3.1.2 ADDRESS ATTRIBUTE BREAKPOINT REGISTER (AABR). The Address 
Attribute Breakpoint Register defines the address attributes and a mask to be matched in 
the trigger. The AABR value is compared with the ColdFire CPU core address attribute 

signals, as defined by the setting of the TDR. The lower 5 bits of the AABR (TT, TM) define 
the address space used on all BDM memory references. The initial value of the AABR is 
$0005.

RM–Read/Write Mask
This field corresponds to the R-field. Setting this bit causes R to be ignored in address
comparisons.

SZM–Size Mask
This field corresponds to the SZ field. Setting a bit in this field causes the corresponding
bit in SZ to be ignored in address comparisons.

TTM–Transfer Type Mask
This field corresponds to the TT field. Setting a bit in this field causes the corresponding
bit in TT to be ignored in address comparisons.

TMM–Transfer Modifier Mask
This field corresponds to the TM field. Setting a bit in this field causes the corresponding
bit in TM to be ignored in address comparisons.

R–Read/Write
This field is compared with the ColdFire CPU core R/W signal. A high level indicates a
read cycle and a low level indicates a write cycle.

SZ–Size
This field is compared with the ColdFire CPU core SIZ signals.

15 14 13 12 11 10 8 7 6 5 4 3 2 0

RM SZM TTM TMM R SZ TT TM

  AABR Bit Definitions



Debug Support

MOTOROLA MCF5202 USER’S MANUAL 6-27

SZ—-Size
This field is compared to the ColdFire CPU core SIZ signals. These signals indicate the
data size for the bus transfer. Table 6-8 shows the definitions for the SZ encodings.

TT–Transfer Type
This field is compared with the ColdFire CPU core TT signals. These signals indicate the
transfer type for the bus transfer. Table 6-9 shows the definition of the TT encodings.

TM–Transfer Modifier
This field is compared with the ColdFire CPU core TM signals. These signals provide sup-
plemental information for each transfer type. Table 6-10 shows encodings for normal
transfers and Table 6-11 shows the encodings for alternate and debug access transfers.

Table 6-8. SZ Encodings

SZ[1:0] TRANSFER SIZE

00 Longword (4 bytes)

01 Byte

10 Word (2 bytes)

11 Reserved

Table 6-9. Transfer Type Encodings

TT[1:0] TRANSFER TYPE

00 Normal Access

01 Reserved

10 Alternate and Debug 
Access

11 Acknowledge Access



Debug SupportDebug Support

6-28 MCF5202 USER’S MANUAL MOTOROLA

For interrupt acknowledge transfers the TM signals indicate the interrupt level being ac-
knowledged. For breakpoint acknowledge transfers, the TM signals are low.

6.3.1.3 PROGRAM COUNTER BREAKPOINT REGISTER (PBR, PBMR). The PC 
Breakpoint Registers define a region in the instruction address space of the processor that 
can be used as part of the trigger. The PBR value is masked by the PBMR value, allowing 
only those bits in PBR that have a corresponding zero in PBMR to be compared with the 
processor’s program counter register, as defined in the TDR.

6.3.1.4 DATA BREAKPOINT REGISTER (DBR, DBMR). The Data Breakpoint Registers 
define a specific data pattern that can be used as part of the trigger into debug mode.The 
DBR value is masked by the DBMR value, allowing only those bits in DBR that have a 
corresponding zero in DBMR to be compared with the ColdFire CPU core data signals, as 
defined in the TDR.

The data breakpoint register supports both aligned and misaligned operand references. The 
relationship between the processor core address, the access size, and the corresponding 
location within the 32-bit core data bus is shown in Table 6-12.

Table 6-10. Transfer Modifier Encodings for Normal Transfers

TM[2:0] TRANSFER MODIFIER

000 Reserved

001 User Data Access

010 User Code Access

011 - 100 Reserved

101 Supervisor Data Access

110 Supervisor Code Access

111 CPU spce - MOVEC Access

Table 6-11. Transfer Modifier Encodings for Alternate Access Transfers

TM[2:0] TRANSFER MODIFIER

000 - 100, 111 Reserved

101 Emulator Mode Data Access

110 Emulator Mode Code Access

Table 6-12. Core Address, Access Size, and Operand Location 

CORE 
ADDRESS[1:0]

ACCESS 
SIZE

OPERAND 
LOCATION

00 Byte Data[31:24]

01 Byte Data[23:16]

10 Byte Data[15:08]

11 Byte Data[07:00]



Debug Support

MOTOROLA MCF5202 USER’S MANUAL 6-29

6.3.1.5 TRIGGER DEFINITION REGISTER (TDR). The TDR configures the operation of 
the hardware breakpoint logic within the debug module and controls the actions taken under 
the defined conditions. The breakpoint logic may be configured as a one- or two-level 
trigger, where bits [31:16] of the TDR define the 2nd level trigger and bits [15:0] define the 
first level trigger. 

Reset clears the TDR.

TRC–Trigger Response Control
The trigger response control determines how the processor is to respond to a completed
trigger condition. The trigger response is always displayed on the DDATA pins.

00=reserved
01=processor halt
10=debug interrupt
11=reserved

EBL–Enable Breakpoint Level
If set, this bit serves as the global enable for the breakpoint trigger. If cleared, all break-
points are disabled.

EDLW–Enable Data Breakpoint for the Data Longword
If set, this bit enables the data breakpoint based on the core data bus (KD) KD[31:0]

longword.
The assertion of any of the ED bits enables the data breakpoint. If all bits are cleared, the
data breakpoint is disabled.

EDWL–Enable Data Breakpoint for the Lower Data Word
If set, this bit enables the data breakpoint based on the KD[31:0] longword.

0- Word Data[31:16]

1- Word Data[15:00]

- Word Data[31:00]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TRC EBL EDLW EDWL EDWU EDLL EDLM EDUM EDUU DI EAI EAR EAL EPC PCI

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 EBL EDLW EDWL EDWU EDLL EDLM EDUM EDUU DI EAI EAR EAL EPC PCI

  TDR Bit Definitions

Table 6-12. Core Address, Access Size, and Operand Location (Continued)

CORE 
ADDRESS[1:0]

ACCESS 
SIZE

OPERAND 
LOCATION



Debug SupportDebug Support

6-30 MCF5202 USER’S MANUAL MOTOROLA

EDWU–Enable Data Breakpoint for the Upper Data Word
If set, this bit enables the data breakpoint trigger based on the KD[31:16] word.

EDLL–Enable Data Breakpoint for the Lower Lower Data Byte
If set, this bit enables the data breakpoint trigger based on the KD[7:0] byte.

EDLM–Enable Data Breakpoint for the Lower Middle Data Byte
If set, this bit enables the data breakpoint trigger based on the KD[15:8] byte.

EDUM–Enable Data Breakpoint for the Upper Middle Data Byte
If set, this bit enables the data breakpoint trigger based on the KD[23:16] byte.

EDUU–Enable Data Breakpoint for the Upper Upper Data Byte
If set, this bit enables the data breakpoint trigger based on the KD[31:24] byte.

DI–Data Breakpoint Invert
This bit provides a mechanism to invert the logical sense of all the data breakpoint com-
parators. This can develop a trigger based on the occurrence of a data value not equal to
the one programmed into the DBR.

