

NEC's 1W SINGLE CONTROL L, S-BAND SPDT SWITCH

UPG2015TB

FEATURES

· SUPPLY VOLTAGE:

VDD = 2.7 to 3.0 V (2.8 V TYP.)

· SINGLE SWITCH CONTROL VOLTAGE:

Vcont (H) = 2.7 to 3.0 V (2.8 V TYP.) Vcont (L) = -0.2 to +0.2 V (0 V TYP.)

· LOW INSERTION LOSS:

 $LINS1 = 0.25 \ dB \ TYP. @ f = 0.5 \ to \ 1.0 \ GHz, VDD = 2.8 \ V, Vcont = 2.8 \ V/0 \ V \\ LINS2 = 0.30 \ dB \ TYP. @ f = 1.0 \ to \ 2.0 \ GHz, VDD = 2.8 \ V, Vcont = 2.8 \ V/0 \ V \\ LINS3 = 0.35 \ dB \ TYP. @ f = 2.5 \ GHz, VDD = 2.8 \ V, Vcont = 2.8 \ V/0 \ V \\ LINS3 = 0.35 \ dB \ TYP. @ f = 2.5 \ GHz, VDD = 2.8 \ V, Vcont = 2.8 \ V/0 \ V \\ LINS3 = 0.35 \ dB \ TYP. @ f = 2.5 \ GHz, VDD = 2.8 \ V, Vcont = 2.8 \ V/0 \ V \\ LINS3 = 0.35 \ dB \ TYP. @ f = 2.5 \ GHz, VDD = 2.8 \ V, Vcont = 2.8 \ V/0 \ V \\ LINS3 = 0.35 \ dB \ TYP. @ f = 2.5 \ GHz, VDD = 2.8 \ V, Vcont = 2.8 \ V/0 \ V \\ LINS3 = 0.35 \ dB \ TYP. @ f = 2.5 \ GHz, VDD = 2.8 \ V, Vcont = 2.8 \ V/0 \ V \\ LINS3 = 0.35 \ dB \ TYP. @ f = 2.5 \ GHz, VDD = 2.8 \ V, Vcont = 2.8 \ V/0 \ V \\ LINS3 = 0.35 \ dB \ TYP. @ f = 2.5 \ GHz, VDD = 2.8 \ V, Vcont = 2.8 \ V/0 \ V \\ LINS3 = 0.35 \ dB \ TYP. @ f = 2.5 \ GHz, VDD = 2.8 \ V, Vcont = 2.8 \ V/0 \ V \\ LINS3 = 0.35 \ dB \ TYP. @ f = 2.5 \ GHz, VDD = 2.8 \ V, Vcont = 2.8 \ V/0 \ V \\ LINS3 = 0.35 \ dB \ TYP. @ f = 2.5 \ GHz, VDD = 2.8 \ V, Vcont = 2.8 \ V/0 \ V \\ LINS3 = 0.35 \ dB \ TYP. @ f = 2.5 \ GHz, VDD = 2.8 \ V/0 \ V \\ LINS3 = 0.35 \ dB \ TYP. @ f = 2.5 \ GHz, VDD = 2.8 \ V/0 \ V \\ LINS3 = 0.35 \ dB \ TYP. @ f = 2.5 \ GHz, VDD = 2.8 \ V/0 \ V \\ LINS3 = 0.35 \ dB \ TYP. @ f = 2.5 \ GHz, VDD = 2.8 \ V/0 \ V \\ LINS3 = 0.35 \ dB \ TYP. @ f = 2.5 \ GHz, VDD = 2.8 \ V/0 \ V \\ LINS3 = 0.35 \ dB \ TYP. @ f = 2.5 \ GHz, VDD = 2.8 \ V/0 \ V \\ LINS3 = 0.35 \ dB \ TYP. @ f = 2.5 \ GHz, VDD = 2.8 \ V/0 \ V \\ LINS3 = 0.35 \ dB \ TYP. @ f = 2.5 \ GHz, VDD = 2.8 \ V/0 \ V \\ LINS3 = 0.35 \ dB \ TYP. @ f = 2.5 \ GHZ, VDD = 2.8 \ V/0 \ V \\ LINS3 = 0.35 \ dB \ TYP. @ f = 2.5 \ GHZ, VDD = 2.8 \ V/0 \ V \\ LINS3 = 0.35 \ dB \ TYP. @ f = 2.5 \ GHZ, VDD = 2.8 \ V/0 \ V \\ LINS3 = 0.35 \ dB \ TYP. @ f = 2.5 \ GHZ, VDD = 2.8 \ V/0 \ V \\ LINS3 = 0.35 \ dB \ TYP. @ f = 2.5 \ GHZ, VDD = 2.8 \ V/0 \ V \\ LINS3 = 0.35 \ dB \ TYP. @ f = 2.5 \ GHZ, VDD = 2.8 \ V/0 \ V \\ LINS3 = 0.35 \ dB \ TYP. \ MIN \ TYP. \ MIN \ TYP. \ MIN \ TYP. \ MIN \$

