TDA6650TT; TDA6651TT
 5 V mixer/oscillator and low noise PLL synthesizer for hybrid terrestrial tuner (digital and analog)

Rev. 04 - 8 December 2004
Product data sheet

1. General description

The TDA6650TT; TDA6651TT is a programmable 3-band mixer/oscillator and low phase noise PLL synthesizer intended for pure 3-band tuner concepts applied to hybrid (digital and analog) terrestrial and cable TV reception.

The device includes three double balanced mixers for low, mid and high bands, three oscillators for the corresponding bands, a switchable IF amplifier, a wideband AGC detector and a low noise PLL synthesizer. The frequencies of the three bands are shown in Table 1. Two pins are available between the mixer output and the IF amplifier input to enable IF filtering for improved signal handling and to improve the adjacent channel rejection.

Table 1: Recommended band limits in MHz for PAL and DVB-T tuners [1]

Band	RF input			Oscillator		
	Min	Max	Min	Max		
Low	44.25	157.25	83.15	196.15		
Mid	157.25	443.25	196.15	482.15		
High	443.25	863.25	482.15	902.15		

[1] RF input frequency is the frequency of the corresponding picture carrier for analog standard.
The IF amplifier is switchable in order to drive both symmetrical and asymmetrical outputs. When it is used as an asymmetrical amplifier, the IFOUTB pin needs to be connected to the supply voltage $\mathrm{V}_{\mathrm{CCA}}$.

Five open-drain PMOS ports are included on the IC. Two of them, BS1 and BS2, are also dedicated to the selection of the low, mid and high bands. PMOS port BS5 pin is shared with the ADC.

The AGC detector provides a control that can be used in a tuner to set the gain of the RF stage. Six AGC take-over points are available by software. Two programmable AGC time constants are available for search tuning and normal tuner operation.

The local oscillator signal is fed to the fractional- N divider. The divided frequency is compared to the comparison frequency into the fast phase detector which drives the charge pump. The loop amplifier is also on-chip, including the high-voltage transistor to drive directly the 33 V tuning voltage without the need to add an external transistor.

The comparison frequency is obtained from an on-chip crystal oscillator. The crystal frequency can be output to the XTOUT pin to drive the clock input of a digital demodulation IC.

Control data is entered via the $\mathrm{I}^{2} \mathrm{C}$-bus; six serial bytes are required to address the device, select the Local Oscillator (LO) frequency, select the step frequency, program the output ports and set the charge pump current or select the ALBC mode, enable or disable the crystal output buffer, select the AGC take-over point and time constant and/or select a specific test mode. A status byte concerning the AGC level detector and the ADC voltage can be read out on the SDA line during a read operation. During a read operation, the loop 'in-lock' flag, the power-on reset flag and the automatic loop bandwidth control flag are read.

The device has 4 programmable addresses. Each address can be selected by applying a specific voltage to pin AS, enabling the use of multiple devices in the same system.

The $\mathrm{I}^{2} \mathrm{C}$-bus is fast mode compatible, except for the timing as described in the functional description and is compatible with $5 \mathrm{~V}, 3.3 \mathrm{~V}$ and 2.5 V microcontrollers depending on the voltage applied to pin BVS.

2. Features

- Single-chip 5 V mixer/oscillator and low phase noise PLL synthesizer for TV and VCR tuners, dedicated to hybrid (digital and analog) as well as pure digital applications (DVB-T)
- Five possible step frequencies to cope with different digital terrestrial TV and analog TV standards
■ Eight charge pump currents between $40 \mu \mathrm{~A}$ and $600 \mu \mathrm{~A}$ to reach the optimum phase noise performance over the bands
- Automatic Loop Bandwidth Control (ALBC) sets the optimum phase noise performance for DVB-T channels
■ $\mathrm{I}^{2} \mathrm{C}$-bus protocol compatible with $2.5 \mathrm{~V}, 3.3 \mathrm{~V}$ and 5 V microcontrollers:
- Address +5 data bytes transmission (${ }^{2} \mathrm{C}$-bus write mode)
- Address + 1 status byte (${ }^{2} \mathrm{C}$-bus read mode)
- Four independent $\mathrm{I}^{2} \mathrm{C}$-bus addresses.
- Five PMOS open-drain ports with 15 mA source capability for band switching and general purpose; one of these ports is combined with a 5 -step ADC
- Wideband AGC detector for internal tuner AGC:
- Six programmable take-over points
- Two programmable time constants
- AGC flag.

■ In-lock flag

- Crystal frequency output buffer
- 33 V tuning voltage output
- Fractional-N programmable divider
- Balanced mixers with a common emitter input for the low band and for the mid band (each single input)
- Balanced mixer with a common base input for the high band (balanced input)
- 2-pin asymmetrical oscillator for the low band
- 2-pin symmetrical oscillator for the mid band
- 4-pin symmetrical oscillator for the high band

Switched concept IF amplifier with both asymmetrical and symmetrical outputs to drive low impedance or SAW filters i.e. $500 \Omega / 40 \mathrm{pF}$.

3. Applications

For all applications, the recommendations given in the latest application note CC0419 must be used.

3.1 Application summary

■ Digital and analog terrestrial tuners (OFDM, PAL, etc.)

- Cable tuners (QAM)
- Digital TV sets
- Digital set-top boxes.

4. Ordering information

Table 2: Ordering information

Type number	Package		
	Name	Description	
	TDA6650TT;	TSSOP38	plastic thin shrink small outline package; 38 leads; body width $4.4 \mathrm{~mm} ;$ TDA6651TT
	lead pitch 0.5 mm	SOT510-1	

5. Block diagram

The pin numbers in parenthesis represent the TDA6651TT.
Fig 1. Block diagram

6. Pinning information

6.1 Pin description

Table 3: Pin description

Symbol	Pin		Description
	TDA6650TT	TDA6651TT	
HBIN1	1	38	high band RF input 1
HBIN2	2	37	high band RF input 2
MBIN	3	36	mid band RF input
LBIN	4	35	low band RF input
RFGND	5	34	RF ground
IFFIL1	6	33	IF filter output 1
IFFIL2	7	32	IF filter output 2
BS4	8	31	PMOS open-drain output port 4 for general purpose
AGC	9	30	AGC output
BS3	10	29	PMOS open-drain output port 3 for general purpose
BS2	11	28	PMOS open-drain output port 2 to select the mid band
BS1	12	27	PMOS open-drain output port 1 to select the low band
BVS	13	26	bus voltage selection input
ADC/BS5	14	25	ADC input or PMOS open-drain output port 5 for general purpose
SCL	15	24	I'C-bus serial clock input
SDA	16	23	I2C-bus serial data input and output
AS	17	22	I2C-bus address selection input
HOSCOUT2	32	7	crystal frequency buffer output
HOSCIN2	33	6	high band oscillator input 2
XTAL1	18	19	21

Table 3: Pin description...continued

Symbol	Pin		Description
	TDA6650TT	TDA6651TT	
MOSCIN1	34	5	mid band oscillator input 1
MOSCIN2	35	4	mid band oscillator input 2
OSCGND	36	3	oscillators ground
LOSCOUT	37	2	low band oscillator output
LOSCIN	38	1	low band oscillator input

6.2 Pinning

Fig 2. Pin configuration TDA6650TT

Fig 3. Pin configuration TDA6651TT

7. Functional description

7.1 Mixer, oscillator and PLL (MOPLL) functions

Bit BS1 enables the BS1 port, the low band mixer and the low band oscillator. Bit BS2 enables the BS2 port, the mid band mixer and the mid band oscillator. When both BS1 and BS2 bits are logic 0 , the high band mixer and the high band oscillator are enabled.

The oscillator signal is applied to the fractional-N programmable divider. The divided signal $f_{\text {div }}$ is fed to the phase comparator where it is compared in both phase and frequency with the comparison frequency $f_{\text {comp }}$. This frequency is derived from the signal present on the crystal oscillator $f_{x t a l}$ and divided in the reference divider. There is a fractional calculator on the chip that generates the data for the fractional divider as well as
the reference divider ratio, depending on the step frequency selected. The crystal oscillator requires a 4 MHz crystal in series with an 18 pF capacitor between pins XTAL1 and XTAL2.

The output of the phase comparator drives the charge pump and the loop amplifier section. This amplifier has an on-chip high voltage drive transistor. Pin CP is the output of the charge pump, and pin VT is the pin to drive the tuning voltage to the varicap diodes of the oscillators and the tracking filters. The loop filter has to be connected between pins CP and VT. The spurious signals introduced by the fractional divider are automatically compensated by the spurious compensation block.

It is possible to drive the clock input of a digital demodulation IC from pin XTOUT with the 4 MHz signal from the crystal oscillator. This output is also used to output $1 / 2 f_{\text {div }}$ and $f_{\text {comp }}$ signals in a specific test mode (see Table 8). It is possible to switch off this output, which is recommended when it is not used.

For test and alignment purposes, it is also possible to release the tuning voltage output by selecting the sinking mode (see Table 8), and by applying an external voltage on pin VT.

In addition to the BS1 and BS2 output ports that are used for the band selection, there are three general purpose ports BS3, BS4 and BS5. All five ports are PMOS open-drain type, each with 15 mA drive capability. The connection for port BS5 and the ADC input is combined on one pin. It is not possible to use the ADC if port BS5 is used.

The AGC detector compares the level at the IF amplifier output to a reference level which is selected from 6 different levels via the $I^{2} C$-bus. The time constant of the AGC can be selected via the $\mathrm{I}^{2} \mathrm{C}$-bus to cope with normal operation as well as with search operation.

When the output level on pin $A G C$ is higher than the threshold $V_{\text {RMH }}$, then bit $A G C=1$. When the output level on pin AGC is lower than the threshold $V_{\text {RML }}$, then bit $A G C=0$. Between these two thresholds, bit AGC is not defined. The status of the AGC bit can be read via the $\mathrm{I}^{2} \mathrm{C}$-bus according to the read mode as described in Table 14.

$7.2 \mathrm{I}^{2} \mathrm{C}$-bus voltage

The $\mathrm{I}^{2} \mathrm{C}$-bus lines SCL and SDA can be connected to an $\mathrm{I}^{2} \mathrm{C}$-bus system tied to 2.5 V , 3.3 V or 5 V . The choice of the bus input threshold voltages is made with pin BVS that can be left open-circuit, connected to the supply voltage or to ground (see Table 4).

Table 4: $\quad I^{2} \mathrm{C}$-bus voltage selection

Pin BVS connection	Bus voltage	Logic level	
		LOW	HIGH
To ground	2.5 V	0 V to 0.75 V	1.75 V to 5.5 V
Open-circuit	3.3 V	0 V to 1.0 V	2.3 V to 5.5 V
To V_{CC}	5 V	0 V to 1.5 V	3.0 V to 5.5 V

7.3 Phase noise, $\mathrm{I}^{2} \mathrm{C}$-bus traffic and crosstalk

While the TDA6650TT; TDA6651TT is dedicated for hybrid terrestrial applications, the low noise PLL will clean up the noise spectrum of the VCOs close to the carrier to reach noise levels at 1 kHz offset from the carrier compatible with e.g. DVB-T reception.

Linked to this noise improvement, some disturbances may become visible while they were not visible because they were hidden into the noise in analog dedicated applications and circuits.

This is especially true for disturbances coming from the $\mathrm{I}^{2} \mathrm{C}$-bus traffic, whatever this traffic is intended for the MOPLL or for another slave on the bus.

To avoid this $\mathrm{I}^{2} \mathrm{C}$-bus crosstalk and be able to have a clean noise spectrum, it is necessary to use a bus gate that enables the signal on the bus to drive the MOPLL only when the communication is intended for the tuner part (such a kind of $\mathrm{I}^{2} \mathrm{C}$-bus gate is included into the Philips terrestrial channel decoders), and to avoid unnecessary repeated sending of the same information.