EAI–Enable Address Breakpoint Inverted
If set, this bit enables the address breakpoint based outside the range defined by ABLR
and ABHR.
The assertion of any of the EA bits enables the address breakpoint. If all three bits are
cleared, this breakpoint is disabled.

EAR–Enable Address Breakpoint Range
If set, this bit enables the address breakpoint based on the inclusive range defined by
ABLR and ABHR.

EAL–Enable Address Breakpoint Low
If set, this bit enables the address breakpoint based on the address contained in the
ABLR.

EPC–Enable PC Breakpoint
If set, this bit enables the PC breakpoint. If this bit is cleared, the PC breakpoint is 
disabled.

PCI–PC Breakpoint Invert
If set, this bit allows execution outside a given region as defined by PBR and PBMR to
enable a trigger. If cleared, the PC breakpoint is defined within the region defined by PBR
and PBMR.

6.3.1.6 CONFIGURATION/STATUS REGISTER (CSR). The Configuration/Status Register 
defines the operating configuration for the processor and memory subsystem. In addition to 



Debug Support

MOTOROLA MCF5202 USER’S MANUAL 6-31

defining the microprocessor configuration, this register also contains status information from 
the breakpoint logic. The CSR is cleared during system reset. The CSR can be read and

written by the external development system and written by the supervisor programming 
model.

Status–Breakpoint Status
This 4-bit field defines provides read-only status information concerning the hardware
breakpoints. This field is defined as follows:

$0 = no breakpoints enabled
$1 = waiting for level 1 breakpoint
$2 = level 1 breakpoint triggered
$5 = waiting for level 2 breakpoint
$6 = level 2 breakpoint triggered

This breakpoint status is also output on the DDATA port when the bus is not displaying
ColdFire CPU core captured data. A write to the TDR resets this field.

FOF–Fault-on-Fault
If this read-only status bit is set, a catastrophic halt has occurred and forced entry into
BDM. This bit is cleared on a read from the CSR and is cleared on a read of the CSR.

TRG–Hardware Breakpoint Trigger
If this read-only status bit is set, a hardware breakpoint has halted the processor core and
forced entry into BDM. This bit is cleared on a read from the CSR and is cleared on a read
of the CSR.

Halt–Processor Halt
If this read-only status bit is set, the processor has executed the HALT instruction and
forced entry into BDM. This bit is cleared on a read from the CSR and is cleared on a read
of the CSR.

BKPT–BKPT Assert
If this read-only status bit is set, the BKPT signal was asserted, forcing the processor into
BDM. This bit is cleared on a read from the CSR and is cleared on a read of the CSR.

IPW–Inhibit Processor Writes to Debug Registers
If set, this bit inhibits any processor-initiated writes to the debug module’s programming
model registers. This bit can only be modified by commands from the external develop-
ment system.

31 28 27 26 25 24 23 17 16

STATUS FOF TRG HALT BKPT RESERVED IPW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MAP TRC EMU DDC UHE BTB 0 NPL IPI SSM 0 0 0 0

Figure 6-6. CSR Bit Definitions



Debug SupportDebug Support

6-32 MCF5202 USER’S MANUAL MOTOROLA

MAP–Force Processor References in Emulator Mode
If set, this bit forces the processor to map all references while in emulator mode to a spe-
cial address space, TT = 10, TM = 101 (data) and 110 (text). If cleared, all emulator-mode
references are mapped into supervisor text and data spaces.

TRC–Force Emulation Mode on Trace Exception
If set, this bit forces the processor to enter emulator mode when a trace exception occurs.

EMU–Force Emulation Mode
If set, this bit forces the processor to begin execution in emulator mode. This bit is exam-
ined only when RSTI is negated, as the processor begins reset exception processing.

DDC–Debug Data Control
This 2-bit field provides configuration control for capturing operand data for display on the
DDATA port. The encodings are: 

00 = no operand data is displayed
01 = capture all M-Bus write data
10 = capture all M-Bus read data
11 = capture all M-Bus read and write data

In all cases, the DDATA port displays the number of bytes defined by the operand refer-
ence size, i.e., byte displays 8 bits, word displays 16 bits, and long displays 32 bits.

UHE-User Halt Enable
This bit selects the CPU privilege level required to execute the HALT instruction.

0 = HALT is a privileged, supervisor-only instruction
1 = HALT is a nonprivileged, supervisor/user instruction

BTB–Branch Target Bytes
This 2-bit field defines the number of bytes of branch target address to be displayed on
the DDATA outputs. The encoding is 

00 = 0 bytes
01 = lower two bytes of the target address
10 = lower three bytes of the target address
11 = entire four-byte target address 

The bytes are always displayed in a least-significant to most-significant order. The pro-
cessor captures only those target addresses associated with taken branches using a vari-
ant addressing mode. This includes JMP and JSR instructions using address register
indirect or indexed addressing modes, all RTE and RTS instructions as well as all excep-
tion vectors.

NPL–Nonpipelined Mode
If set, this bit forces the processor core to operate in a nonpipeline mode of operation. In
this mode, the processor effectively executes a single instruction at a time with no overlap.



Debug Support

MOTOROLA MCF5202 USER’S MANUAL 6-33

IPI–Ignore Pending Interrupts
If set, this bit forces the processor core to ignore any pending interrupt requests signalled
on KIPL[2:0] while executing in single-instruction-step mode.

SSM–Single-Step Mode
If set, this bit forces the processor core to operate in a single-instruction-step mode. While
in this mode, the processor executes a single instruction and then halts. While halted, any
of the BDM commands may be executed. On receipt of the GO command, the processor
executes the next instruction and then halts again. This process continues until the single-
instruction-step mode is disabled.

Reserved
All bits labeled Reserved or “0” are currently unused and reserved for future use. These 

bits should always be written as 0.

6.3.2 Theory of Operation
The breakpoint hardware can be configured to respond to triggers in several ways. The 
preferred response is programmed into the Trigger Definition Register. In all situations 
where a breakpoint triggers, an indication is provided on the DDATA output port (when not 
displaying captured operands or branch addresses) as shown in Table 6-13.

The breakpoint status is also posted in the CSR.

The new BDM instructions load and configure the desired breakpoints using the appropriate 
registers. As the system operates, a breakpoint trigger generates a response as defined in 
the TDR. If the system can tolerate the processor being halted, a BDM-entry can be used. 
With the TRC bits of the TDR = 01, the breakpoint trigger causes the core to halt (as 
reflected in the PST = $F status). For PC breakpoints, the halt occurs before the targeted 
instruction is executed. For address and data breakpoints, the processor may have 
executed several additional instructions. For these breakpoints, trigger reporting is 
imprecise.

