

Cascadable Silicon Bipolar MMIC Amplifier

Technical Data

MSA-0786

Features

- Cascadable 50 Ω Gain Block
- Low Operating Voltage: $4.0\,\mathrm{V}$ Typical V_d
- 3 dB Bandwidth: DC to 2.0 GHz
- 12.5 dB Typical Gain at 1.0 GHz
- Unconditionally Stable (k>1)
- Surface Mount Plastic Package
- Tape-and-Reel Packaging Option Available^[1]

Note:

 Refer to PACKAGING section "Tapeand-Reel Packaging for Semiconductor Devices."

Description

The MSA-0786 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a low cost, surface mount plastic package. This MMIC is designed for use as a general purpose $50~\Omega$ gain block. Applications include narrow and broad band IF and RF amplifiers in commercial and industrial applications.

The MSA-series is fabricated using HP's $10\,\mathrm{GHz}\,\mathrm{f_T}, 25\,\mathrm{GHz}\,\mathrm{f_{MAX}},$ silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metalli-

86 Plastic Package

zation to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.

Typical Biasing Configuration

5965-9594E 6-406

MSA-0786 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]				
Device Current	60 mA				
Power Dissipation ^[2,3]	275 mW				
RF Input Power	+13dBm				
Junction Temperature	150℃				
Storage Temperature	−65 to 150°C				

Thermal Resistance $[2,4]$:	
$\theta_{\rm jc} = 120$ °C/W	

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE} = 25$ °C.
- 3. Derate at 8.3 mW/°C for $T_{\rm C} > 117$ °C.
- 4. See MEASUREMENTS section "Thermal Resistance" for more information.

Electrical Specifications $^{[1]}$, $T_A = 25^{\circ}C$

Symbol	Parameters and Test Conditions:	Units	Min.	Тур.	Max.	
GP	Power Gain $(S_{21} ^2)$	f = 0.1 GHz f = 1.0 GHz	dB	10.5	13.5 12.5	
$\Delta G_{ m P}$	Gain Flatness	f = 0.1 to 1.3 GHz	dB		± 0.7	
f _{3 dB}	3 dB Bandwidth		GHz		2.0	
VSWR	Input VSWR	f = 0.1 to 2.5 GHz			1.7:1	
vswn	Output VSWR	f = 0.1 to 2.5 GHz			1.7:1	
NF	50Ω Noise Figure	f = 1.0 GHz	dB		5.0	
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 1.0 GHz	dBm		2.0	
IP_3	Third Order Intercept Point	f = 1.0 GHz	dBm		19.0	
t_{D}	Group Delay	f = 1.0 GHz	psec		150	
V_{d}	Device Voltage		V	3.2	4.0	4.8
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-7.0	

Note:

Part Number Ordering Information

Part Number	No. of Devices	Container		
MSA-0786-TR1	1000	7" Reel		
MSA-0786-BLK	100	Antistatic Bag		

For more information, see "Tape and Reel Packaging for Semiconductor Devices".

^{1.} The recommended operating current range for this device is 15 to 40 mA. Typical performance as a function of current is on the following page.

MSA-0786 Typical Scattering Parameters ($Z_0 = 50~\Omega, T_A = 25^{\circ}C, I_d = 22~mA$)

Freq.	S_{11}		\mathbf{S}_{21}		\mathbf{S}_{12}			S_{22}		
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang
0.1	.05	175	13.5	4.74	174	-18.7	.116	1	.14	-12
0.2	.05	174	13.4	4.71	169	-18.7	.117	3	.14	-22
0.4	.04	167	13.3	4.64	158	-18.4	.120	4	.15	-4 4
0.6	.04	175	13.1	4.52	148	-18.3	.122	7	.16	- 65
0.8	.05	-156	12.9	4.39	138	-18.0	.126	8	.17	-84
1.0	.06	- 134	12.6	4.25	127	-17.5	.134	10	.18	-102
1.5	.08	- 142	11.6	3.79	103	-16.6	.148	9	.21	-139
2.0	.15	-159	10.5	3.34	80	-15.7	.164	7	.23	-164
2.5	.25	-176	9.2	2.89	63	-15.1	.176	5	.24	174
3.0	.33	166	7.8	2.45	44	-14.7	.185	1	.24	159
3.5	.41	150	6.5	2.11	27	-14.9	.179	- 5	.24	149
4.0	.49	137	5.2	1.82	12	-15.1	.177	- 9	.23	145
5.0	.60	116	3.0	1.41	-14	-15.4	.169	-14	.26	145

Note:

 $1. \ \ A$ model for this device is available in the DEVICE MODELS section.

Typical Performance, $T_A = 25^{\circ}C$

(unless otherwise noted)

Figure 1. Typical Power Gain vs. Frequency.

Figure 2. Device Current vs. Voltage.

Figure 3. Output Power at 1 dB Gain Compression, NF and Power Gain vs. Case Temperature, f = 1.0 GHz, I_d =22mA.

Figure 4. Output Power at 1 dB Gain Compression vs. Frequency.

Figure 5. Noise Figure vs. Frequency.

86 Plastic Package Dimensions

DIMENSIONS ARE IN MILLIMETERS (INCHES)