8. $I^{2} \mathrm{C}$-bus protocol

The TDA6650TT; TDA6651TT is controlled via the two-wire $\mathrm{I}^{2} \mathrm{C}$-bus. For programming, there is one device address (7 bits) and the $\mathrm{R} / \overline{\mathrm{W}}$ bit for selecting read or write mode. To be able to have more than one MOPLL in an $\mathrm{I}^{2} \mathrm{C}$-bus system, one of four possible addresses is selected depending on the voltage applied to address selection pin AS (see Table 7).

The TDA6650TT; TDA6651TT fulfils the fast mode $\mathrm{I}^{2} \mathrm{C}$-bus, according to the Philips $\mathrm{I}^{2} \mathrm{C}$-bus specification (see Section 21), except for the timing as described in Figure 4. The $\mathrm{I}^{2} \mathrm{C}$-bus interface is designed in such a way that the pins SCL and SDA can be connected to $5 \mathrm{~V}, 3.3 \mathrm{~V}$ or to 2.5 V pulled-up $\mathrm{I}^{2} \mathrm{C}$-bus lines, depending on the voltage applied to pin BVS (see Table 4).

8.1 Write mode; R/ $\overline{\mathbf{W}}=0$

After the address transmission (first byte), data bytes can be sent to the device (see Table 5). Five data bytes are needed to fully program the TDA6650TT; TDA6651TT. The ${ }^{2} \mathrm{C}$-bus transceiver has an auto-increment facility that permits programming the device within one single transmission (address +5 data bytes).

The TDA6650TT; TDA6651TT can also be partly programmed on the condition that the first data byte following the address is byte 2 (divider byte 1) or byte 4 (control byte 1). The first bit of the first data byte transmitted indicates whether byte 2 (first bit $=0$) or byte 4 (first bit $=1$) will follow. Until an ${ }^{2} \mathrm{C}$-bus STOP condition is sent by the controller, additional data bytes can be entered without the need to re-address the device. The fractional calculator is updated only at the end of the transmission (STOP condition). Each control byte is loaded after the 8th clock pulse of the corresponding control byte. Main divider data are valid only if no new $\mathrm{I}^{2} \mathrm{C}$-bus transmission is started (START condition) during the computation period of $50 \mu \mathrm{~s}$.

Both DB1 and DB2 need to be sent to change the main divider ratio. If the value of the ratio selection bits R2, R1 and R0 are changed, the bytes DB1 and DB2 have to be sent in the same transmission.

Fig 4. Example of $\mathrm{I}^{2} \mathrm{C}$-bus transmission frame

Table 5: $\quad \mathrm{I}^{2} \mathrm{C}$-bus write data format

Name	Byte	Bit								Ack
		MSB ${ }^{\text {[1] }}$							LSB	
Address byte	1	1	1	0	0	0	MA1	MAO	$\mathrm{R} / \overline{\mathrm{W}}=0$	A
Divider byte 1 (DB1)	2	0	N14	N13	N12	N11	N10	N9	N8	A
Divider byte 2 (DB2)	3	N7	N6	N5	N4	N3	N2	N1	N0	A
Control byte 1 (CB1); see Table 6	4	1	$\mathrm{T} / \mathrm{A}=1$	T2	T1	T0	R2	R1	R0	A
		1	$\mathrm{T} / \mathrm{A}=0$	0	0	ATC	AL2	AL1	ALO	A
Control byte 2 (CB2)	5	CP2	CP1	CP0	BS5	BS4	BS3	BS2	BS1	A

[1] MSB is transmitted first.

Table 6: Description of write data format bits

Bit	Description
A	acknowledge
MA1 and MA0	programmable address bits; see Table 7
R/W	logic 0 for write mode
N14 to N0	programmable LO frequency; $\mathrm{N}=\mathrm{N} 14 \times 2^{14}+\mathrm{N} 13 \times 2^{13}+\mathrm{N} 12 \times 2^{12}+\ldots+\mathrm{N} 1 \times 2^{1}+\mathrm{N} 0$
T/A	test/AGC bit
	T/A $=0$: the next 6 bits sent are AGC settings
	T/A $=1$: the next 6 bits sent are test and reference divider ratio settings
T2, T1 and T0	test bits; see Table 8
R2, R1 and R0	reference divider ratio and programmable frequency step; see Table 9
ATC	AGC current setting and time constant; capacitor on pin AGC $=150 \mathrm{nF}$
	ATC $=0$: AGC current $=220 \mathrm{nA} ;$ AGC time constant $=2 \mathrm{~s}$
	ATC $=1$: AGC current $=9 \mu \mathrm{~A}$; AGC time constant $=50 \mathrm{~ms}$
AL2, AL1 and AL0	AGC take-over point bits; see Table 10
CP2, CP1 and CP0	charge pump current; see Table 11
$\begin{aligned} & \text { BS5, BS4, BS3, BS2 } \\ & \text { and BS1 } \end{aligned}$	PMOS ports control bits
	$\mathrm{BSn}=0$: corresponding port is off, high-impedance state (status at power-on reset)
	$B S n=1$: corresponding port is on; $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{DS} \text { (sat) }}$

8.1.1 $\quad \mathrm{I}^{2} \mathrm{C}$-bus address selection

The device address contains programmable address bits MA1 and MA0, which offer the possibility of having up to four MOPLL ICs in one system. Table 7 gives the relationship between the voltage applied to the AS input and the MA1 and MA 0 bits.

Table 7: Address selection

Voltage applied to pin AS	MA1	MAO
0 V to $0.1 \mathrm{~V}_{\mathrm{CC}}$	0	0
$0.2 \mathrm{~V}_{\mathrm{CC}}$ to $0.3 \mathrm{~V}_{\mathrm{CC}}$ or open-circuit	0	1
$0.4 \mathrm{~V}_{\mathrm{CC}}$ to $0.6 \mathrm{~V}_{\mathrm{CC}}$	1	0
$0.9 \mathrm{~V}_{\mathrm{CC}}$ to V_{CC}	1	1

8.1.2 XTOUT output buffer and mode setting

The crystal frequency can be sent to pin XTOUT and used in the application, for example to drive the clock input of a digital demodulator, saving a quartz crystal in the bill of material. To output $\mathrm{f}_{\mathrm{xtal}}$, it is necessary to set $\mathrm{T}[2: 0]$ to 001 . If the output signal on this pin is not used, it is recommended to disable it, by setting $\mathrm{T}[2: 0]$ to 000 . This pin is also used to output $1 / 2 f_{d i v}$ and $f_{\text {comp }}$ in a test mode. At power-on, the XTOUT output buffer is set to on, supplying the $\mathrm{f}_{\mathrm{xtal}}$ signal. The relation between the signal on pin XTOUT and the setting of theT[2:0] bits is given in Table 8.

Table 8: XTOUT buffer status and test modes

T2	T1	T0	Pin XTOUT	Mode
0	0	0	disabled	normal mode with XTOUT buffer off
0	0	1	$\mathrm{f}_{\text {xtal }}(4 \mathrm{MHz})$	normal mode with XTOUT buffer on
0	1	0	$1 / 2 \mathrm{f}_{\text {div }}$	charge pump off
0	1	1	$\mathrm{f}_{\text {xtal }}(4 \mathrm{MHz})$	switch ALBC on or off $\underline{[1]}$
1	0	0	$\mathrm{f}_{\text {comp }}$	test mode
1	0	1	$1 / 2 \mathrm{f}_{\text {div }}$	test mode
1	1	0	$\mathrm{f}_{\text {xtal }}(4 \mathrm{MHz})$	charge pump sinking current $\underline{[2]}$
1	1	1	disabled	charge pump sourcing current

[1] Automatic Loop Bandwidth Control (ALBC) is disabled at power-on reset. After power-on reset this feature is enabled by setting $T[2: 0]=011$. To disable again the ALBC, set $T[2: 0]=011$ again. This test mode acts like a toggle switch, which means each time it is set the status of the ALBC changes. To toggle the ALBC, two consecutive Control byte 1s (CB1), should be sent: one byte with T[2:0] = 011 indicating that ALBC will be switched on or off and one byte programming the test mode to be selected (see Table 29, example of $\mathrm{I}^{2} \mathrm{C}$-bus sequence).
[2] This is the default mode at power-on reset. This mode disables the tuning voltage.

8.1.3 Step frequency setting

The step frequency is set by three bits, giving five steps to cope with different application requirements.

The reference divider ratio is automatically set depending on bits R2, R1 and R0. The phase detector works at either $4 \mathrm{MHz}, 2 \mathrm{MHz}$ or 1 MHz .

Table 9 shows the step frequencies and corresponding reference divider ratios. When the value of bits R2, R1 and R0 are changed, it is necessary to re-send the data bytes DB1 and DB2.

Table 9: Reference divider ratio select bits

R2	R1	R0	Reference divider ratio	Frequency comparison	Frequency step
0	0	0	2	2 MHz	62.5 kHz
0	0	1	1	4 MHz	142.86 kHz
0	1	0	1	4 MHz	166.67 kHz
0	1	1	4	1 MHz	50 kHz
1	0	0	1	4 MHz	125 kHz
1	0	1	-	-	reserved
1	1	0	-	-	reserved
1	1	1	-	-	reserved

8.1.4 AGC detector setting

The AGC take-over point can be selected out of 6 levels according to Table 10.
Table 10: AGC programming

AL2	AL1	ALO	Typical take-over point level
0	0	0	[1] $124 \mathrm{~dB} \mu \mathrm{~V}(p-p)$
0	0	1	[1] $121 \mathrm{~dB} \mu \mathrm{~V}(p-p)$
0	1	0	[1] $118 \mathrm{~dB} \mu \mathrm{~V}(p-p)$
0	1	1	[2] $115 \mathrm{~dB} \mu \mathrm{~V}(p-p)$
1	0	0	[2] $112 \mathrm{~dB} \mu \mathrm{~V}(p-p)$
1	0	1	[2] $109 \mathrm{~dB} \mu \mathrm{~V}(p-p)$
1	1	0	[3] $\mathrm{I}_{\mathrm{AGC}}=0 \mathrm{~A}$
1	1	1	[4] $\mathrm{V}_{\mathrm{AGC}}=3.5 \mathrm{~V}$

[1] This take-over point is available for both symmetrical and asymmetrical modes.
[2] This take-over point is available for asymmetrical mode only.
[3] The AGC current sources are disabled. The AGC output goes into a high-impedance state and an external AGC source can be connected in parallel and will not be influenced.
[4] The AGC detector is disabled and $\mathrm{I}_{\mathrm{AGC}}=9 \mu \mathrm{~A}$.

8.1.5 Charge pump current setting

The charge pump current can be chosen from 8 values depending on the value of bits CP2, CP1 and CP0 bits; see Table 11. The programming of the CP bits are not taken into account when ALBC mode is in use.

Table 11: Charge pump current

CP2	CP1	CP0	Charge pump current number	Typical current (absolute value in $\mu \mathbf{A}$)
0	0	0	1	38
0	0	1	2	54
0	1	0	3	83
0	1	1	4	122
1	0	0	5	163

Table 11: Charge pump current...continued

CP2	CP1	CP0	Charge pump current number	Typical current (absolute value in $\mu \mathbf{A}$)
1	0	1	6	254
1	1	0	7	400
1	1	1	8	580

8.1.6 Automatic Loop Bandwidth Control (ALBC)

In a PLL controlled VCO in which the PLL reduces phase noise close to the carrier, there is an optimum loop bandwidth corresponding to the minimum integrated phase jitter. This loop bandwidth depends on different parameters like the VCO slope, the loop filter components, the dividing ratio and the gain of the phase detector and charge pump.

In order to reach the best phase noise performance it is necessary, especially in a wideband system like a digital tuner, to set the charge pump current to different values depending on the band and frequency used. This is to cope with the variations of the different parameters that set the bandwidth. The selection can be done in the application and requires for each frequency to program not only the divider ratios, but also the band and the best charge pump current.

The TDA6650TT; TDA6651TT includes the ALBC feature that automatically sets the band and the charge pump current, provided the IC is used in the DVB-T standard application shown in Figure 27 and 28. This feature is activated by setting bits T[2:0] = 011 after power-on reset. This feature is disabled when the same bits are set again. When ALBC is activated, the output ports BS1, BS2 and BS3 are not programmed by the corresponding BS bits, but are set according to Table 12 and 13 . When ALBC is active, bit ALBC $=1$. Table 13 summarizes the programming of the band selection and the charge pump current when ALBC is active.