If the processor core cannot be halted, the special debug interrupt can be used. With this 
configuration, TRC bits of the TDR = 10, the breakpoint trigger is converted into a debug 

Table 6-13.  DDATA, CSR[31:28] Breakpoint Response

DDATA[3:0], 
CSR[31:28]

BREAKPOINT STATUS

$0 No breakpoints enabled

$1 Waiting for Level 1 breakpoint

$2 Level 1 breakpoint triggered

$3-4 Reserved

$5 Waiting for Level 2 breakpoint

$6 Level 2 breakpoint triggered

$7-$F Reserved



Debug SupportDebug Support

6-34 MCF5202 USER’S MANUAL MOTOROLA

interrupt to the processor. This interrupt is treated as higher than the nonmaskable level 7 
interrupt request. As with all interrupts, it is made pending the processor samples, once per 
instruction. Again, the hardware forces the PC breakpoint to occur immediately (before the 
execution of the targeted instruction). This is possible because the PC breakpoint 
comparison is enabled at the same time the interrupt sampling occurs. For the address and 
data breakpoints, the reporting is imprecise.

Once the debug interrupt is recognized, the processor aborts execution and initiates 
exception processing. At the initiation of the exception processing, the core enters emulator 
mode. Depending on the state of the MAP bit in the CSR, this mode may force all memory 
accesses (including the exception stack frame writes and the vector fetch) into a specially 
mapped address space signalled by TT = 2, TM = {5, 6}. After the standard 8-byte exception 
stack is created, the processor fetches a unique exception vector (offset $030) from the 
vector table.

Execution continues at the instruction address contained in this exception vector. All 
interrupts are ignored while in emulator mode. Users can program the debug-interrupt 
handler to perform the necessary context saves using the supervisor instruction set. As an 
example, this handler may save the state of all the program-visible registers as well as the 
current context into a reserved memory area. 

Once the required operations are completed, the return-from-exception (RTE) instruction is 
executed and the processor exits emulator mode. The processor status output port provides 
a unique encoding for emulator mode entry ($D) and exit ($7). Once the debug interrupt 
handler has completed its execution, the external development system can then access the 
reserved memory locations using the BDM commands to read memory.

6.3.2.1 REUSE OF DEBUG MODULE HARDWARE.  The debug module implementation 
provides a common hardware structure for both BDM and breakpoint functionality. Several 
structures are used for both BDM and breakpoint purposes. Table 6-14 identifies the shared 
hardware structures.

The shared use of these hardware structures means the loading of the register to perform 
any specified function is destructive to the shared function. For example, if an operand 
address breakpoint is loaded into the debug module, a BDM command to access memory 
overwrites the breakpoint. If a data breakpoint is configured, a BDM write command 
overwrites the breakpoint contents.

Table 6-14.  Shared BDM/Breakpoint Hardware

REGISTER BDM FUNCTION BREAKPOINT FUNCTION

AABR Bus attributes for all memory commands Attributes for address 
breakpoint

ABHR Address for all memory commands Address for address 
breakpoint

DBR Data for all BDM write commands Data for data breakpoint



Debug Support

MOTOROLA MCF5202 USER’S MANUAL 6-35

6.3.3 Concurrent BDM and Processor Operation
The debug module supports concurrent operation of both the processor and most BDM 
commands. BDM commands may be executed while the processor is running, except for 
the operations that access processor/memory registers:

• Read/Write Address and Data Registers

• Read/Write Control Registers

For BDM commands that access memory, the debug module requests the ColdFire core’s 
bus. The processor responds by stalling the instruction fetch pipeline and then waiting until 
all current core bus activity is complete. At that time, the processor relinquishes the core bus 
to allow the debug module to perform the required operation. After the conclusion of the 
debug module core bus cycle, the processor reclaims ownership of the core bus.

The development system must use caution in configuring the Breakpoint Registers if the 
processor is executing. The debug module does not contain any hardware interlocks, so 
Motorola recommends that the TDR be disabled while the Breakpoint Registers are being 
loaded. At the conclusion of this process, the TDR can be written to define the exact trigger. 
This approach guarantees that no spurious breakpoint triggers will occur.

Because there are no hardware interlocks in the debug unit, no BDM operations are allowed 
while the CPU is writing the debug’s registers (SDSCLK must be inactive).

6.4 MOTOROLA RECOMMENDED BDM PINOUT
The ColdFire BDM connector is a 26-pin Berg Connector arranged 2x13, shown below.

1 Supplied by target
2 Pins reserved for BDM developer use. Contact developer.

1

3

5

7

9

11

13

15

17

19

21

23

25

2

4

6

8

10

12

14

16

18

20

22

24

26

Developer reserved2

GND

GND

RESET*

+5V1

GND

PST2

PST0

DDATA2

DDATA0

Motorola reserved

GND

Vcc_CPU

BKPT

DSCLK

Developer reserved2

DSI

DSO

PST3

PST1

DDATA3

DDATA1

GND

Motorola reserved

CLK_CPU

TEA



Debug SupportDebug Support

6-36 MCF5202 USER’S MANUAL MOTOROLA

6.4.1 Differences Between the ColdFire BDM and a CPU32 BDM
1. DSCLK, BKPT, and DSDI need to meet the setup and hold times relative to the rising 

edge of the processor clock to prevent the processor from propagating metastable 
states.

2. DSO transitions relative to the rising edge of DSCLK only. In the CPU32 BDM, DSO 
transitions between serial transfers to indicate to the development system that a com-
mand has successfully completed. The ColdFire BDM does not support this feature.

3. The development system must note that the DSO is not valid during the first rising 
edge of DSCLK. Instead, the first rising edge of DSCLK causes DSO to transmit the 
MSB of DSO. A serial transfer is illustrated below.

16 15 0

16 15 1 0



 

MOTOROLA

 

 MCF5202 USER’S MANUAL

 

7-1

 

SECTION 7 
JTAG SPECIFICATION

 

7.1  IEEE 1149.1 TEST ACCESS PORT (JTAG) SPECIFICATION

 

The MCF5202 processors include dedicated user-accessible test logic that is fully compliant 
with the IEEE standard 1149.1 -1993 Standard test access port and boundary- scan 
architecture.

The following description should be used in conjunction with the supporting IEEE document 
listed above. This section includes the description of those chip-specific items that the IEEE 
standard requires as well as those items specific to the MCF5202 implementation.

The MCF5202 JTAG test architecture implementation currently supports circuit board test 
strategies that are based on the IEEE standard. This architecture provides access to all of 
the data and chip control pins from the board edge connector through the standard four-pin 
test access port (TAP) and the active-low JTAG reset pin, TRST. The test logic itself uses a 
static design and is wholly independent of the system logic, except where the JTAG is 
subordinate to other complimentary test modes (used for manufacturing test support). When 
in subordinate mode, the JTAG test logic is placed in reset and the TAP pins can be used 
for other purposes in accordance with the rules and restrictions set forth using a JTAG 
compliance-enable pin.

The MCF5202 JTAG implementation can 

• Perform boundary-scan operations to test circuit board electrical continuity

• Bypass the MCF5202 device by reducing the Shift Register path to a single cell

• Sample the MCF5202 system pins during operation and transparently shift out 
the result

• Set the MCF5202 output drive pins to fixed logic values while reducing the Shift 
Register path to a single cell

• Protect the MCF5202 system output and input pins from backdriving and random 
toggling (such as during in-circuit testing) by placing all system signal pins to high 
impedance



 

JTAG Specification

 

7-2

 

 MCF5202 USER’S MANUAL

 

MOTOROLA

 

The IEEE Standard 1149.1 test logic cannot be considered completely benign to those 
planning not to use JTAG capability. Certain precautions must be observed to ensure that 
this logic does not interfere with system or debug operation. Figure 7-1 shows pin logical 

values recommended for disabling JTAG with the part in JTAG mode.

