

NEC's NPN SiGe HIGH FREQUENCY TRANSISTOR

NESG2101M16

FEATURES

- HIGH BREAKDOWN VOLTAGE SiGe TECHNOLOGY VCEO = 5 V (Absolute Maximum)
- HIGH OUTPUT POWER:
 P1dB = 21 dBm at 2 GHz
- LOW NOISE FIGURE:
 NF = 0.9 dB at 2 GHz
 NF = 0.6 dB at 1 GHz
- HIGH MAXIMUM STABLE POWER GAIN: MSG = 17 dB at 2 GHz
- LOW PROFILE M16 PACKAGE:
 6-pin lead-less minimold

DESCRIPTION

NEC's NESG2101M16 is fabricated using NEC s high voltage Silicon Germanium process (UHS2-HV), and is designed for a wide range of applications including low noise amplifiers, medium power amplifiers, and oscillators

ELECTRICAL CHARACTERISTICS (TA = 25°C)

PART NUMBER PACKAGE OUTLINE			NESG2101M16 M16			
	SYMBOLS	PARAMETERS AND CONDITIONS	UNITS	MIN	TYP	MAX
RF	P _{1dB}	Output Power at 1 dB Compression Point VCE = 3.6 V, ICQ = 10 mA, f = 2 GHz, Zs = Zsopt, ZL = Zlopt	dBm		21	
	GL	Linear Gain, VcE = 3.6 V, IcQ = 10 mA, f = 2 GHz,	dB		15	
	NF	Noise Figure at VcE = 2 V, Ic = 10 mA, f = 2 GHz, Zs = Zsopt, ZL = Zlopt	dB		0.9	1.2
	Ga	Associated Gain at VcE = 2 V, Ic = 10 mA, f = 2 GHz, Zs = Zsopt, ZL = Zlopt	dB	11.0	13.0	
	NF	Noise Figure at VcE = 2 V, Ic = 7mA, f = 1 GHz, Zs = Zsopt, ZL = Zlopt	dB		0.6	
	Ga	Associated Gain at VcE = 2 V, lc = 7 mA, f = 1 GHz, Zs = Zsopt, ZL = Zlopt	dB		19.0	
	MSG	Maximum Stable Gain¹ at VcE = 3 V, Ic = 50 mA, f = 2 GHz	dB	14.5	17.0	
	S21E ²	Insertion Power Gain at VcE = 3 V, Ic = 50 mA, f = 2 GHz	dB	11.5	13.5	
	fτ	Gain Bandwidth Product at VcE = 3 V, Ic = 50 mA, f = 2 GHz	GHz	14	17	
	Cre	Reverse Transfer Capacitance ² at VcB = 2 V, IE = 0 mA, f = 1 MHz	pF		0.4	0.5
DC	Ісво	Collector Cutoff Current at VcB = 5V, IE = 0	nA			100
	ІЕВО	Emitter Cutoff Current at VEB = 1 V, Ic = 0	nA			100
	hFE	DC Current Gain ³ at VcE = 2 V, Ic = 15 mA		130	190	260

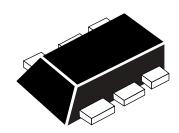
Notes:

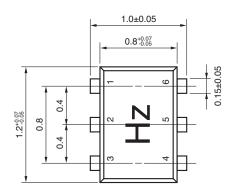
- 1. MSG = $\left| \frac{S_{21}}{S_{42}} \right|$
- 2. Collector to base capacitance when the emitter pin is grounded.
- 3. Pulsed measurement, pulse width \leq 350 $\mu s,$ duty cycle \leq 2 %.

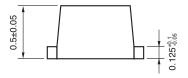
ABSOLUTE MAXIMUM RATINGS¹ (TA = 25°C)

SYMBOLS	PARAMETERS	UNITS	RATINGS				
Vсво	VCBO Collector to Base Voltage		13.0				
VCEO	Collector to Emitter Voltage	V	5.0				
VEBO	Emitter to Base Voltage	V	1.5				
Ic	Collector Current	mA	100				
PT ²	Total Power Dissipation	mW	190				
TJ	Junction Temperature	°C	150				
Тѕтс	Storage Temperature	°C	-65 to +150				

Note:


- 1. Operation in excess of any one of these parameters may result in permanent damage.
- 2. Mounted on 1.08 cm² x 1.0 mm (t) glass epoxy PCB.


ORDERING INFORMATION


PART NUMBER	QUANTITY	SUPPLYING FORM
NESG2101M16-T3		Pin 1 (Collector), Pin 6 (Emitter) face the perforation side of the tape

OUTLINE DIMENSIONS (Units in mm)

PACKAGE OUTLINE M16 6-PIN LEAD-LESS MINIMOLD

PIN CONNECTIONS

- 1. Collector 4. Base
- 2. Emitter 5. Emitter
- 3. Emitter 6. Emitter

Life Support Applications

These NEC products are not intended for use in life support devices, appliances, or systems where the malfunction of these products can reasonably be expected to result in personal injury. The customers of CEL using or selling these products for use in such applications do so at their own risk and agree to fully indemnify CEL for all damages resulting from such improper use or sale.

California Eastern Laboratories, Your source for NEC RF, Microwave, Optoelectronic, and Fiber Optic Semiconductor Devices.
4590 Patrick Henry Drive • Santa Clara, CA 95054-1817 • (408) 988-3500 • FAX (408) 988-0279 • www.cel.com

DATA SUBJECT TO CHANGE WITHOUT NOTICE