Table 12: ALBC settings
$\left.\begin{array}{lllll|l|l|l|l|l}\hline \text { Bit } & & & & \text { Band } \\ \text { selected }\end{array} \begin{array}{l}\text { Charge pump } \\ \text { current }\end{array}\right)$

Table 13: ALBC band selection and charge current setting

LO frequency	Band	Charge pump current number
80 MHz to 92 MHz	low	2
92 MHz to 144 MHz	low	3
144 MHz to 156 MHz	low	4
156 MHz to 176 MHz	low	5
176 MHz to 184 MHz	low	6

Table 13: ALBC band selection and charge current setting...continued

LO frequency	Band	Charge pump current number
184 MHz to 196 MHz	low	7
196 MHz to 224 MHz	mid	2
224 MHz to 296 MHz	mid	3
296 MHz to 380 MHz	mid	4
380 MHz to 404 MHz	mid	5
404 MHz to 448 MHz	mid	6
448 MHz to 472 MHz	mid	7
472 MHz to 484 MHz	mid	8
484 MHz to 604 MHz	high	4
604 MHz to 676 MHz	high	5
676 MHz to 752 MHz	high	6
752 MHz to 868 MHz	high	7
868 MHz to 904 MHz	high	8

8.2 Read mode; R/ $\bar{W}=1$

Data can be read from the device by setting the R / \bar{W} bit to 1 (see Table 14). After the device address has been recognized, the device generates an acknowledge pulse and the first data byte (status byte) is transferred on the SDA line (MSB first). Data is valid on the SDA line during a HIGH level of the SCL clock signal.

A second data byte can be read from the device if the microcontroller generates an acknowledge on the SDA line (master acknowledge). End of transmission will occur if no master acknowledge occurs. The device will then release the data line to allow the microcontroller to generate a STOP condition.

Table 14: $\quad I^{2} \mathrm{C}$-bus read data format

Name	Byte	Bit					ACK				
			MSB $\underline{[1]}$							LSB	
Address byte	1	1	1	0	0	0	MA1	MA0	R/ $\bar{W}=1$	A	
Status byte	2	POR	FL	ALBC	1	AGC	A2	A1	A0	-	

[1] MSB is transmitted first.

Table 15: Description of read data format bits

Bit	Description
A	acknowledge bit
POR	power-on reset flag
	$\mathrm{POR}=0$, normal operation
	$\mathrm{POR}=1$, power-on reset
FL	in-lock flag
	FL = 0, not locked
	$F L=1$, the PLL is locked

Table 15: Description of read data format bits...continued

Bit	Description
ALBC	automatic loop bandwidth control flag
	ALBC $=0$, no automatic loop bandwidth control
	ALBC $=1$, automatic loop bandwidth control selected
AGC	internal AGC flag
	AGC $=0$ when internal AGC is active ($\mathrm{V}_{\text {AGC }}<\mathrm{V}_{\text {RML }}$)
	$A G C=1$ when internal AGC is not active ($\left.\mathrm{V}_{\mathrm{AGC}}>\mathrm{V}_{\mathrm{RMH}}\right)$
A2, A1, A0	digital outputs of the 5-level ADC; see Table 16

Table 16: ADC levels

Voltage applied to pin ADC $\underline{[1]}$	A2	A1	A0
$0.6 \mathrm{~V}_{\mathrm{CC}}$ to V_{CC}	1	0	0
$0.45 \mathrm{~V}_{\mathrm{CC}}$ to $0.6 \mathrm{~V}_{\mathrm{CC}}$	0	1	1
$0.3 \mathrm{~V}_{\mathrm{CC}}$ to $0.45 \mathrm{~V}_{\mathrm{CC}}$	0	1	0
$0.15 \mathrm{~V}_{\mathrm{CC}}$ to $0.3 \mathrm{~V}_{\mathrm{CC}}$	0	0	1
$0 \mathrm{~V}^{\text {to } 0.15 \mathrm{~V}_{\mathrm{CC}}}$	0	0	0

[1] Accuracy is $\pm 0.03 \mathrm{~V}_{\text {Cc }}$. Bit BS5 must be set to logic 0 to disable the BS5 output port. The BS5 output port uses the same pin as the ADC and can not be used when the ADC is in use.

8.3 Status at power-on reset

At power on or when the supply voltage drops below approximately 2.85 V (at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$), internal registers are set according to Table 17.

At power on, the charge pump current is set to $580 \mu \mathrm{~A}$, the test bits T[2:0] are set to 110 which means that the charge pump is sinking current, the tuning voltage output is disabled and the ALBC function is disabled. The XTOUT buffer is on, driving the 4 MHz signal from the crystal oscillator and all the ports are off. As a consequence, the high band is selected by default.

Table 17: Default setting at power-on reset

Name	Byte	Bit ${ }^{\text {[1] }}$							
		MSB							LSB
Address byte	1	1	1	0	0	0	MA1	MAO	X
Divider byte 1 (DB1)	2	0	N14 $=\mathrm{X}$	N13 $=$ X	N12 $=$ X	N11 $=$ X	N10 = X	N9 = X	$\mathrm{N} 8=\mathrm{X}$
Divider byte 2 (DB2)	3	N7 $=\mathrm{X}$	N6 = X	N5 = X	N4 $=\mathrm{X}$	N3 $=\mathrm{X}$	$\mathrm{N} 2=\mathrm{X}$	$\mathrm{N} 1=\mathrm{X}$	N0 = X
Control byte 1 (CB1)	4	1	$\mathrm{T} / \mathrm{A}=\mathrm{X}$ [2]	$\mathrm{T} 2=1$	$\mathrm{T} 1=1$	T0 $=0$	$\mathrm{R} 2=\mathrm{X}$	$\mathrm{R} 1=\mathrm{X}$	$\mathrm{R} 0=\mathrm{X}$
		1	$\mathrm{T} / \mathrm{A}=\mathrm{X}$ [3]	0	0	ATC $=0$	AL2 $=0$	AL1 $=1$	ALO $=0$
Control byte 2 (CB2)	5	$\mathrm{CP} 2=1$	$C P 1=1$	$C P 0=1$	$B S 5=0$	BS4 $=0$	$B S 3=0$	$B S 2=0$	$B S 1=0$

[^0][2] The next six bits are written, when bit $\mathrm{T} / \mathrm{A}=1$ in a write sequence.
[3] The next six bits are written, when bit $\mathrm{T} / \mathrm{A}=0$ in a write sequence.

9. Internal circuitry

Table 18: Internal pin configuration

Symbol	Pin		Average DC voltage versus band selection			Description [1]
	TDA6650TT	TDA6651TT	Low	Mid	High	
HBIN1	1	38	n.a.	n.a	1.0 V	
HBIN2	2	37	n.a.	n.a	1.0 V	
MBIN	3	36	n.a.	1.8 V	n.a.	(36)
LBIN	4	35	1.8 V	n.a.	n.a	(35)
RFGND	5	34	-	-	-	
IFFIL1	6	33	3.7 V	3.7 V	3.7 V	
IFFIL2	7	32	3.7 V	3.7 V	$3.7 \mathrm{~V}$	
BS4	8	31	high-Z or $V_{C C}-V_{D S}$	high-Z or $V_{C C}-V_{D S}$	high-Z or $V_{C C}-V_{D S}$	

Table 18: Internal pin configuration...continued

Symbol	Pin		Average DC voltage versus band selection			Description [1]
	TDA6650TT	TDA6651TT	Low	Mid	High	
AGC	9	30	$\begin{aligned} & 0 \mathrm{~V} \text { or } \\ & 35 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \text { or } \\ & 3.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \text { or } \\ & 35 \mathrm{~V} \end{aligned}$	
BS3	10	29	$\begin{aligned} & \text { high-Z or } \\ & \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{DS}} \end{aligned}$	high-Z or $V_{C C}-V_{D S}$	high-Z or $V_{C C}-V_{D S}$	
BS2	11	28	high-Z	$\mathrm{V}_{C C}-\mathrm{V}_{\text {DS }}$	high-Z	
BS1	12	27	$\mathrm{V}_{C C}-\mathrm{V}_{\mathrm{DS}}$	high-Z	high-Z	
BVS	13	26	2.5 V	2.5 V	2.5 V	(26)
ADC/BS5	14	25	$V_{\text {CEsat }}$ or high-Z	$\mathrm{V}_{\text {CEsat }}$ or high-Z	$V_{\text {CEsat }}$ or high-Z	

Table 18: Internal pin configuration...continued

Symbol	Pin		Average DC voltage versus band selection			Description [1]
	TDA6650TT	TDA6651TT	Low	Mid	High	
SCL	15	24	high-Z	high-Z	high-Z	
SDA	16	23	high-Z	high-Z	high-Z	
AS	17	22	1.25 V	1.25 V	1.25 V	
XTOUT	18	21	3.45 V	3.45 V	3.45 V	
XTAL1	19	20	2.2 V	2.2 V	2.2 V	
XTAL2	20	19	2.2 V	2.2 V	2.2 V	
n.c.	21	18	n.a.			not connected

Table 18: Internal pin configuration...continued

Symbol	Pin		Average DC voltage versus band selection			Description [1]
	TDA6650TT	TDA6651TT	Low	Mid	High	
VT	22	17	V_{VT}	V_{VT}	V_{VT}	
CP	23	16	1.8 V	1.8 V	1.8 V	
$\mathrm{V}_{\text {CCD }}$	24	15	5 V	5 V	5 V	
PLLGND	25	14	-	-	-	
$\mathrm{V}_{\text {CCA }}$	26	13	5 V	5 V	5 V	
IFOUTB	27	12	2.1 V	2.1 V	2.1 V	
IFOUTA	28	11	2.1 V	2.1 V	2.1 V	
IFGND	29	10	-	-	-	
HOSCIN1	30	9	2.2 V	2.2 V	1.8 V	
HOSCOUT1	$\begin{aligned} & 31 \\ & 32 \end{aligned}$	$\begin{aligned} & 8 \\ & 7 \end{aligned}$	5 V	$\begin{aligned} & 5 \mathrm{~V} \\ & 5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.5 \mathrm{~V} \\ & 2.5 \mathrm{~V} \end{aligned}$	
HOSCIN2	33	6	2.2 V	2.2 V	1.8 V	

Table 18: Internal pin configuration...continued

Symbol	Pin		Average DC voltage versus band selection			Description [1]
	TDA6650TT	TDA6651TT	Low	Mid	High	
MOSCIN1	34	5	2.3 V	1.3 V	2.3 V	
MOSCIN2	35	4	2.3 V	1.3 V	2.3 V	
OSCGND	36	3	-	-	-	
LOSCOUT	37	2	1.7 V	1.4 V	1.4 V	
LOSCIN	38	1	2.9 V	3.5 V	3.5 V	(1)

[1] The pin numbers in parenthesis refer to the TDA6651TT.

10. Limiting values

Table 19: Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Positive currents are entering the IC and negative currents are going out of the IC; all voltages are referenced to ground (GND) [1].

Symbol	Parameter	Conditions	Min	Max	Unit
$\mathrm{V}_{\mathrm{CCA}}$	supply voltage	-0.3	+6	V	
$\mathrm{~V}_{\mathrm{CCD}}$			-0.3	+35	V
$\mathrm{~V}_{\mathrm{VT}}$	tuning voltage output	-0.3	+6	V	
$\mathrm{~V}_{\text {SDA }}$	serial data input and output voltage		0	10	mA
$\mathrm{I}_{\mathrm{SDA}}$	serial data output current	during acknowledge			
$\mathrm{V}_{\mathrm{SCL}}$	serial clock input voltage		-0.3	+6	V
$\mathrm{~V}_{\mathrm{AS}}$	address selection input voltage	-0.3	+6	V	

Table 19: Limiting values...continued
In accordance with the Absolute Maximum Rating System (IEC 60134). Positive currents are entering the IC and negative currents are going out of the IC; all voltages are referenced to ground (GND) [1].