While in JTAG mode, input pins TDI / DSI, TMS / BKPT, and TRST / DSCLK have internal 
pullups enabled. Figure 7-2 shows pin logical values recommended for disabling JTAG with 
the part in Background Debug Mode.

 

Figure 7-2.  Background Debug Mode, JTAG disabled

 

7.2  OVERVIEW

 

Figure 7-3 illustrates the block diagram or programmer’s model of the MCF5202 
implementation of the 1149.1 IEEE Standard. The test logic includes several Test Data 
Registers, an Instruction Register, instruction register control decode, and a 16-state 
dedicated TAP controller (defined in Figure 7-3).

MTM[2:0], JCE

TDI / DSI

TMS / BKPT

TCK

TRST / DSCLK

HIZ

LOGIC (0,0,0,0)

LOGIC 1

SYSTEM RST

LOGIC 0

RST

NC

NC

Figure 7-1. JTAG Mode, JTAG Disabled

MTM[2:0], JCE

TDI /DSI

TMS / BKPT

TCK

TRST / DSCLK

HIZ

LOGIC (0,0,1,0)

LOGIC 1

BDM INTERFACE

LOGIC 0



 

JTAG Specification

 

MOTOROLA

 

 MCF5202 USER’S MANUAL

 

7-3

 

7.2.1 JTAG Pin Descriptions

 

Pins MTM[2:0](Motorola Test Mode pins), and JCE are defined to be compliance-enable 
inputs per section 3.8 of the IEEE Standard 1149.1a-1993 entitled Subordination of this 
Standard within a Higher Level Test Strategy. The compliance-enable pattern is {(0,0,0), 
(0)}.

Given the compliance-enable state described above, the following pin descriptions apply:

TCK - A test clock input that synchronizes test logic operations

TMS - A test mode select input with a default internal pullup resistor that is sampled on 
the rising edge of TCK to sequence the TAP controller

TDI - A serial test data input with a default internal pullup resistor that is sampled on the 
rising edge of TCK

TDO - A three-state test data output that is actively driven only in the Shift-IR and Shift-
DR controller states and only updates on the falling edge of TCK 

TRST - An active-low asynchronous reset with a default internal pullup resistor that 
forces the TAP controller into the test-logic-reset state.

As Figure 7-3 reveals, the test logic includes a 3-bit Instruction Shift Register, a 3-bit 
Instruction Decode Register, a Boundary Scan Register, a single-bit Bypass Register, and 
a TAP controller.



 

JTAG Specification

 

7-4

 

 MCF5202 USER’S MANUAL

 

MOTOROLA

 

Figure 7-3.  JTAG Test Logic Block Diagram

 

7.3 JTAG REGISTER DESCRIPTION

7.3.1 JTAG Instruction Shift Register

 

The MCF5202 IEEE 1149.1 implementation uses a 3-bit Instruction Shift Register without 
parity. This register transfers its value to a parallel hold register and applies one of eight 
possible instructions on the falling edge of TCK when the TAP state machine is in the 
update-IR state. The instructions can be loaded into the shift portion of the register by 
placing the serial data on the TDI pin prior to each rising edge of TCK. The MSB of the 
Instruction Shift Register is the bit closest to the TDI pin and the LSB is the bit closest to the 
TDO pin.

BOUNDARY SCAN REGISTER

BYPASS

M
U
X

3-BIT INSTRUCTION DECODE

3-BIT INSTRUCTION REGISTER

M
U
X

TAP
CONTROLLER

TEST DATA REGISTERS

TDI

TMS

TCK

TRST

TDO



 

JTAG Specification

 

MOTOROLA

 

 MCF5202 USER’S MANUAL

 

7-5

 

The public customer-usable instructions supported are listed with their encoding in
Table 7-1.

The IEEE 1149.1 requires the EXTEST, SAMPLE/PRELOAD, and BYPASS instructions. 
CLAMP and HIGHZ are optional standard instructions that are supported by the MCF5202 
implementation and are described in the 1149.1.

 

7.3.1.1   EXTEST INSTRUCTION. 

 

The external test instruction (EXTEST) selects the 
Boundary Scan Register. The EXTEST instruction forces all output pins and bidirectional 
pins configured as outputs to the fixed values that are preloaded (with the SAMPLE/
PRELOAD instruction) and held in the Boundary Scan Update Registers. The EXTEST 
instruction can also configure the direction of bidirectional pins and establish high-
impedance states on some pins. The EXTEST instruction becomes active on the falling 
edge of TCK in the update-IR state when the data held in the Instruction Shift Register is 
equivalent to octal 0.

 

7.3.1.2   SAMPLE/PRELOAD INSTRUCTION. 

 

The SAMPLE/PRELOAD instruction 
provides two separate functions. First, it provides a way to obtain a sample of the system 
data and control signals present at the MCF5202 input pins and just prior to the boundary 
scan cell at the output pins. This sampling occurs on the rising edge of TCK in the capture-
DR state when an instruction encoding of octal 4 is resident in the instruction register. 
Users can observe this sampled data by shifting it through the Boundary Scan Register to 
the output TDO by using the shift-DR state. Both the data capture and the shift operation 
are transparent to system operation. Users are responsible for providing some form of 
external synchronization to achieve meaningful results because there is no internal 
synchronization between TCK and the system clock, CLK.

The second function of the SAMPLE/PRELOAD instruction is to initialize the Boundary 
Scan Register update cells before selecting EXTEST or CLAMP. This is achieved by 
ignoring the data being shifted out of the TDO pin while shifting in initialization data. The 
update-DR state in conjunction with the falling edge of TCK can then transfer this data to 
the update cells. This data will be applied to the external output pins when one of the 
instructions listed above is applied.

 

Table 7-1. JTAG Instructions

 

INSTRUCTION ABBR CLASS IR[2:0] INSTRUCTION SUMMARY

 

EXTEST EXT Required 000 Select bs register while applying fixed values to output pins and assert-
ing functional reset

SAMPLE/
PRELOAD

SMP Required 100 Selects bs register for shift, sample and preload without disturbing func-
tional operation

HIGHZ HIZ Optional 101 Selects the bypass register while three-stating all output pins and 
asserting functional reset

CLAMP CMP Optional 110 Selects bypass while applying fixed values to output pins and asserting 
functional reset

BYPASS BYP Required 111 Selects the bypass register for data operations



 

JTAG Specification

 

7-6

 

 MCF5202 USER’S MANUAL

 

MOTOROLA

 

7.3.1.3   HIGHZ INSTRUCTION. 

 

The HIGHZ instruction anticipates the need to backdrive 
the output pins and protect the input pins from random toggling during circuit-board testing. 
The HIGHZ instruction selects the Bypass Register, forces all output and bidirectional pins 
to the high-impedance state.

The HIGHZ instruction becomes active on the falling edge of TCK in the update-IR state 
when the data held in the Instruction Shift Register is equivalent to octal 5.

