

Features

- PC-133 Spread Spectrum Compliant
- Frequency Range of 25 to 140 MHz
- V_{DD} Range of 3.0 to 3.6 Volts

=AIRCHILE

- Up to 11 outputs
- Less than 100 pS of Output to Output Skew
- Less than 90 pS of Cycle to Cycle Jitter
- Output Enable pin
- Integrated Damping Resistor
- Commercial Temperature Range
- Available in 24 pin TSSOP

FBOUT ► Q0 ▶ Q1 ► Q2 ► Q3 FBIN Control ► Q4 PLL Logic CLKIN -► Q5 ▶ Q6 🕨 Q7 ► Q8 ▶ Q9 OE

Block Diagram

Description

FMS72510 is a zero delay clock buffer designed for high fan out applications. It contains 11 outputs. It provides precise phase and frequency alignment between incoming clock and the output clocks. This makes it ideal for high speed application in the range of 25 to 140 MHz. The Phase Locked Loop is capable of tracking incoming clock modulation of up to $\pm 1\%$ of the clock period. With the exception of FBOUT, the output Enable (OE) pin, when pulled low, will force the outputs to logic low.

Pin Assignments

Pin Description

Pin Name	Pin #	Pin Type	Pin Function Description
GND	6, 7, 18, 19	PWR	Ground Connection: Connect all ground pins to the common system ground plane.
AGND	1	PWR	Analog Ground Connection: Connect to common system ground plane.
V _{DD}	2, 10, 14, 22	PWR	Power Connection: Power supply for all the outputs.
AV _{DD}	23	PWR	Power Connection: Power supply for the PLL. When connected low, it shuts off and bypass's the PLL.
Q (0:9)	3, 4, 5, 8, 9, 15, 16, 17, 20, 21	OUT	Clock outputs: Outputs are buffer clocks of input.
OE	11	IN	Outputs Enable: When low, all outputs, with the exception of FBOUT, goes to logic low. Normal operation when asserted high.
FBOUT	12	OUT	Feedback Clock Output: Dedicated pin for FB pin. It is not effected by OE pin.
FBIN	13	IN	Feedback Clock Input: PLL feedback input. The user connects it to FBOUT.
CLKIN	24	IN	Input Clock: One of the inputs of the PLL.

Functionality Table

AVDD	OE	PLL	Q (0:9)	FBOUT
L	L	BYPASS	L	Buffered CLKIN
L	Н	BYPASS	Buffered Clocked	Buffered CLKIN
Н	L	Enabled	L	Running in phase with CLKIN
Н	Н	Enabled	Running in phase with CLKIN	Running in phase with CLKIN

Absolute Maximum Rating

Symbol	Parameter	Ratings	Units
V _{DD} , V _{IN}	Voltage on any pin with respect to ground	–0.5 to 7.0	V
T _{STG}	Storage Temperature	–65 to 150	°C
Τ _Β	Ambient Temperature	-55 to 125	°C
T _A	Operating Temperature	0 to 70	°C

Stresses greater than those listed in the table may cause permanent damage to the device. These represent a stress rating only. Operation of the device at these or any other conditions above those specified in the operating sections of this specification is not implied. Maximum conditions for extended periods may effect reliability.

DC Electrical Characteristics

 $T_A = 0$ to 70°C; Supply Voltage $V_{DD} = 3.3 \text{ V} \pm 0.3 \text{V}$, $C_L = 12 \text{pF}$ (unless otherwise stated)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input Low Voltage	V _{IL}		GND – 0.3		0.8	V
Input High Voltage	V _{IH}		2.0		V _{DD} + 0.3	V
Input Low Current	IIL	V _{IN} = 0	-10		10	μA
Input High Current	I _{IH}	$V_{IN} = V_{DD}$	-10		10	μΑ
High Output Voltage	V _{OH}	I _{OH} = -6mA	2.4	3.1		V
Low Output Voltage	V _{OL}	I _{OL} = 15mA		0.5	0.8	V
Input Capacitance ⁽¹⁾	C _{IN}	Frequency = 10MHz	2.5		6.0	pF
Supply Current	I _{DD}	Frequency = 100 MHz; C _L = 12pF		200	290	mA
		Frequency = 133 MHz; C _L = 12pF		230	320	mA
Clock Stabilization ⁽¹⁾	T _{STAB}	From V _{DD} = 3.3 V to 1% Target			1	mS

NOTE:

1. Guaranteed by design, not subject to 100% production testing.

AC Electrical Characteristics

 $T_A = 0$ to 70°C; Supply Voltage $V_{DD} = 3.3V \pm 0.3V$, $C_L = 12 \text{ pF}$ (unless otherwise stated)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Clock Input Duty Cycle ⁽¹⁾	D _{T_IN}	AVDD = 3.3V	40		60	%
Input Frequency Range ⁽¹⁾	F _{IN}		25		140	MHz
Rise Time ⁽¹⁾	Τ _R	0.4 to 2.0V	_		2.0	nS
Fall Time ⁽¹⁾	Τ _F	2.0 to 0.4V	-		2.0	nS
Duty Cycle ⁽¹⁾	D _T	V _{TH} = 1.25V	45		55	%
Jitter (Cycle-Cycle) ⁽¹⁾	T _{JIT}	V _{TH} = 1.25V; 100 & 133 MHz	-120		120	pS
Spread Spectrum Induced Skew ⁽¹⁾	T _{SK_SSC}	$V_{TH} = V_{DD}/2$	-200		200	pS
Output to Output Skew ⁽¹⁾	Т _{SK1}	$V_{TH} = V_{DD}/2$	-120		120	pS
Input to Output Delay ^(1,2)	T _{SK2}	C _{LFB} = 4 pF; 100 & 133 MHz	-100		100	pS

NOTE:

1. Guaranteed by design, not subject to 100% production testing.

2. Feedback trace length of 0.7".

Parameter Measurement Information

Duty Cycle Timing (D_T)

Rise/Fall Time (T_R/T_F)

Output to Output Skew (T_{SK1})

Input to Output Delay (T_{SK2})

Application Diagram

Note: Feedback capacitor value 'C' is to be determined based on the phase characteristics of the PLL.

Mechanical Dimensions

24-Lead TSSOP Package

Symbol	Inc	hes	Millim	Notoo	
Symbol	Min.	Max.	Min.	Max.	Notes
А	_	.047		1.20	
A1	.002	.006	0.05	0.15	
В	.007	.012	0.19	0.30	
С	.004	.008	0.09	0.20	
D	.308	.316	7.70	7.90	2
E	.172	.180	4.30	4.50	2
е	.026	.026 BSC		0.65 BSC	
Н	.256	.256 BSC		6.40 BSC	
L	.018	.030	0.45	0.75	3
N	24		24		5
α	0°	8°	0°	8 °	
CCC	_	.004	_	0.10	

Notes:

- 1. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- 2. "D" and "E" do not include mold flash. Mold flash or protrusions shall not exceed .006 inch (0.15mm).
- 3. "L" is the length of terminal for soldering to a substrate.
- 4. Terminal numbers are shown for reference only.
- 5. Symbol "N" is the maximum number of terminals.

Ordering Information

Product Number	Tape & Reel	Package
FMS72510MTC	FMS72510MTCT	TSSOP-24

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.