Symbol	Parameter	Conditions	Min	Max	Unit
V_{n}	voltage on all other inputs, outputs and combined inputs and outputs, except GNDs	$4.5 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<5.5 \mathrm{~V}$	-0.3	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
I_{BS}	PMOS port output current	corresponding port on; open-drain	-20	0	mA
$\mathrm{I}_{\mathrm{BS} \text { (tot) }}$	sum of all PMOS port output currents	open-drain	-50	0	mA
$\mathrm{t}_{\mathrm{sc}(\text { max })}$	maximum short-circuit time	each pin to $V_{C C}$ or to GND	-	10	S
$\mathrm{T}_{\text {stg }}$	storage temperature		-40	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	ambient temperature		[2] -20	Tamb (max)	${ }^{\circ} \mathrm{C}$
T_{j}	junction temperature		-	150	${ }^{\circ} \mathrm{C}$

[1] Maximum ratings cannot be exceeded, not even momentarily without causing irreversible IC damage. Maximum ratings cannot be accumulated.
[2] The maximum allowed ambient temperature $\mathrm{T}_{\text {amb(max) }}$ depends on the assembly conditions of the package and especially on the design of the printed-circuit board. The application mounting must be done in such a way that the maximum junction temperature is never exceeded. An estimation of the junction temperature can be obtained through measurement of the temperature of the top center of the package ($T_{\text {package }}$). The temperature difference junction to case ($\Delta \mathrm{T}_{\mathrm{j}-\mathrm{c}}$) is estimated at about $13^{\circ} \mathrm{C}$ on the demo board (PCB 827-3). The junction temperature: $\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\text {package }}+\Delta \mathrm{T}_{\mathrm{j}-\mathrm{c}}$.

11. Thermal characteristics

Table 20: Thermal characteristics

Symbol	Parameter	Conditions	Typ	Unit
$\mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{a}}$	thermal resistance from junction to ambient		[1] [2] [3]	
	TDA6650TT		82	K/W
	TDA6651TT		74	K/W

[1] Measured in free air as defined by JEDEC standard JESD51-2.
[2] These values are given for information only. The thermal resistance depends strongly on the nature and design of the printed-circuit board used in the application. The thermal resistance given corresponds to the value that can be measured on a multilayer printed-circuit board (4 layers) as defined by JEDEC standard.
[3] The junction temperature influences strongly the reliability of an IC. The printed-circuit board used in the application contributes in a large part to the overall thermal characteristic. It must therefore be insured that the junction temperature of the $I C$ never exceeds $\mathrm{T}_{\mathrm{j}(\max)}=150^{\circ} \mathrm{C}$ at the maximum ambient temperature.

12. Characteristics

Table 21: Characteristics
$V_{C C A}=V_{C C D}=5 V, T_{\text {amb }}=25^{\circ} \mathrm{C}$; values are given for an asymmetrical IF output loaded with a 75Ω load or with a symmetrical IF output loaded with 1.25 k ; positive currents are entering the IC and negative currents are going out of the IC; the performances of the circuits are measured in the measurement circuits Figure 27 and 28 for digital application or in the measurement circuits Figure 29 and 30 for hybrid application; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Supply						
$\mathrm{V}_{\text {CC }}$	supply voltage		4.5	5.0	5.5	V
$I_{\text {CC }}$	supply current	PMOS ports off	80	96	115	mA
		one PMOS port on: sourcing 15 mA	96	112	131	mA
		two PMOS ports on: one port sourcing 15 mA and one other port sourcing 5 mA	101	117	136	mA
General functions						
$\mathrm{V}_{\text {POR }}$	power-on reset supply voltage	power-on reset active if $\mathrm{V}_{\mathrm{CC}}<\mathrm{V}_{\mathrm{POR}}$	-	2.85	3.5	V
$\Delta \mathrm{f}_{\text {lock }}$	frequency range the PLL is able to synthesize		64	-	1024	MHz
Crystal oscillator [1]						
$\mathrm{f}_{\text {xtal }}$	crystal frequency		-	4.0	-	MHz
$\left\|Z_{\text {xtal }}\right\|$	input impedance (absolute value)	$\begin{aligned} & \mathrm{f}_{\mathrm{xtal}}=4 \mathrm{MHz} ; \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \text {; } \\ & \mathrm{T}_{\mathrm{amb}}=-20^{\circ} \mathrm{C} \text { to }+\mathrm{T}_{\mathrm{amb}(\text { max })}, \\ & \text { see Section } 10 \end{aligned}$	350	430	-	Ω
$\mathrm{P}_{\text {xtal }}$	crystal drive level	$\mathrm{f}_{\text {xtal }}=4 \mathrm{MHz}$	[2] -	70	-	$\mu \mathrm{W}$
PMOS ports: pins BS1, BS2, BS3, BS4 and BS5						
ILO(off)	output leakage current in off state	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{BS}}=0 \mathrm{~V}$	-10	-	-	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{DS} \text { (sat) }}$	output saturation voltage	only corresponding buffer is on, sourcing 15 mA ; $\mathrm{V}_{\mathrm{DS} \text { (sat) }}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{BS}}$	-	0.2	0.4	V
ADC input: pin ADC						
V_{i}	ADC input voltage	see Table 16	0	-	5.5	V
$\mathrm{IIH}^{\text {H }}$	HIGH-level input current	$V_{\text {ADC }}=\mathrm{V}_{\text {CC }}$	-	-	10	$\mu \mathrm{A}$
$\underline{\text { I/L }}$	LOW-level input current	$\mathrm{V}_{\text {ADC }}=0 \mathrm{~V}$	-10	-	-	$\mu \mathrm{A}$
Address selection input: pin AS						
I_{IH}	HIGH-level input current	$\mathrm{V}_{\mathrm{AS}}=5.5 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
IIL	LOW-level input current	$\mathrm{V}_{\mathrm{AS}}=0 \mathrm{~V}$	-10	-	-	$\mu \mathrm{A}$
Bus voltage selection input: pin BVS						
$\mathrm{IIH}^{\text {H }}$	HIGH-level input current	$\mathrm{V}_{\text {BVS }}=5.5 \mathrm{~V}$	-	-	100	$\mu \mathrm{A}$
ILL	LOW-level input current	$\mathrm{V}_{\text {BVS }}=0 \mathrm{~V}$	-100	-	-	$\mu \mathrm{A}$
Buffered output: pin XTOUT						
$\mathrm{V}_{\mathrm{o} \text { (p-p) }}$	square wave AC output voltage (peak-to peak value)		[3] -	400	-	mV
Z_{0}	output impedance		-	175	-	Ω

Table 21: Characteristics...continued
$V_{C C A}=V_{C C D}=5 \mathrm{~V}, T_{\text {amb }}=25^{\circ} \mathrm{C}$; values are given for an asymmetrical IF output loaded with a 75Ω load or with a symmetrical IF output loaded with 1.25 k ; positive currents are entering the IC and negative currents are going out of the IC; the performances of the circuits are measured in the measurement circuits Figure 27 and 28 for digital application or in the measurement circuits Figure 29 and 30 for hybrid application; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit	
$1^{2} \mathrm{C}$-bus							
Inputs: pins SCL and SDA							
$\mathrm{f}_{\text {clk }}$	clock frequency	frequency on SCL	-	-	400	kHz	
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{\text {BVS }}=0 \mathrm{~V}$	0	-	0.75	V	
		$\mathrm{V}_{\text {BVS }}=2.5 \mathrm{~V}$ or open-circuit	0	-	1.0	V	
		$\mathrm{V}_{\text {BVS }}=5 \mathrm{~V}$	0	-	1.5	V	
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{\text {BVS }}=0 \mathrm{~V}$	1.75	-	5.5	V	
		$\mathrm{V}_{\text {BVS }}=2.5 \mathrm{~V}$ or open-circuit	2.3	-	5.5	V	
		$\mathrm{V}_{\text {BVS }}=5 \mathrm{~V}$	3.0	-	5.5	V	
I_{H}	HIGH-level input current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} ; \mathrm{V}_{\text {BUS }}=5.5 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$	
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\text {BUS }}=5.5 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$	
$I_{\text {IL }}$	LOW-level input current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} ; \mathrm{V}_{\text {BUS }}=1.5 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$	
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\text {BUS }}=0 \mathrm{~V}$	-10	-	-	$\mu \mathrm{A}$	
Output: pin SDA							
ILH	leakage current	$\mathrm{V}_{\text {SDA }}=5.5 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$	
$\mathrm{V}_{\text {O(ack) }}$	output voltage during acknowledge	$\mathrm{I}_{\text {SDA }}=3 \mathrm{~mA}$	-	-	0.4	V	
Charge pump output: pin CP							
$\\|_{0} 1$	output current (absolute value)	see Table 11	-	-	-	$\mu \mathrm{A}$	
$\mathrm{I}_{\mathrm{L} \text { (off) }}$	off-state leakage current	charge pump off ($\mathrm{T}[2: 0]=010$)	-15	0	+15	nA	
Tuning voltage output: pin VT							
$\mathrm{I}_{\mathrm{L} \text { (off) }}$	leakage current when switched-off	tuning supply voltage $=33 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$	
$\mathrm{V}_{\text {O(cl) }}$	output voltage when the loop is closed	tuning supply voltage $=33 \mathrm{~V}$; $\mathrm{R}_{\mathrm{L}}=15 \mathrm{k} \Omega$	0.3	-	32.7	V	
Noise performance							
$J_{\phi(r m s)}$	phase jitter (RMS value)	integrated between 1 kHz and 1 MHz offset from the carrier					
		digital application	-	0.5	-	deg	
		hybrid application	-	0.6	-	deg	
Low band mixer, including IF amplifier							
f_{RF}	RF frequency	picture carrier	[4] 43.25	-	157.25	MHz	

Table 21: Characteristics...continued
$V_{C C A}=V_{C C D}=5 \mathrm{~V}, T_{\text {amb }}=25^{\circ} \mathrm{C}$; values are given for an asymmetrical IF output loaded with a 75Ω load or with a symmetrical IF output loaded with $1.25 \mathrm{k} \Omega$; positive currents are entering the IC and negative currents are going out of the IC; the performances of the circuits are measured in the measurement circuits Figure 27 and $\underline{28}$ for digital application or in the measurement circuits Figure 29 and 30 for hybrid application; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
G_{v}	voltage gain	asymmetrical IF output; $\mathrm{R}_{\mathrm{L}}=75 \Omega$; see Figure 14				
		$\mathrm{f}_{\mathrm{RF}}=44.25 \mathrm{MHz}$	21	24	27	dB
		$\mathrm{f}_{\text {RF }}=157.25 \mathrm{MHz}$	21	24	27	dB
		symmetrical IF output; $R_{L}=1.25 \mathrm{k} \Omega$; see Figure 15				
		$\mathrm{f}_{\mathrm{RF}}=44.25 \mathrm{MHz}$	25	28	31	dB
		$\mathrm{f}_{\text {RF }}=157.25 \mathrm{MHz}$	25	28	31	dB
NF	noise figure	see Figure 16 and $\underline{17}$				
		$\mathrm{f}_{\mathrm{RF}}=50 \mathrm{MHz}$	-	8.0	10.0	dB
		$\mathrm{f}_{\text {RF }}=150 \mathrm{MHz}$	-	8.0	10.0	dB
V_{0}	output voltage causing 1% cross modulation in channel	asymmetrical application; see Figure 18	[5]			
		$\mathrm{f}_{\mathrm{RF}}=44.25 \mathrm{MHz}$	107	110	-	$\mathrm{dB} \mu \mathrm{V}$
		$\mathrm{f}_{\mathrm{RF}}=157.25 \mathrm{MHz}$	107	110	-	$\mathrm{dB} \mu \mathrm{V}$
		symmetrical application; see Figure 19	[5]			
		$\mathrm{f}_{\mathrm{RF}}=44.25 \mathrm{MHz}$	117	120	-	$\mathrm{dB} \mu \mathrm{V}$
		$\mathrm{f}_{\mathrm{RF}}=157.25 \mathrm{MHz}$	117	120	-	$\mathrm{dB} \mu \mathrm{V}$
V_{i}	input voltage causing 750 Hz frequency deviation pulling in channel	asymmetrical IF output	-	90	-	$\mathrm{dB} \mu \mathrm{V}$
$\mathrm{INT}_{\text {SO2 }}$	channel SO2 beat	$\mathrm{V}_{\text {RFpix }}=80 \mathrm{~dB} \mu \mathrm{~V}$	[6] 57	60	-	dBc
$\mathrm{V}_{\text {i }}$ (lock)	input level without lock-out	see Figure 25	[7] -	-	120	$\mathrm{dB} \mu \mathrm{V}$
G_{i}	input conductance	$\mathrm{f}_{\mathrm{RF}}=44.25 \mathrm{MHz}$; see $\underline{\text { Figure } 5}$	-	0.13	-	mS
		$\mathrm{f}_{\mathrm{RF}}=157.25 \mathrm{MHz}$; see Figure 5	-	0.11	-	mS
C_{i}	input capacitance	$\begin{aligned} & \mathrm{f}_{\mathrm{RF}}=44.25 \mathrm{MHz} \text { to } 157.25 \mathrm{MHz} \text {; } \\ & \text { see Figure 5 } \end{aligned}$	-	1.36	-	pF
Mid band mixer, including IF amplifier						
f_{RF}	RF frequency	picture carrier	[4] 157.25	-	443.25	MHz
G_{v}	voltage gain	asymmetrical IF output; load $=75 \Omega$; see Figure 14				
		$\mathrm{f}_{\mathrm{RF}}=157.25 \mathrm{MHz}$	21	24	27	dB
		$\mathrm{f}_{\text {RF }}=443.25 \mathrm{MHz}$	21	24	27	dB
		symmetrical IF output; load $=1.25 \mathrm{k} \Omega$; see Figure 15				
		$\mathrm{f}_{\mathrm{RF}}=157.25 \mathrm{MHz}$	25	28	31	dB
		$\mathrm{f}_{\mathrm{RF}}=443.25 \mathrm{MHz}$	25	28	31	dB