 

7.3.1.4   CLAMP INSTRUCTION. 

 

The CLAMP instruction selects the Bypass Register and 
asserts functional reset while simultaneously forcing all output pins and bidirectional pins 
configured as outputs to the fixed values that are preloaded and held in the boundary scan 
update registers. This instruction enhances test efficiency by reducing the overall shift path 
to a single bit (the Bypass Register) while conducting an EXTEST type of instruction 
through the Boundary Scan Register. 

The CLAMP instruction becomes active on the falling edge of TCK in the update-IR state 
when the data held in the Instruction Shift Register is equivalent to octal 6.

 

7.3.1.5   BYPASS INSTRUCTION. 

 

The BYPASS instruction selects the single-bit Bypass 
Register, creating a single-bit Shift Register path from the TDI pin to the bypass register to 
the TDO pin. This instruction enhances test efficiency by reducing the overall shift path 
when a device other than the MCF5202 processor becomes the device under test on a 
board design with multiple chips on the overall 1149.1 defined boundary scan chain. The 
Bypass Register has been implemented in accordance with 1149.1 so that the Shift 
Register stage is set to logic zero on the rising edge of TCK following entry into the capture-
DR state. Therefore, the first bit to be shifted out after selecting the Bypass Register is 
always a logic zero (this is to differentiate a part that supports an IDCODE register from a 
part that supports only the Bypass Register). The BYPASS instruction becomes active on 
the falling edge of TCK in the update-IR state when the data held in the Instruction Shift 
Register is equivalent to a octal 7.

 

7.3.2 JTAG BOUNDARY SCAN REGISTER

 

An IEEE 1149.1-compliant Boundary Scan Register has been included on the MCF5202 
model. This Boundary Scan Register can be connected between TDI and TDO when the 
EXTEST or SAMPLE/PRELOAD instructions are selected. This register captures signal pin 
data on the input pins, forces fixed values on the output signal pins, and selects the 
direction and drive characteristics (a logic value or high impedance) of the bidirectional and 
three-state signal pins.



 

JTAG Specification

 

MOTOROLA

 

 MCF5202 USER’S MANUAL

 

7-7

 

Figure 7-4.  JTAG TAP Controller State Machine

 

7.3.3  JTAG BYPASS REGISTER

 

The MCF5202 includes an IEEE 1149.1-compliant Bypass Register, which creates a single 
bit shift register path from TDI to the Bypass Register to TDO when the BYPASS instruction 
is selected.

TEST - LOGIC - RESET
TLR

RUN - TEST - IDLE

RTI
SELECT - DR - SCAN

SeDR

CAPTURE - IR

UPDATE - IR

EXIT2 - IR

PAUSE - IR

EXIT1 - IR

SHIFT - IR

CAPTURE - DR

UPDATE - DR

Exit2 - DR

PAUSE - DR

EXIT1 - DR

SHIFT - DR

0

0

0

1

0

1

1

0

0

0

1

0

1

1

0

1 1 1

1 1

0

0

0

0

1 1

1 1

0 0

0

1

CaDR

ShDR

E1DR

PaDR

E2DR

UpDR

CaIR

ShIR

E1IR

PaIR

E2IR

UpIR

<-- VALUE OF TMS AT RISING EDGE OF TCK

SELECT - IR - SCAN
SeIR



 

JTAG Specification

 

7-8

 

 MCF5202 USER’S MANUAL

 

MOTOROLA

 

The 16 controller states are defined in detail in the IEEE 1149.1 standard.

For more information on the MCF5202, visit the following Internet address:

http://pirs.aus.sps.mot.com/aesop/aesop.html



 

MOTOROLA

 

 MCF5202 USER’S MANUAL

 

8-1

 

SECTION 8
PORTING FROM M68K ARCHITECTURE 

 

This section is an overview of the issues encountered when porting embedded development 
tools to work with the ColdFire processor when starting with the M68K architecture. 

 

8.1  C COMPILERS AND HOST SOFTWARE

 

For the purpose of this discussion, it is assumed that an embedded software development 
tool chain consists of a “host” portion and a “target” portion. The host portion consists of tool 
chain parts that execute on a desktop computer or workstation. The target portion of the tool 
chain runs ColdFire executables on a physical ColdFire target board. 

Compilers, assemblers, linkers, loaders, instruction set simulators, and the host portion of 
debuggers are examples of host tools. Many host tools such as linkers and loaders that work 
with the M68K architecture can also be used without modification with ColdFire. 

Although an existing M68K assembler and disassembler can be used with ColdFire, 
Motorola recommends modifying the assembler so that nonColdFire assembly code cannot 
be put together in the executable. This is especially true if the assembler assembles 
handwritten code. Porting the disassembler is for convenience and can be performed later.

Debuggers usually are comprised of two parts. A host portion of the debugger typically 
issues higher level commands for the target portion of debugger target. The target portion 
of the debugger typically handles the exact details of the implementation of tracing, 
breakpoints, and other lower-level details. The debugger host portion requires little 
modification. Most likely, the only architectural items of concern are 

• Differences in the designed supervisor registers and stack pointers (for displaying 
registers)

• Interpretation of exception stack frames (if not already performed by the target portion)

 

8.2  TARGET SOFTWARE PORT 

 

After the compiler and assembler have been ported, porting ROM monitors and operating 
systems can begin. For example, consider the steps involved in porting a ROM debugger. 
Similar issues are encountered when porting an RTOS and target applications.

It is assumed that target software consists primarily of C and assembly source code. The 
first step is to create executables that will run on existing M68K hardware to test the 
conversion from M68K code to the proper ColdFire subset. This step verifies that the 
process of code conversion does not introduce new errors.



 

Porting M68K Architecture

 

8-2

 

 MCF5202 USER’S MANUAL

 

MOTOROLA

 

To generate a ColdFire executable of the target debugger, use a ColdFire-compliant port of 
the same C compiler originally used to create the M68K debugger target. This procedure 
prevents differences in calling convention and parameter passing from C to handwritten 
assembly. Another advantage to this approach is that special C flags are retained. Many C 
compilers have special extensions as well. 

Whatever approach is used, the assembly language lines that are outside the ColdFire 
instruction set must be identified. Any ColdFire assembler that properly flags nonColdFire 
instructions can be used. During the process of conversion, architectural issues can be 
ignored temporarily because the target is still an M68K.

Once the instruction set differences have been resolved, the architectural differences 
between the ColdFire and M68K need to be addressed. 

 

8.3  INITIALIZATION CODE

 

The target software and firmware often execute code that identifies the type of processor. 
Such a process provides one port that works with various M68K Family members and 
implementations. The easiest way to identify the ColdFire architecture from other M68K 
processors is to execute an ILLEGAL opcode ($4afc). This execution generates an 
exception stack frame while ensuring that the tracing is disabled. The first two bits of the 
exception stack frame would immediately determine whether the processor is a ColdFire 
processor. 

Motorola suggests that ColdFire architecture testing be performed immediately to avoid 
having to execute potentially undefined opcodes in the ColdFire architecture. Unused 
opcodes in the ColdFire architecture are not guaranteed to result in an illegal instruction 
exception. 

Another item to consider is that the ColdFire architecture will have integrated versions with 
modules yet to be defined. It may be a good idea to ensure that there are enough hooks to 
allow for initialization of routines. 

 

8.4  EXCEPTION HANDLERS

 

When dealing with exceptions in debug-oriented software, it is often necessary to extract 
exception stack information to obtain the SR and PC. The format word (MC68010 and 
higher) is typically used by generalized exception routines. Their sole purpose is to catch 
unexpected exceptions and to easily use vector information to identify the cause of the 
exception. The MC68000 exception frame is different from that of other members of the 
M68K processors in that there is no notion of a format word. This difference would have 
forced target software to deal with exception stack frame differences already. The approach 
now in use provides guidance on handling ColdFire exception stack frame differences. In 
many low-level exception handlers, the extraction of the stacked SR, PC, or format word is 
performed in a common source file or the offsets are handled in some type of header file. 

Interrupt handlers probably require no modification because in most cases, an interrupt 
occurs asynchronously with respect to normal program flow. Therefore, interrupt handlers 
cannot rely on items on the stack as it is often unnecessary to know exactly what was 
happening at the time of the interrupt.



 

Porting M68K Architecture

 

MOTOROLA

 

 MCF5202 USER’S MANUAL

 

8-3

 

System calls are often implemented by using the TRAP instruction. For trap exceptions, 
parameter passing is performed through data and address registers; rarely, if ever, directly 
through the stack. In addition, a system call typically does not need to know the stacked SR 
or PC information.

Breakpoints are usually implemented with the TRAP instruction or an illegal instruction such 
as an $A-line exception. If so, the stacked SR and PC are typically used. Other items in the 
stack may also need to be queried, especially if the breakpoint displays a stack trace. If so, 
users should examine the format closely for stack misalignments at the time of the 
breakpoint. This stack misalignment check would be useful in applications where stack 
alignment is a software design goal. These same concerns for the breakpoint 
implementation are applicable to trace exceptions as well.

A generalized exception handler can be implemented to catch unexpected exceptions. In 
addition to the SR and PC information, it is often necessary to obtain the vector information 
in the stack. Otherwise, the issues are similar to those found on breakpoints and tracing. 

To port the ColdFire access error exception, it is best to start with an MC68000 bus error 
handler. The ColdFire access error recovery sequence has many similarities to the 
procedure recommended for the MC68000. However, users should be aware that a read 
bus error on the ColdFire will not advance the program counter to the next instruction. In 
addition, a write bus error may be taken long after an instruction has been executed and the 
stacked program counter may not point to the offending instruction.

The main cause of an address error exception in the M68K architecture is that program flow 
is forced to continue at an odd address boundary. In addition, an MC68000 reports an 
address error if a data byte access is initiated on an odd address. The ColdFire uses the 
address error for implementations that do not have the misalignment module, and that a 
misaligned data access is initiated. Modification of the address error exception handler to 
reflect a ColdFire misalignment exception is optional. The MCF5202 contains hardware 
support for data misalignment and therefore this is not an issue for family members.

On a ROM monitor, it is often necessary to provide a means by which a user program is 
executed given a certain starting address. This is often implemented by placing an exception 
stack frame and then performing an RTE. If this is the case, the header files that define what 
a stack frame looks like would require modification to reflect the ColdFire stack frame format.

 

8.5  SUPERVISOR REGISTERS

 

The target software would eventually need to communicate the contents of registers to the 
host software. Both the host portions and target portions of a debugger must be modified to 
reflect the single stack pointer architecture of ColdFire. In addition, the target debugger must 
keep a copy of the MOVEC register images in memory so that it can provide the host 
software register contents when asked to do so. A UNIX grep utility can find all instances of 
the MOVEC instruction and perform the appropriate modifications to accommodate the 
unidirectional MOVEC instruction.



 

Porting M68K Architecture

 

8-4

 

 MCF5202 USER’S MANUAL

 

MOTOROLA

 

The ColdFire architecture does not distinguish between a supervisor stack and a user stack. 
There is only a single stack pointer, A7. One way of dealing with this issue is to emulate the 
dual stacks by placing some code at the beginning and end portions of exception handlers 
to change the stack pointer contents, if necessary, during exceptions. This approach has the 
disadvantage that interrupt latency would be degraded because interrupts would have to be 
disabled during the stack-swapping process, but enable full flexibility of the 68K stack 
model.



 

9-1

 

MCF5202 USERÕS MANUAL

 

MOTOROLA

 

SECTION 9
ELECTRICAL CHARACTERISTICS

 

9.1 MAXIMUM RATINGS

 

The ratings in Table 9-1deÞne maximum conditions under which the device will 
operate

 

 

 

without being damaged. 

This device contains circuitry that protects against damage from high static 
voltages or electrical Þelds; however, users should take normal precautions to  
avoid application of any voltages higher than maximum-rated voltages to this 
high-impedance circuit. Operational reliability improves when unused inputs are 
tied to an appropriate logic voltage level (e.g., either GND or V

 

CC

 

). 

 

NOTE

 

At press time, accurate, reliable power dissipation Þgures were not available. 
Please refer to the World Wide Web site at http://pirs.aus.sps.mot.com for the 

latest accurate power dissipation information for the MCF5202 processor.

 

 

 

Table 9-1. Maximum Ratings

 

RATING SYMBOL VALUE UNIT

 

Supply voltage V

 

CC

 

-0.3 to +7.0 V

Input voltage V

 

in

 

-0.5 to  V

 

CC

 

 + 0.5V V

Storage temperature range T

 

stg

 

-55 to 150

 

o

 

C

 

Table 9-2. Operating Environment

 

CHARACTERISTIC SYMBOL VALUE UNIT

 

Maximum operating junction temperature T

 

J

 

105

 

 

 

o

 

C

Maximum operating ambient temperature

 

- 70

 

a o

 

C

 

Minimum operating ambient temperature T

 

A

 

0

 

 

 

o

 

C

 

                           

 

a This published maximum operating ambient temperature should be used only as a system design  guideline. 
   All device operating parameters are guaranteed only when the junction temperature lies within the specified 
 range.

 

Date: 7-28-98

Revision number: 0.1

Pages affected: see change bars



 

Timing Specifications

 

9-2

 

MCF5202 USERÕS MANUAL

 

MOTOROLA

 

.

 

9.2 CLOCK INPUT SPECIFICATION

 

Figure 9-1. Clock Input Timing

Table 9-3. Thermal Characteristics

 

CHARACTERISTIC SYMBOL

 

b

 

VALUE RATING

 

Thermal resistance, junction to ambient
Thermal resistance, junction to top reference

 

q

 

ja

 

Y

 

jt

 

53
2.7

 

o

 

C/W

 

o

 

C/W

 

b 

 

q

 

ja

 

and 

 

Y

 

jt 

 

parameters are measured in accordance with EIA/JEDEC Standard 51-2 for 

natural convection. Motorola recommends the use of

 

 

 

q

 

ja

 

 and power dissipation speciÞcations 
in the system design to prevent device junction temperatures from exceeding the rated
speciÞcation. System designers should be aware that device junction temperatures can be 
signiÞcantly inßuenced by the board layout and surrounding devices. Conformance to the 
device junction temperature speciÞcation can be veriÞed by physical measurement
 in the customersÕ system using the 

 

Y

 

jt 

 

parameter, the device power dissipation, and the 
method described in EIA/JEDEC Standard 51-2.