Table 21: Characteristics...continued
$V_{C C A}=V_{C C D}=5 \mathrm{~V}, T_{\text {amb }}=25^{\circ} \mathrm{C}$; values are given for an asymmetrical IF output loaded with a 75Ω load or with a symmetrical IF output loaded with 1.25 k ; positive currents are entering the IC and negative currents are going out of the IC; the performances of the circuits are measured in the measurement circuits Figure 27 and 28 for digital application or in the measurement circuits Figure 29 and 30 for hybrid application; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
NF	noise figure	see Figure 16 and $\underline{17}$				
		$\mathrm{f}_{\mathrm{RF}}=150 \mathrm{MHz}$	-	8.0	10.0	dB
		$\mathrm{f}_{\mathrm{RF}}=300 \mathrm{MHz}$	-	9.0	11.0	dB
V_{0}	output voltage causing 1% cross modulation in channel	asymmetrical application; see Figure 18				
		$\mathrm{f}_{\mathrm{RF}}=157.25 \mathrm{MHz}$	107	110	-	$\mathrm{dB} \mu \mathrm{V}$
		$\mathrm{f}_{\mathrm{RF}}=443.25 \mathrm{MHz}$	107	110	-	$\mathrm{dB} \mu \mathrm{V}$
		symmetrical application; see Figure 19	[5]			
		$\mathrm{f}_{\mathrm{RF}}=157.25 \mathrm{MHz}$	117	120	-	$\mathrm{dB} \mu \mathrm{V}$
		$\mathrm{f}_{\mathrm{RF}}=443.25 \mathrm{MHz}$	117	120	-	$\mathrm{dB} \mu \mathrm{V}$
$\mathrm{V}_{\mathrm{f}(\mathrm{N}+5)-1}$	$(\mathrm{N}+5)-1 \mathrm{MHz}$ pulling	$\begin{aligned} & \mathrm{f}_{\mathrm{RF}(\text { wanted })}=443.25 \mathrm{MHz} ; \\ & \mathrm{f}_{\mathrm{osc}}=482.15 \mathrm{MHz} ; \\ & \mathrm{f}_{\mathrm{RF} \text { (unwanted) }}=482.25 \mathrm{MHz} \end{aligned}$	[8] -	80	-	$\mathrm{dB} \mu \mathrm{V}$
V_{i}	input voltage causing 750 Hz frequency deviation pulling in channel	asymmetrical IF output	-	89	-	$\mathrm{dB} \mu \mathrm{V}$
$\mathrm{V}_{\text {i(lock) }}$	input level without lock-out	see Figure 25	[7]	-	120	$\mathrm{dB} \mu \mathrm{V}$
G_{i}	input conductance	see Figure 6	-	0.3	-	mS
Ci_{i}	input capacitance	see Figure 6	-	1.1	-	pF
High band mixer, including IF amplifier						
f_{RF}	RF frequency	picture carrier	[4] 443.25	-	863.25	MHz
G_{v}	voltage gain	asymmetrical IF output; load $=75 \Omega$; see Figure 20				
		$\mathrm{f}_{\mathrm{RF}}=443.25 \mathrm{MHz}$	31.5	34.5	37.5	dB
		$\mathrm{f}_{\mathrm{RF}}=863.25 \mathrm{MHz}$	31.5	34.5	37.5	dB
		symmetrical IF output; load $=1.25 \mathrm{k} \Omega$; see Figure 21				
		$\mathrm{f}_{\mathrm{RF}}=443.25 \mathrm{MHz}$	35.5	38.5	41.5	dB
		$\mathrm{f}_{\mathrm{RF}}=863.25 \mathrm{MHz}$	35.5	38.5	41.5	dB
NF	noise figure, not corrected for image	see Figure 22				
		$\mathrm{f}_{\mathrm{RF}}=443.25 \mathrm{MHz}$	-	6.0	8.0	dB
		$\mathrm{f}_{\mathrm{RF}}=863.25 \mathrm{MHz}$	-	7.0	9.0	dB
V_{0}	output voltage causing 1% cross modulation in channel	asymmetrical application; see Figure 23	[5]			
		$\mathrm{f}_{\mathrm{RF}}=443.25 \mathrm{MHz}$	107	110	-	$\mathrm{dB} \mu \mathrm{V}$
		$\mathrm{f}_{\mathrm{RF}}=863.25 \mathrm{MHz}$	107	110	-	$\mathrm{dB} \mu \mathrm{V}$
		symmetrical application; see Figure 24	[5]			
		$\mathrm{f}_{\mathrm{RF}}=443.25 \mathrm{MHz}$	117	120	-	$\mathrm{dB} \mu \mathrm{V}$
		$\mathrm{f}_{\mathrm{RF}}=863.25 \mathrm{MHz}$	117	120	-	$\mathrm{dB} \mu \mathrm{V}$
939775014178			© Koninklike Philips Electronics N.V.2 2004. All rights reserved.			
Product da	sheet	Rev. 04 - 8 December 2004				24 o

Table 21: Characteristics...continued
$V_{C C A}=V_{C C D}=5 \mathrm{~V}, T_{a m b}=25^{\circ} \mathrm{C}$; values are given for an asymmetrical IF output loaded with a 75Ω load or with a symmetrical IF output loaded with 1.25 k ; positive currents are entering the IC and negative currents are going out of the IC; the performances of the circuits are measured in the measurement circuits Figure 27 and 28 for digital application or in the measurement circuits Figure 29 and 30 for hybrid application; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Typ	Max	Unit
$\mathrm{V}_{\text {i }}$ (lock)	input level without lock-out	see Figure 26	[7]	-	-	120	$\mathrm{dB} \mu \mathrm{V}$
$\mathrm{V}_{\mathrm{f}}(\mathrm{N}+5)-1$	$(\mathrm{N}+5)-1 \mathrm{MHz}$ pulling	$\begin{aligned} & \mathrm{f}_{\mathrm{RF}(\text { wanted })}=815.25 \mathrm{MHz} ; \mathrm{f}_{\mathrm{osc}}=854.15 \\ & \mathrm{MHz} ; \mathrm{f}_{\mathrm{RF}(\text { unwanted })}=854.25 \mathrm{MHz} \end{aligned}$	[8]	-	80	-	$\mathrm{dB} \mu \mathrm{V}$
V_{i}	input voltage causing 750 Hz frequency deviation pulling in channel	asymmetrical IF output		-	79	-	$\mathrm{dB} \mu \mathrm{V}$
Z_{i}	input impedance$\left(R_{S}+j L_{s} \omega\right)$	$\mathrm{f}_{\mathrm{RF}}=443.25 \mathrm{MHz}$; see Figure 7					
		R_{S}		-	35	-	Ω
		Ls		-	8	-	nH
		$\mathrm{f}_{\mathrm{RF}}=863.25 \mathrm{MHz}$; see $\underline{\text { Figure } 7}$					
		R_{S}		-	36	-	Ω
		$\mathrm{L}_{\text {s }}$		-	8	-	nH
Low band oscillator							
$\mathrm{f}_{\text {osc }}$	oscillator frequency		[9]	83.15	-	196.15	MHz
$\Delta \mathrm{f}_{\text {osc }(\mathrm{V})}$	oscillator frequency shift with supply voltage		[10]	-	110	-	kHz
$\Delta \mathrm{f}_{\text {osc }(\mathrm{T})}$	oscillator frequency drift with temperature	$\Delta \mathrm{T}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ with compensation	[11]	-	900	-	kHz
$\Phi_{\text {osc(dig) }}$	phase noise, carrier to sideband noise in digital application	$\pm 1 \mathrm{kHz}$ frequency offset; $\mathrm{f}_{\text {comp }}=4 \mathrm{MHz}$; see Figure 8, 27 and $\underline{28}$		82	95	-	$\mathrm{dBc} / \mathrm{Hz}$
		$\pm 10 \mathrm{kHz}$ frequency offset; worst case in the frequency range; see Figure 9, $\underline{27}$ and $\underline{28}$		87	100	-	$\mathrm{dBc} / \mathrm{Hz}$
		$\pm 100 \mathrm{kHz}$ frequency offset; worst case in the frequency range; see Figure 10, $\underline{27}$ and $\underline{28}$		104	110	-	$\mathrm{dBc} / \mathrm{Hz}$
		$\pm 1.4 \mathrm{MHz}$ frequency offset; worst case in the frequency range; see Figure 27 and 28		-	117	-	$\mathrm{dBc} / \mathrm{Hz}$
$\Phi_{\text {osc(hyb) }}$	phase noise, carrier to sideband noise in hybrid application	$\pm 1 \mathrm{kHz}$ frequency offset; $\mathrm{f}_{\text {comp }}=4 \mathrm{MHz}$; see Figure 11, 29, and 30		80	95	-	$\mathrm{dBc} / \mathrm{Hz}$
		$\pm 10 \mathrm{kHz}$ frequency offset; worst case in the frequency range; see Figure 12, 29, and 30		85	96	-	$\mathrm{dBc} / \mathrm{Hz}$
		$\pm 100 \mathrm{kHz}$ frequency offset; worst case in the frequency range; see Figure 13, 29, and 30		104	110	-	$\mathrm{dBc} / \mathrm{Hz}$
		$\pm 1.4 \mathrm{MHz}$ frequency offset; worst case in the frequency range; see Figure 29 and 30		-	117	-	$\mathrm{dBc} / \mathrm{Hz}$