 

Table 9-4. Clock Input SpeciÞcations

 

NUM CHARACTERISTIC

 

16.67 MHz

 

25 MHz

 

 

 

33 MHz

 

UNIT
MIN MAX

 

MIN

 

MAX MIN MAX

 

1 CLK cycle time 60 Ñ 40 Ñ 30 Ñ ns

2

 

a

 

a. SpeciÞcation values not tested

CLK rise time Ñ 2 Ñ 2 Ñ 2 ns

3

 

a

 

CLK fall time Ñ 2 Ñ 2 Ñ 2 ns

4 CLK duty cycle measured at 1.5 V 40 Ñ 40 Ñ 40 Ñ %

4a CLK pulse width high measured at 1.5  V 24 Ñ 16 Ñ 12 Ñ ns

4b CLK pulse width low measured at 1.5 V 24 Ñ 16 Ñ 12 Ñ ns

1

4a 4b

VL

VH

2
3



 

Timing Specifications

 

9-3

 

MCF5202 USERÕS MANUAL

 

MOTOROLA

 

9.3 

 

 

 

  DC ELECTRICAL SPECIFICATIONS

 

Table 9-5. DC Electrical SpeciÞcations 

 

(V

 

CC 

 

= 5.0 VDC 

 

±

 

5%) 

 

CHARACTERISTIC SYMBOL MIN MAX UNIT

 

Input high voltage V

 

IH

 

2 VCC V

Input low voltage V

 

IL

 

GND 0.8 V

Input leakage current @ GND, V

 

CC

 

I

 

in

 

Ñ 20 uA

HI-Z (three-state) leakage current @ GND, V

 

CC

 

I

 

TSI

 

Ñ 20 uA

Output high voltage, I

 

OH

 

 = 5 mA V

 

OH

 

2.4 Ñ V

Output low voltage, I

 

OL

 

 = 5 mA V

 

OL

 

Ñ 0.5 V

Pin capacitance

 

a

 

a. This speciÞcation periodically sampled but not 100% tested.

C

 

in

 

Ñ 10 pF



 

Timing Specifications

 

9-4

 

MCF5202 USERÕS MANUAL

 

MOTOROLA

 

9.4 OUTPUT AC TIMING SPECIFICATIONS

9.5 INPUT AC TIMING SPECIFICATIONS

 

Table 9-6. Output AC Timing SpeciÞcations

 

a

 

a. Output timing is measured at the pin.  These speciÞcations assume a capacitive load of 50 pF.

 

NUM CHARACTERISTIC
16.67 MHz  25 MHz  33 MHz

UNITS
MIN MAX MIN MAX MIN MAX

 

10 CLK to TS, R/W, SIZ, TT, ATM, DTIP, BR, BD, PST, 
DDATA, DSO valid

Ñ 30  Ñ 25  Ñ 20 ns

11 CLK to TS, R/W, SIZ, TT, ATM, DTIP, BR, BD, PST, 
DDATA. DSO Invalid (hold)

5 Ñ  5  Ñ  5  Ñ ns

12 CLK to TS, R/W, SIZ, TT, ATM, DTIP high
impedence

Ñ 30  Ñ  25  Ñ   20 ns

13 CLK to A/D-Out valid Ñ 30  Ñ  25  Ñ   20 ns

14 CLK to A/D-OUT invalid (hold) 5 Ñ  5  Ñ  5  Ñ ns

15 CLK to A/D-OUT high impedence Ñ 30  Ñ  25 Ñ  20 ns

21

 

b

 

b. SpeciÞcation values not tested.

HIZ to outputs high impedence (HIZ asserted) Ñ 60  Ñ 60 Ñ 60 ns

22

 

b

 

HIZ to outputs valid (HIZ negated) Ñ 60  Ñ 60 Ñ 60 ns

 

Table 9-7. Input AC Timing SpeciÞcations

 

NUM CHARACTERISTIC
16.67 MHz  25 MHz  33 MHz

UNITS
MIN MAX MIN MAX MIN MAX

 

16 A/D - valid to CLK (setup) 10 Ñ 5 Ñ 5 Ñ ns

17 CLK to A/D - invalid (hold) 5 Ñ 3 Ñ 3 Ñ ns

18 CLK to A/D - high impedence Ñ 50 Ñ 30 Ñ 25 ns

19

 

a

 

a.  IPL and RST are internally synchronized.  This setup time must be met only if recognition on a particular clock is required.

DA, TEA, TBI, AVEC, BG, AA, IPL, RST, BKPT, DSCLK

 

b

 

, 
DSI valid to CLK (setup)

b. Maximum frequency of operation for DSCLK is 1/2 the frequency of CLK.

15 Ñ 8 Ñ 8 Ñ ns

20 CLK to DA, TEA, TBI, AVEC, BG, AA , IPL, RST, BKPT, 
DSCLK, DSI invalid (hold)

5 Ñ 3 Ñ 3 Ñ ns



 

Timing Specifications

 

9-5

 

MCF5202 USERÕS MANUAL

 

MOTOROLA

 

Figure 9-2.  Bus Arbitration Timing

CL
K BGTS BDA/
D

TR
AN

SF
ER DA

AD
DR

W
RI

TE

AT
TR

IB
UT

ES

N
O

TE
: T

ra
ns

fe
r A

ttr
ib

ut
e 

Si
gn

al
s 

= 
SI

Z,
 T

T,
 R

/W

BR

19

11

19

10

20

20

12

13 10

15 12

10

AA DT
IP

14

AT
M



 

Timing Specifications

 

9-6

 

MCF5202 USERÕS MANUAL

 

MOTOROLA

 

Figure 9-3.  Read/Write Timing

13

CLKTS

R/W

A/D

D A SIZ

TEA
TBI

19

READ

DTIP

10

AVEC

AA

ATM

W
RITE

ADDR
ADDR

ADDR

20

19
20

10
11

11

14

13

17
14

16

11

15

18

INSTRUCTIO
N/DATA 

SUPERVISO
R/USER

INSTRUCTIO
N/DATA 

SUPERVISO
R/USER

TT



 

Timing Specifications

 

9-7

 

MCF5202 USERÕS MANUAL

 

MOTOROLA

 

Figure 9-4.  Other Signals, Input Timing

Figure 9-5.  Other Signals, Output Timing

Figure 9-6.  HIZ Output Timing

19

20

CLK

RST
BKPT
IPL[2:0]
DSI
DSCLK

11

CLK

DDATA[3:0]
PST[3:0]
DSO

10

21
22

HIZ

ALL OUTPUTS

(EXCEPT TDO)



 

Timing Specifications

 

9-8

 

MCF5202 USERÕS MANUAL

 

MOTOROLA

 

9.6 JTAG  AC Timing SpeciÞcation

 

Table 9-8. JTAG AC Input Timing SpeciÞcation

 

NUM CHARACTERISTIC MIN MAX UNITS

 

Ñ TCK frequency of operation 0 10 MHz

J1 TCK cycle time 100 Ñ ns

J2 TCK clock pulse width measured at 1.5V 40 Ñ ns

J3 TCK rise and fall times Ñ 2 ns

J4 TDI, TMS to TCK rising edge (setup) 10 Ñ ns

J5 TCK rising edge to TDI, TMS invalid (hold) 15 Ñ ns

J6 Boundary scan data valid to TCK rising edge (setup) 10 Ñ ns

J7 Boundary scan data invalid to TCK rising edge (hold) 15 Ñ ns

J8 TRST pulse width 15 Ñ ns

 

Table 9-9. JTAG AC Output Timing SpeciÞcation

 

NUM CHARACTERISTIC MIN MAX UNITS

 

J9 TCK falling edge to TDO valid Ñ 30 ns

J10 TCK falling edge to TDO high impedance Ñ 30 ns

J11 TCK falling edge to boundary scan data valid Ñ 30 ns

J12 TCK falling edge to boundary scan data high impedance Ñ 30 ns



 

Timing Specifications

 

9-9

 

MCF5202 USERÕS MANUAL

 

MOTOROLA

 

Figure 9-7.  JTAG Timing

J4 J5

TCK

TDI
TMS

BOUNDARY
SCAN DATA

J6 J7

J8

J1

TRST

J2

J2

INPUTS

J3

TDO

BOUNDARY
SCAN DATA

OUTPUTS

J9 J10

J11 J12

J3



 

Timing Specifications

 

9-10

 

MCF5202 USERÕS MANUAL

 

MOTOROLA

 

9.7 Power Consumption

 

The power consumption Þgures stated are for 5.0 V and 50 pf loads on all pins, 
room temperature. The code which was used was Dhrystone 2.1. The data is as 
follows:

 

Table 9-10. MCF5202 Power Consumption

 

16MHZ 25MHz 33MHz UNITS

302 448 589 mW



 

MOTOROLA

 

MCF5202 USER’S MANUAL

 

 10-1

 

SECTION 10
MECHANICAL DATA

 

 Figure 10-1.  MC5202 Mechanical Specs

���!��(�$�

���

�

��� ��� ��� ���

��
���

�������$� �������$�

�����������

�� ������$� ��	�
��$�

	 �������$� �������$�

	� ������$� ��	�
��$�


 ��
� ���




� ���� ���� ����	 ����



� ��
� ���� ����
 �����

� ���� ��	� ����� �����

� ���� ���� ����� ���
�


 ���� ��	
 ����� �����

� ������$� ��	���$�

� ���� ��	� ����� �����

� �����#�� ���	��#��

�� ���� ��	� ����� �����

� �
�����$� ��

���$�

�� ������$� ��
����$�

� ���� ���
 ����� ����


� �
�����$� ��

���$�

�� ������$� ��
����$�

� ��	��#�� ������#��

� �����#�� ���
��#��

θ �� �� �� ��

θ �� ��

θ �	� �	�

θ �� �
� �� �
�

 !%�$�
�� ���� $�! � �� � �� %!��#� �� �� "�#� � $�

*������� ���	�
	� �! %#!��� �� ���� $�! �� �������%�#�

� ��%&�� ���� �$� �!��%��� �%� �!%%!�� !�� ����

� �� �$� �!� ���� %� (�%�� %��� ����� (��#�� %��
����� �)�%$� %��� "��$%��� �!�*� �%� %��� �!%%!�
!�� %��� "�#%� �� �� ��

�� ��%&�$� ����� ���� � �� � �� %!� ��� ��%�#�� ��
�%� ��%&�� ����

�� ���� $�! $� $� � �� '� %!� ��� ��%�#�� ��� �%
$��%� �� "�� �� �%��


� ���� $�! $� �� � �� �� �!�  !%� � ��&��� �!��
"#!%#&$�! �� � ���!(����� "#!%#&$�! � �$
��	��� �������� "�#� $����� � ���� $�! $� �� � �� �� �!
� ��&��� �!��� ��$��%��� � �� �#�
��%�#�� ��� �%� ��%&�� ����

�� ���� $�! � �� �!�$�  !%� � ��&��� �����#
"#!%#&$�! �� � �����#� "#!%#&$�! � $����
 !%� ��&$�� %��� ����� (��%�� %!� �)����� ��
��
��������� � �� ��&�� $"���� ��%(�� � "#!%#&$�! 
� �� ������ %� ����� !#� "#!%#&$�! � �����
�����
��

�

�

� � � � �

� �

� � � �

��

 V1  B1 3X VIEW Y

 S1 

 A1 

4X 25 TIPS
4X

 
  

 V 

 S 

 A 

 B 

��

��� ��

��

��

�� ��

�

2X 02

$��%� �

"�� � VIEW AA
2X 03

C

–L–

 ��	��������� � ���

 ��	��������� % ���

–M–

����������
� %

–H–

–T–

–N–

  

C2

C1
K

Z

W

�����"�� �

VIEW AA

AB
)������� 

 G 

VIEW Y

AB

"��%� �

UJ

D

F

#!%�%�����°

��$����%��

SECTION AB–AB

$����������	�

E

Θ1

Θ

��	���������

2XR R1

��

–X– $��������������
�  $%



 

Mechanical Data

 

10-2

 

MCF5202 USER’S MANUAL

 

MOTOROLA

 

 

A/D8 1

A/D9 2

A/D10 3

A/D11 4

A/D12 5

GND 6

VCC 7

A/D13 8

A/D14 9

A/D15 10

A/D16 11

GND 12

VCC 13

A/D17 14

A/D18 15

A/D19 16

A/D20 17

GND 18

VCC 19

A/D21 20

A/D22 21

A/D23 22

A/D24 23

GND 24

VCC 25

10
0

V
D

D

99
G

N
D

98
A

/D
7

97
A

/D
6

96
A

/D
5

95
A

/D
4

94
V

D
D

93
G

N
D

92
A

/D
3

91
A

/D
2

90
A

/D
1

89
A

/D
0

88
V

D
D

87
C

LK

86
G

N
D

85
T

IE
 L

O
W

84
D

D
AT

A
3

83
D

D
AT

A
2

82
D

D
AT

A
1

81
D

D
AT

A
0

80
V

D
D

79
G

N
D

78
M

T
M

O
D

2

77
M

T
M

O
D

1

76
M

T
M

O
D

0

A
/D

25
26

A
/D

26
27

A
/D

27
28

A
/D

28
29

A
/D

29
30

G
N

D
31

V
D

D
32

A
/D

30
33

A
/D

31
34

T
T

0
35

T
T

1
36

G
N

D
37

V
D

D
38

R
/W

39

T
S

40

S
IZ

0
41

S
IZ

1
42

D
A

0
43

D
A

1
44

G
N

D
45

V
D

D
46

D
T

IP
47

A
A

48

B
D

49

B
R

50

75 HIZ

74 TCK

73 TMS/BKPT

72 TDI/DSI

71 TDO/DSO

70 TRST/DSCLK

69 VCC

68 GND

67 RST

66 IPL2

65 IPL1

64 IPL0

63 ATM

62 AVEC

61 GND

60 VCC

59 PST3

58 PST2

57 PST1

56 PST0

55 TEA

54 TBI

53 VCC

52 GND

51 BG

MCF5202

 

V
C

C

V
C

C
V

C
C

V
C

C

V
C

C

V
C

C

V
cc

Figure 10-2. MCF5202 Pinout