Table 21: Characteristics...continued
$V_{C C A}=V_{C C D}=5 \mathrm{~V}, T_{a m b}=25^{\circ} \mathrm{C}$; values are given for an asymmetrical IF output loaded with a 75Ω load or with a symmetrical IF output loaded with 1.25 k ; positive currents are entering the IC and negative currents are going out of the IC; the performances of the circuits are measured in the measurement circuits Figure 27 and 28 for digital application or in the measurement circuits Figure 29 and 30 for hybrid application; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Typ	Max	Unit
$\mathrm{RSC}_{\mathrm{p}-\mathrm{p}}$	ripple susceptibility of V_{CC} (peak-to-peak value)	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$; worst case in the frequency range; ripple frequency 500 kHz	[12]	15	200	-	mV
Mid band oscillator							
$\mathrm{f}_{\text {osc }}$	oscillator frequency		[9]	196.15	-	482.15	MHz
$\Delta \mathrm{f}_{\text {osc }(\mathrm{V})}$	oscillator frequency shift with supply voltage		[10]	-	110	-	kHz
$\Delta \mathrm{f}_{\text {osc }(\mathrm{T})}$	oscillator frequency drift with temperature	$\Delta \mathrm{T}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ with compensation	[11]	-	1500	-	kHz
$\Phi_{\text {osc(dig) }}$	phase noise, carrier to sideband noise in digital application	$\pm 1 \mathrm{kHz}$ frequency offset; $\mathrm{f}_{\text {comp }}=4 \mathrm{MHz}$; see Figure $8, \underline{27}$ and $\underline{28}$		85	90	-	$\mathrm{dBc} / \mathrm{Hz}$
		$\pm 10 \mathrm{kHz}$ frequency offset; worst case in the frequency range; see Figure 9, 27 and 28		87	95	-	$\mathrm{dBc} / \mathrm{Hz}$
		$\pm 100 \mathrm{kHz}$ frequency offset; worst case in the frequency range; see Figure 10, 27 and 28		104	110	-	$\mathrm{dBc} / \mathrm{Hz}$
		$\pm 1.4 \mathrm{MHz}$ frequency offset; worst case in the frequency range; see Figure 27 and $\underline{28}$		-	115	-	$\mathrm{dBc} / \mathrm{Hz}$
$\Phi_{\text {osc(hyb) }}$	phase noise, carrier to sideband noise in hybrid application	$\pm 1 \mathrm{kHz}$ frequency offset; $\mathrm{f}_{\text {comp }}=4 \mathrm{MHz}$; see Figure 11, 29 and $\underline{30}$		82	88	-	$\mathrm{dBc} / \mathrm{Hz}$
		$\pm 10 \mathrm{kHz}$ frequency offset; worst case in the frequency range; see Figure 12, 29 and 30		85	90	-	$\mathrm{dBc} / \mathrm{Hz}$
		$\pm 100 \mathrm{kHz}$ frequency offset; worst case in the frequency range; see Figure 13, $\underline{29}$ and $\underline{30}$		104	110	-	$\mathrm{dBc} / \mathrm{Hz}$
		$\pm 1.4 \mathrm{MHz}$ frequency offset; worst case in the frequency range; see Figure 29 and 30		-	115	-	$\mathrm{dBc} / \mathrm{Hz}$
RSC_{p-p}	ripple susceptibility of V_{CC} (peak-to-peak value)	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$; worst case in the frequency range; ripple frequency 500 kHz	[12]	15	140	-	mV
High band oscillator							
$\mathrm{f}_{\text {osc }}$	oscillator frequency		[9]	482.15	-	902.15	MHz
$\Delta \mathrm{f}_{\text {osc }(\mathrm{V})}$	oscillator frequency shift with supply voltage		[10]	-	300	-	kHz
$\Delta \mathrm{f}_{\text {osc (} \mathrm{T}^{\prime}}$	oscillator frequency drift with temperature	$\Delta \mathrm{T}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$; with compensation	[11]	-	1100	-	kHz

Table 21: Characteristics...continued
$V_{C C A}=V_{C C D}=5 \mathrm{~V}, T_{a m b}=25^{\circ} \mathrm{C}$; values are given for an asymmetrical IF output loaded with a 75Ω load or with a symmetrical IF output loaded with 1.25 k ; positive currents are entering the IC and negative currents are going out of the IC; the performances of the circuits are measured in the measurement circuits Figure 27 and 28 for digital application or in the measurement circuits Figure 29 and 30 for hybrid application; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Typ	Max	Unit
$\Phi_{\text {osc(dig) }}$	phase noise, carrier to sideband noise in digital application	$\pm 1 \mathrm{kHz}$ frequency offset; $\mathrm{f}_{\text {comp }}=4 \mathrm{MHz}$; see Figure 8, 27 and 28		85	89	-	$\mathrm{dBc} / \mathrm{Hz}$
		$\pm 10 \mathrm{kHz}$ frequency offset; worst case in the frequency range; see Figure 9, 27 and 28		87	93	-	$\mathrm{dBc} / \mathrm{Hz}$
		$\pm 100 \mathrm{kHz}$ frequency offset; worst case in the frequency range; see Figure 11, 27 and 28		104	107	-	$\mathrm{dBc} / \mathrm{Hz}$
		$\pm 1.4 \mathrm{MHz}$ frequency offset; worst case in the frequency range; see Figure 27 and $\underline{28}$		-	117	-	$\mathrm{dBc} / \mathrm{Hz}$
$\Phi_{\text {osc(hyb) }}$	phase noise, carrier to sideband noise in hybrid application	$\pm 1 \mathrm{kHz}$ frequency offset; $\mathrm{f}_{\text {comp }}=4 \mathrm{MHz}$; see Figure 11, $\underline{29}$ and $\underline{30}$		80	85	-	$\mathrm{dBc} / \mathrm{Hz}$
		$\pm 10 \mathrm{kHz}$ frequency offset; worst case in the frequency range; see Figure 12, 29 and 30		82	86	-	$\mathrm{dBc} / \mathrm{Hz}$
		$\pm 100 \mathrm{kHz}$ frequency offset; worst case in the frequency range; see Figure 13, 29 and 30		104	107	-	$\mathrm{dBc} / \mathrm{Hz}$
		$\pm 1.4 \mathrm{MHz}$ frequency offset; worst case in the frequency range; see Figure 29 and 30		-	117	-	$\mathrm{dBc} / \mathrm{Hz}$
$\mathrm{RSC}_{p-\mathrm{p}}$	ripple susceptibility of V_{CC} (peak-to-peak value)	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$; worst case in the frequency range; ripple frequency 500 kHz	[12]	15	40	-	mV
IF amplifier							
Z_{0}	output impedance	asymmetrical IF output					
		R_{S} at 38.9 MHz		-	50	-	Ω
		$L_{\text {S }}$ at 38.9 MHz		-	5.4	-	nH
		symmetrical IF output		-		-	
		R_{S} at 38.9 MHz		-	100	-	Ω
		$\mathrm{L}_{\text {S }}$ at 38.9 MHz		-	10.4	-	nH
Rejection at the IF output (IF amplifier in asymmetrical mode)							
INT ${ }_{\text {div }}$	divider interferences in IF level	worst case	[13]	-	-	20	$\mathrm{dB} \mu \mathrm{V}$
INT xtal	crystal oscillator interferences rejection	$\mathrm{V}_{\text {IF }}=100 \mathrm{~dB} \mu \mathrm{~V}$; worst case in the frequency range	[14]	-	-	-50	dBc

Table 21: Characteristics...continued
$V_{C C A}=V_{C C D}=5 \mathrm{~V}, T_{a m b}=25^{\circ} \mathrm{C}$; values are given for an asymmetrical IF output loaded with a 75Ω load or with a symmetrical IF output loaded with 1.25 k ; positive currents are entering the IC and negative currents are going out of the IC; the performances of the circuits are measured in the measurement circuits Figure 27 and 28 for digital application or in the measurement circuits Figure 29 and 30 for hybrid application; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Typ	Max	Unit
$1 \mathrm{NT}_{\text {f(step) }}$	step frequency rejection	measured in digital application for $\begin{aligned} & \text { DVB-T; } \mathrm{f}_{\text {step }}=166.67 \mathrm{kHz} \\ & \mathrm{IF}=36.125 \mathrm{MHz} \end{aligned}$	[15]	-	-	-50	dBc
		measured in hybrid application for $\begin{aligned} & \text { DVB-T; } \mathrm{f}_{\text {step }}=166.67 \mathrm{kHz} \\ & \mathrm{IF}=36.125 \mathrm{MHz} \end{aligned}$	[15]	-	-	-57	dBc
		measured in hybrid application for PAL; $f_{\text {step }}=62.5 \mathrm{kHz}$; IF $=38.9 \mathrm{MHz}$	[15]	-	-	-57	dBc
		measured in hybrid application for FM ; $\mathrm{f}_{\text {step }}=50 \mathrm{kHz} ; \mathrm{IF}=38.9 \mathrm{MHz}$	[15]	-	-	-57	dBc
$\mathrm{INT}_{\text {XTH }}$	crystal oscillator harmonics in the IF frequency		[16]	-	-	45	$\mathrm{dB} \mu \mathrm{V}$
AGC output (IF amplifier in asymmetrical mode): pin AGC							
$\mathrm{AGC}_{\text {TOP(p-p) }}$	AGC take-over point (peak-to-peak level)	bits $\mathrm{AL}[2: 0]=000$		122.5	124	125.5	$\mathrm{dB} \mu \mathrm{V}$
$\mathrm{I}_{\text {source(fast) }}$	source current fast			7.5	9.0	11.6	$\mu \mathrm{A}$
$\mathrm{l}_{\text {source(slow) }}$	source current slow			185	220	280	nA
V	output voltage	maximum level		3.45	3.55	3.8	V
		minimum level		0	-	0.1	V
$\mathrm{V}_{\text {o(dis) }}$	output voltage with AGC disabled	bits $\mathrm{AL}[2: 0]=111$		3.45	3.55	3.8	V
$\mathrm{V}_{\text {RF(Slip) }}$	RF voltage range to switch the AGC from active to not active mode			-	-	0.5	dB
$\mathrm{V}_{\text {RML }}$	low threshold AGC output voltage	AGC bit $=0$ or AGC not active		0	-	2.8	V
$\mathrm{V}_{\text {RMH }}$	high threshold AGC output voltage	AGC bit $=1$ or AGC active		3.2	3.55	3.8	V
LIO	leakage current	bits $\mathrm{AL}[2: 0]=110 ; 0<\mathrm{V}_{\text {AGC }}<\mathrm{V}_{\mathrm{CC}}$		-50	-	+50	nA

[1] Important recommendation: to obtain the performances mentioned in this specification, the serial resistance of the crystal used with this oscillator must never exceed 120Ω. The crystal oscillator is guaranteed to operate at any supply voltage between 4.5 V and 5.5 V and at any temperature between $-20^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{amb}(\max)}$, as defined in Section 10.
[2] The drive level is expected with a 50Ω series resistance of the crystal at series resonance. The drive level will be different with other series resistance values.
[3] The $\mathrm{V}_{\text {XTOUT }}$ level is measured when the pin XTOUT is loaded with $5 \mathrm{k} \Omega$ in parallel with 10 pF .
[4] The RF frequency range is defined by the oscillator frequency range and the intermediate frequency (IF).
[5] The 1% cross modulation performance is measured with AGC detector turned off (AGC bits set to 110).
[6] Channel SO2 beat is the interfering product of $f_{\text {RFpix }}, f_{I F}$ and $f_{\text {osc }}$ of channel SO2; $f_{\text {beat }}=37.35 \mathrm{MHz}$. The possible mechanisms are: $\mathrm{f}_{\text {osc }}-2 \times \mathrm{f}_{\text {IFpix }}$ or $2 \times \mathrm{f}_{\text {RFpix }}-\mathrm{f}_{\text {osc }}$.
[7] The IF output signal stays stable within the range of the step frequency for any RF input level up to $120 \mathrm{~dB} \mu \mathrm{~V}$.
[8] $(N+5)-1 \mathrm{MHz}$ pulling is the input level of channel $\mathrm{N}+5$, at frequency 1 MHz lower, causing 100 kHz FM sidebands 30 dB below the wanted carrier.
[9] Limits are related to the tank circuits used in Figure 27 and $\underline{28}$ for digital application or Figure 29 and $\underline{30}$ for hybrid application. Frequency bands may be adjusted by the choice of external components.
[10] The frequency shift is defined as a change in oscillator frequency when the supply voltage varies from $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ to 4.5 V or from $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ to 5.25 V . The oscillator is free running during this measurement.
[11] The frequency drift is defined as a change in oscillator frequency when the ambient temperature varies from $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ or from $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$. The oscillator is free running during this measurement.
[12] The supply ripple susceptibility is measured in the measurement circuit according to Figure 27, 28, 29 and 30 using a spectrum analyzer connected to the IF output. An unmodulated RF signal is applied to the test board RF input. A sinewave signal with a frequency of 500 kHz is superimposed onto the supply voltage. The amplitude of this ripple signal is adjusted to bring the 500 kHz sidebands around the IF carrier to a level of -53.5 dB with respect to the carrier.
[13] This is the level of divider interferences close to the IF frequency. For example channel S3: $\mathrm{f}_{\text {osc }}=158.15 \mathrm{MHz}, 1 / 4 \mathrm{f}_{\mathrm{osc}}=39.5375 \mathrm{MHz}$. The low and mid band inputs must be left open (i.e. not connected to any load or cable); the high band inputs are connected to an hybrid.
[14] Crystal oscillator interference means the 4 MHz sidebands caused by the crystal oscillator.
[15] The step frequency rejection is the level of step frequency sidebands (e.g. 166.67 kHz) related to the carrier.
[16] This is the level of the 9th and 11th harmonics of the 4 MHz crystal oscillator into the IF output.

Fig 5. Input admittance (s_{11}) of the low band mixer (40 MHz to 200 MHz); $\mathrm{Y}_{\mathrm{o}}=20 \mathrm{mS}$

Fig 6. Input admittance (s_{11}) of the mid band mixer (100 MHz to 500 MHz); $\mathrm{Y}_{\mathrm{o}}=20 \mathrm{mS}$

Fig 7. Input impedance $\left(\mathrm{s}_{11}\right)$ of the high band mixer (400 MHz to 900 MHz); $\mathrm{Z}_{\mathrm{o}}=100 \Omega$

Fig 8. 1 kHz phase noise typical performance in digital application (Figure 27 and $\underline{28}$)

Fig 9. 10 kHz phase noise typical performance in digital application (Figure 27 and $\underline{28}$)

Fig 10. 100 kHz phase noise typical performance in digital application (Figure 27 and $\underline{\text { 28 }}$)

Fig 11. 1 kHz phase noise typical performance in hybrid application (Figure 29 and 30)

Fig 12. 10 kHz phase noise typical performance in hybrid application (Figure 29 and 30)

Fig 13. 100 kHz phase noise typical performance in hybrid application (Figure 29 and 30)

Fig 14. Gain $\left(G_{v}\right)$ measurement in low and mid band with asymmetrical IF output

Fig 15. Gain (G_{v}) measurement in low and mid band with symmetrical IF output

$N F=N F_{\text {meas }}-$ loss of input circuit (dB).
Fig 16. Noise figure (NF) measurement in low and mid band with asymmetrical IF output

a. Schematic 1

For $\mathbf{f}_{\mathrm{RF}}=\mathbf{5 0} \mathbf{~ M H z}$ (Schematic 1)
Loss $=0 \mathrm{~dB}$.
$\mathrm{Cs}=12 \mathrm{pF}$ in parallel with a 0.8 pF to 8 pF trimmer.
$\mathrm{Cp}=18 \mathrm{pF}$ in parallel with a 0.8 pF to 8 pF trimmer
$\mathrm{Cc}=4.7 \mathrm{nF}$.
$\mathrm{Lp}=8$ turns, $\varnothing 5 \mathrm{~mm}$, wire $\varnothing=0.4 \mathrm{~mm}$ air coil
$\mathrm{TL}=50 \Omega$ semi rigid cable, length $=75 \mathrm{~mm}$.
b. Schematic 2

For $\mathbf{f}_{\mathrm{RF}}=\mathbf{3 0 0} \mathbf{~ M H z}$ (Schematic 2)
Loss $=0.5 \mathrm{~dB}$.
$\mathrm{Cp}=8.2 \mathrm{pF}$ in parallel with a 0.8 pF to 8 pF trimmer.
$\mathrm{Cc}=4.7 \mathrm{nF}$.
$\mathrm{Ls}=2$ turns, $\varnothing 1.5 \mathrm{~mm}$, wire $\varnothing=0.4 \mathrm{~mm}$ air coil.
$\mathrm{Lp}=2$ turns, $\varnothing 1.5 \mathrm{~mm}$, wire $\varnothing=0.4 \mathrm{~mm}$ air coil.
$\mathrm{TL}=50 \Omega$ semi rigid cable, length $=75 \mathrm{~mm}$.
For $\mathrm{f}_{\mathrm{RF}}=\mathbf{1 5 0} \mathbf{~ M H z}$ (Schematic 1)
Loss $=0 \mathrm{~dB}$
$\mathrm{Cs}=0.8 \mathrm{pF}$ to 8 pF trimmer.
$\mathrm{Cp}=0.4 \mathrm{pF}$ to 2.5 pF trimmer.
$\mathrm{Cc}=4.7 \mathrm{nF}$.
$\mathrm{Lp}=4$ turns, $\varnothing 4.5 \mathrm{~mm}$, wire $\varnothing=0.4 \mathrm{~mm}$ air coil
$\mathrm{TL}=50 \Omega$ semi rigid cable, length $=75 \mathrm{~mm}$.
Fig 17. Input circuit for optimum noise figure in low and mid band

$\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\text {meas }}+3.75 \mathrm{~dB}$.
Wanted signal source at $f_{\text {RFpix }}$ is $80 \mathrm{~dB} \mu \mathrm{~V}$.
Unwanted output signal at $f_{\text {snd }}$.
The level of unwanted signal is measured by causing 0.3 \% AM modulation in the wanted signal.
Fig 18. Cross modulation measurement in low and mid band with asymmetrical IF output

V^{\prime} meas $=\mathrm{V}_{0}-$ (transformer ratio $\mathrm{N} 1 / \mathrm{N} 2=5$ and loss).
Wanted signal source at $\mathrm{f}_{\mathrm{RFpix}}$ is $80 \mathrm{~dB} \mu \mathrm{~V}$.
The level of unwanted signal V_{0} at $f_{\text {snd }}$ is measured by causing 0.3% AM modulation in the wanted output signal.
$\mathrm{N} 1=10$ turns.
N2 = 2 turns.
$\mathrm{N} 1 / \mathrm{N} 2=5$.
Fig 19. Cross modulation measurement in low and mid band with symmetrical IF output

Loss in hybrid $=1 \mathrm{~dB}$.
$\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\text {meas }}-$ loss $=70 \mathrm{~dB} \mu \mathrm{~V}$.
$\mathrm{V}_{\mathrm{o}}=\mathrm{V}^{\prime}$ meas +3.75 dB .
$G_{v}=20 \log \frac{V_{o}}{V_{i}}$.
DVB-T and PAL.
$\mathrm{IF}=38.9 \mathrm{MHz}$.
Fig 20. Gain $\left(G_{v}\right)$ measurement in high band with asymmetrical IF output

Fig 21. Gain (G_{v}) measurement in high band with symmetrical IF output

Loss in hybrid $=1 \mathrm{~dB}$.
$N F=N F_{\text {meas }}-$ loss.
Fig 22. Noise figure (NF) measurement in high band with asymmetrical IF output

Wanted signal source at $\mathrm{f}_{\mathrm{RFpix}}$ is $70 \mathrm{~dB} \mu \mathrm{~V}$.
Unwanted output signal at $\mathrm{f}_{\text {snd }}$.
The level of unwanted signal is measured by causing 0.3% AM modulation in the wanted signal.
Fig 23. Cross modulation measurement in high band with asymmetrical IF output

V^{\prime} meas $=\mathrm{V}_{\mathrm{o}}-$ (transformer ratio $\mathrm{N} 1 / \mathrm{N} 2=5$ and loss)
The level of unwanted signal is measured by causing $0.3 \% \mathrm{AM}$ modulation in the wanted signal.
N1 = 10 turns.
$\mathrm{N} 2=2$ turns.
$\mathrm{N} 1 / \mathrm{N} 2=5$.
Fig 24. Cross modulation measurement in high band with symmetrical IF output

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{i}} \gg 50 \Omega \rightarrow \mathrm{~V}_{\mathrm{i}}=2 \times \mathrm{V}_{\text {meas }} . \\
& \mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\text {meas }}+6 \mathrm{~dB} .
\end{aligned}
$$

Fig 25. Maximum RF input level without lock-out in low and mid band with asymmetrical IF output

Loss in hybrid $=1 \mathrm{~dB}$.
$\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\text {meas }}-$ loss.
Fig 26. Maximum RF input level without lock-out in high band with asymmetrical IF output

12.1 PLL loop stability of measurement circuit

The TDA6650TT; TDA6651TT PLL loop stability is guaranteed in the configuration of Figure 27, 28, 29 and 30 . In this configuration, the external supply source is 30 V minimum, the pull-up resistor R19, is $15 \mathrm{k} \Omega$ and all of the local oscillators are aligned to operate at a maximum tuning voltage of 26 V . If the configuration is changed, there might be an impact on the loop stability.

For any other configurations, a stability analysis must be performed. The conventional PLL AC model (cf. SIMPATA Philips software) used for the stability analysis, is valid provided the external source (DC supply source or DC-to-DC converter) is able to deliver a minimum current that is equal to the charge pump current in use.

The delivered current can be simply calculated with the following formula:
$I_{\text {delivered }}=\left(\frac{V_{D C}-V_{T}}{R_{p u}}\right)>I_{C P}$ where:
$I_{\text {delivered }}$ is the delivered current.
$V_{D C}$ is the supply source voltage or DC-to-DC converter output voltage.
V_{T} is the tuning voltage.
R_{pu} is the pull-up resistor between the DC supply source (or the DC-to-DC converter output) and the tuning line (R19 in Figure 27 to 30).
$I_{C P}$ is the charge pump current in use.

The pin numbers in parenthesis represent the TDA6651TT.
Fig 27. Measurement circuit for digital application, with asymmetrical IF output and DVB-T compliant loop filter

The pin numbers in parenthesis represent the TDA6651TT.
Fig 28. Measurement circuit for digital application, with symmetrical IF output and DVB-T compliant loop filter

The pin numbers in parenthesis represent the TDA6651TT.
Fig 29. Measurement circuit for hybrid application, with asymmetrical IF output and loop filter for PAL and DVB-T standards

The pin numbers in parenthesis represent the TDA6651TT.
Fig 30. Measurement circuit for hybrid application, with symmetrical IF output and loop filter for PAL and DVB-T standards

13. Application information

13.1 Tuning amplifier

The tuning amplifier is capable of driving the varicap voltage without an external transistor. The tuning voltage output must be connected to an external load of $15 \mathrm{k} \Omega$ which is connected to the tuning voltage supply rail. The loop filter design depends on the oscillator characteristics and the selected reference frequency as well as the required PLL loop bandwidth.

Applications with the TDA6650TT; TDA6651TT have a large loop bandwidth, in the order of a few tens of kHz . The calculation of the loop filter elements has to be done for each application, it depends on the reference frequency and charge pump current. A simulation of the loop can easily be done using the SIMPATA software from Philips.

13.2 Crystal oscillator

The TDA6650TT; TDA6651TT needs to be used with a 4 MHz crystal in series with a capacitor with a typical value of 18 pF , connected between pin XTAL1 and pin XTAL2. Philips crystal 432214304093 is recommended. When choosing a crystal, take care to select a crystal able to withstand the drive level of the TDA6650TT; TDA6651TT without suffering from accelerated ageing. For optimum performances, it is highly recommended to connect the 4 MHz crystal without any serial resistance.

The crystal oscillator of the TDA6650TT; TDA6651TT should not be driven (forced) from an external signal.

Do not use the signal on pin XTAL1 or pin XTAL2, or the signal present on the crystal, to drive an external IC or for any other use as this may dramatically degrade the phase noise performance of the TDA6650TT; TDA6651TT.

13.3 Examples of $\mathrm{I}^{2} \mathrm{C}$-bus program sequences

Table 22 to 29 show various sequences where:
S = START
A = acknowledge
P = STOP.
The following conditions apply:
LO frequency is 800 MHz
$\mathrm{f}_{\text {comp }}=166.666 \mathrm{kHz}$
$N=4800$
BS3 output port is on and all other ports are off: thus the high band is selected
Charge pump current $\mathrm{I}_{\mathrm{CP}}=280 \mu \mathrm{~A}$
Normal mode, with XTOUT buffer on
$\mathrm{I}_{\mathrm{AGC}}=220 \mathrm{nA}$
AGC take-over point is set to $112 \mathrm{~dB} \mu \mathrm{~V}$ ($\mathrm{p}-\mathrm{p}$)
Address selection is adjusted to make address C 2 valid.

To fully program the device, either sequence of Table 22 or $\underline{23}$ can be used, while other arrangements of the bytes are also possible.

Table 22: Complete sequence 1

Start	Address byte	Divider byte 1	Divider byte 2	Control byte 1 $\underline{[1]}]$	Control byte 2	Control byte 1 $\underline{[2]}]$	Stop			
S	C2	A	12	A	C0	A	CA	A	A4	A
84	A	P								

[1] Control byte 1 with bit $\mathrm{T} / \mathrm{A}=1$, to program test bits $\mathrm{T} 2, \mathrm{~T} 1$ and T 0 and reference divider ratio bits R2, R1 and RO.
[2] Control byte 1 with bit T/A = 0 , to program AGC time constant bit ATC and AGC take-over point bits AL2, AL1 and AL0.

Table 23: Complete sequence 2

Start	Address byte	Control byte 1 [1]	Control byte 2	Divider byte 1	Divider byte 2	Control byte 1 [2]	Stop
S	C2 A	CA A	A4 A	12 A	C0 A	84 A	P

[1] Control byte 1 with bit $\mathrm{T} / \mathrm{A}=1$, to program test bits T 2 , T 1 and T 0 and reference divider ratio bits R2, R1 and RO.
[2] Control byte 1 with bit T/A $=0$, to program AGC time constant bit ATC and AGC take-over point bits AL2, AL1 and ALO.

Table 24: Sequence to program only the main divider ratio

Start	Address byte		Divider byte 1		Divider byte 2		Stop
S	C2	A	12	A	C0	A	P

Table 25: Sequence to change the charge pump current, the ports and the test mode. If the reference divider ratio is changed, it is necessary to send the DB1 and DB2 bytes

Start	Address byte	Control byte 1 $\underline{[1]}$	Control byte 2	Stop			
S	C2	A	CA	A	A4	A	P

[1] Control byte 1 with bit $\mathrm{T} / \mathrm{A}=1$, to program test bits $\mathrm{T} 2, \mathrm{~T} 1$ and T 0 and reference divider ratio bits R2, R1 and R0.

Table 26: Sequence to change the test mode. If the reference divider ratio is changed, it is necessary to send the DB1 and DB2 bytes

Start	Address byte	Control byte 1$[1]$ A	Stop		
S	C2	A	CA	A	P

[1] Control byte 1 with bit T/A = 1, to program test bits T2, T1 and T0 and reference divider ratio bits R2, R1 and R0.

Table 27: Sequence to change the charge pump current, the ports and the AGC data

Start	Address byte		Control byte 1 [1]		Control byte 2	
S	C2	A	82	A	A4	A

[1] Control byte 1 with bit T/A $=0$, to program AGC time constant bit ATC and AGC take-over point bits AL2, AL1 and AL0.

Table 28: Sequence to change only the AGC data

Start	Address byte	Control byte 1 [1]	Stop		
S	C2	A	84	A	P

[1] Control byte 1 with bit T/A $=0$, to program AGC time constant bit ATC and AGC take-over point bits AL2, AL1 and AL0.

Table 29: Sequence to program the main divider, the ALBC on and the test modes in normal mode with XTOUT buffer off

Start	Address byte	Divider byte 1	Divider byte 2	Control byte 1 [1]	Control byte 2	Control byte 1	Stop		
S	C2	A	12	A	C0	A	DA	A	00
A	C2	A	P						

[1] Control byte 1 with bit $\mathrm{T} / \mathrm{A}=1$, to program test bits $\mathrm{T} 2, \mathrm{~T} 1$ and T 0 and reference divider ratio bits R2, R1 and RO.

5 V mixer/oscillator and low noise PLL synthesizer

14. Package outline

TSSOP38: plastic thin shrink small outline package; 38 leads; body width 4.4 mm ; lead pitch 0.5 mm

DIMENSIONS (mm are the original dimensions).

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(2)}$	e	H_{E}	L	L_{p}	v	w	y	$\mathbf{Z}^{(1)}$	θ
mm	1.1	$\begin{aligned} & 0.15 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.95 \\ & 0.85 \end{aligned}$	0.25	$\begin{aligned} & 0.27 \\ & 0.17 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.09 \end{aligned}$	$\begin{aligned} & 9.8 \\ & 9.6 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.3 \end{aligned}$	0.5	6.4	1	$\begin{aligned} & 0.7 \\ & 0.5 \end{aligned}$	0.2	0.08	0.08	$\begin{aligned} & 0.49 \\ & 0.21 \end{aligned}$	8° 0

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			
SOT510-1					$-98-09-16$	

Fig 31. Package outline SOT510-1 (TSSOP38)
939775014178

15. Handling information

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be completely safe, it is desirable to take normal precautions appropriate to handling integrated circuits.
16. Soldering

16.1 Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our Data Handbook IC26; Integrated Circuit Packages (document order number 9398652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended.

16.2 Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. Driven by legislation and environmental forces the worldwide use of lead-free solder pastes is increasing.

Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 seconds and 200 seconds depending on heating method.

Typical reflow peak temperatures range from $215^{\circ} \mathrm{C}$ to $270^{\circ} \mathrm{C}$ depending on solder paste material. The top-surface temperature of the packages should preferably be kept:

- below $225^{\circ} \mathrm{C}$ (SnPb process) or below $245^{\circ} \mathrm{C}$ (Pb-free process)
- for all BGA, HTSSON..T and SSOP..T packages
- for packages with a thickness $\geq 2.5 \mathrm{~mm}$
- for packages with a thickness $<2.5 \mathrm{~mm}$ and a volume $\geq 350 \mathrm{~mm}^{3}$ so called thick/large packages.
- below $240{ }^{\circ} \mathrm{C}$ (SnPb process) or below $260^{\circ} \mathrm{C}$ (Pb-free process) for packages with a thickness $<2.5 \mathrm{~mm}$ and a volume $<350 \mathrm{~mm}^{3}$ so called small/thin packages.

Moisture sensitivity precautions, as indicated on packing, must be respected at all times.

16.3 Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
- larger than or equal to 1.27 mm , the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
- smaller than 1.27 mm , the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.
The footprint must incorporate solder thieves at the downstream end.
- For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at $250^{\circ} \mathrm{C}$ or $265^{\circ} \mathrm{C}$, depending on solder material applied, SnPb or Pb -free respectively.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

16.4 Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$.

When using a dedicated tool, all other leads can be soldered in one operation within 2 seconds to 5 seconds between $270^{\circ} \mathrm{C}$ and $320^{\circ} \mathrm{C}$.

16.5 Package related soldering information

Table 30: Suitability of surface mount IC packages for wave and reflow soldering methods

Package [1]	Soldering method	
	Wave	Reflow [2]
BGA, HTSSON..T [3], LBGA, LFBGA, SQFP, SSOP..T [3], TFBGA, VFBGA, XSON	not suitable	suitable
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP, HSQFP, HSSON, HTQFP, HTSSOP, HVQFN, HVSON, SMS	not suitable ${ }^{[4]}$	suitable
PLCC [5], SO, SOJ	suitable	suitable
LQFP, QFP, TQFP	not recommended [5] [6]	suitable
SSOP, TSSOP, VSO, VSSOP	not recommended [$\underline{\text {] }}$	suitable
CWQCCN..L ${ }^{[8]}$, PMFP [$\underline{\text { [9] }}$, WQCCN..L [${ }_{\text {[}}$]	not suitable	not suitable

[1] For more detailed information on the BGA packages refer to the (LF)BGA Application Note (AN01026); order a copy from your Philips Semiconductors sales office.

5 V mixer/oscillator and low noise PLL synthesizer

[2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods.
[3] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no account be processed through more than one soldering cycle or subjected to infrared reflow soldering with peak temperature exceeding $217^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$ measured in the atmosphere of the reflow oven. The package body peak temperature must be kept as low as possible.
[4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side, the solder might be deposited on the heatsink surface.
[5] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
[6] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm ; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm .
[7] Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger than 0.65 mm ; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm .
[8] Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex foil by using a hot bar soldering process. The appropriate soldering profile can be provided on request.
[9] Hot bar soldering or manual soldering is suitable for PMFP packages.

17. Revision history

Table 31: Revision history

Document ID	Release date	Data sheet status	Change notice	Doc. number	Supersedes
TDA6650TT_6651TT_4	20041208	Product data sheet		939775014178	TDA6650TT_6651TT_3
Modifications:	- The format of this data sheet has been redesigned to comply with the new presentation and information standard of Philips Semiconductors - Section 3: Note added to the applications list - Table 10 on page 11: Notes 1 and 2 added - Section 10: Table notes modified - Figure 18, 19, $\underline{23}$ and $\underline{24}$: Replaced " 1% AM modulation" with " 0.3 \% AM modulation" - Figure 20: Modified by adding V^{\prime} meas - Figure 24: Added figure note - Figure 30: Changed value of C17 and R13				
TDA6650TT_6651TT_3	20040322	Product specification		939775013025	TDA6650TT_6651TT_2
TDA6650TT_6651TT_2	20030911	Preliminary specification		939775011854	TDA6650TT_6651TT_1
TDA6650TT_6651TT_1	20030717				

18. Data sheet status

Level	Data sheet status $\underline{[1]}$.	Product status $\underline{[2]}$ [3]	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

19. Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

20. Disclaimers

Life support - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors
customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes - Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

21. Licenses

Purchase of Philips $\mathrm{I}^{2} \mathrm{C}$-bus components

Purchase of Philips ${ }^{2} \mathrm{C}$-bus components conveys a
 license under the Philips' $I^{2} \mathrm{C}$-bus patent to use the components in the $\mathrm{I}^{2} \mathrm{C}$-bus system provided the system conforms to the $\mathrm{I}^{2} \mathrm{C}$-bus specification defined by Koninklijke Philips Electronics N.V. This specification can be ordered using the code 939839340011.

22. Contact information

For additional information, please visit: http://www.semiconductors.philips.com
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

23. Contents

1 General description 1
2 Features 2
3. Applications.3
4 Ordering information 3
5 Block diagram 4
6 Pinning information 5
6.1 Pin description 5
6.2 Pinning 6
7 Functional description 6
7.1 Mixer, oscillator and PLL (MOPLL) functions 6
$7.2 \quad{ }^{2} \mathrm{C}$-bus voltage 7
7.3 Phase noise, $\mathrm{I}^{2} \mathrm{C}$-bus traffic and crosstalk 7
8 $I^{2} \mathrm{C}$-bus protocol 8
8.1 Write mode; R/W $=0$ 8
8.1.1 ${ }^{2} \mathrm{C}$-bus address selection 10
8.1.2 XTOUT output buffer and mode setting 10
8.1.3 Step frequency setting 10
8.1.4 AGC detector setting 11
8.1.5 Charge pump current setting 11
8.1.6 Automatic Loop Bandwidth Control (ALBC) 12
8.2 Read mode; R $\bar{W}=1$ 13
8.3 Status at power-on reset. 14
9 Internal circuitry 15
10 Limiting values 19
11 Thermal characteristics. 20
12 Characteristics. 21
12.1 PLL loop stability of measurement circuit 39
13 Application information. 45
13.1 Tuning amplifier. 45
13.2 Crystal oscillator 45
13.3 Examples of $\mathrm{I}^{2} \mathrm{C}$-bus program sequences 45
14 Package outline 48
15 Handling information 49
16 Soldering 49
16.1 Introduction to soldering surface mount packages 49
16.2 Reflow soldering 49
16.3 Wave soldering 49
16.4 Manual soldering 50
16.5 Package related soldering information 50
17 Revision history 52
18 Data sheet status 53
19 Definitions 53
Disclaimers 53
Licenses. 53
Contact information 53

[^0]: [1] X means that this bit is not set or reset at power-on reset.