· HIGH ISOLATION:

ISL1 = 27 dB TYP. @ f = 0.5 to 2.0 GHz, VDD = 2.8 V, Vcont = 2.8 V/0 V ISL2 = 24 dB TYP. @ f =2.5 GHz, VDD = 2.8 V, Vcont = 2.8 V/0 V

POWER HANDLING:

Pin (0.1 dB) = +27.0 dBm TYP. @ f = 2.5 GHz, VDD = 2.8 V, Vcont = 2.8 V/0 V

· HIGH-DENSITY SURFACE MOUNTING:

6-pin super minimold package (2.0 × 1.25 × 0.9 mm)

DESCRIPTION

NEC's UPG2015TB is a single control GaAs MMIC L, S-band SPDT (Single Pole Double Throw) switch for mobile phone and L, S-band applications.

This device can operate frequency from 0.5 to 2.5 GHz, with low insertion loss and high isolation.

This device is housed in a 6-pin super minimold package, suitable for high-density surface mounting.

APPLICATIONS

- · L, S-band digital cellular or cordless handsets
- PCS, W-LAN, WLL and Bluetooth™
- Short Range Wireless

ORDERING INFORMATION


Part Number	Package	Marking	Supplying Form
UPG2015TB-E3	6-pin super minimold	G3J	Embossed tape 8 mm wide
		• Pin 1, 2, 3 face the perforation side of the tape	
		• Qty 3 kpcs/reel	

Remark To order evaluation samples, contact your nearby sales office.

Part number for sample order: UPG2015TB

Caution Observe precautions when handling because these devices are sensitive to electrostatic discharge.

PIN CONNECTIONS AND INTERNAL BLOCK DIAGRAM

Pin No.	Pin Name			
1	OUTPUT1			
2	GND			
3	OUTPUT2			
4	VCont			
5	INPUT			
6	Vdd			

TRUTH TABLE

Vcont	INPUT-OUTPUT1	INPUT-OUTPUT2		
Low	OFF	ON		
High	ON	OFF		

ABSOLUTE MAXIMUM RATINGS (TA = 25°C, unless otherwise specified)

Parameter	Symbol	Ratings	Unit
Supply Voltage	V _{DD}	+6.0	V
Switch Control Voltage	V _{cont}	+6.0	V
Input Power	Pin	+33	dBm
Operating Ambient Temperature	TA	-45 to +85	°C
Storage Temperature	T _{stg}	-55 to +150	°C

RECOMMENDED OPERATING RANGE (TA = 25°C, unless otherwise specified)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply Voltage	V _{DD}	2.7	2.8	3.0	V
Switch Control Voltage (H)	Vcont (H)	2.7	2.8	3.0	V
Switch Control Voltage (L)	Vcont (L)	-0.2	0	0.2	V

ELECTRICAL CHARACTERISTICS

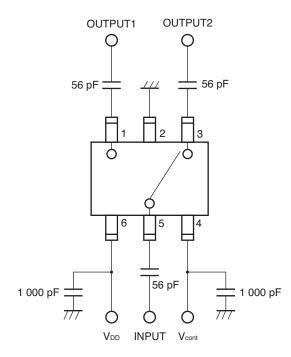
(TA = +25°C, VDD = 2.8 V, Vcont = 2.8 V/O V, DC blocking capacitors = 56 pF, unless otherwise specified)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Insertion Loss 1	Lins1	f = 0.5 to 1.0 GHz	-	0.25	0.45	dB
Insertion Loss 2	LINS2	f = 1.0 to 2.0 GHz	_	0.30	0.50	dB
Insertion Loss 3	Linss	f = 2.5 GHz	_	0.35	0.55	dB
Isolation 1	ISL ₁	f = 0.5 to 2.0 GHz	23	27	-	dB
Isolation 2	ISL ₂	f = 2.5 GHz	20	24	-	dB
Input Return Loss	RLin	f = 0.5 to 2.5 GHz	15	20	-	dB
Output Return Loss	RLout	f = 0.5 to 2.5 GHz	15	20	_	dB
0.1 dB Gain Compression	Pin (0.1 dB)	f = 2.0 GHz	+25.5	+27.0	_	dBm
Input Power Note		f = 2.5 GHz	+25.5	+27.0	-	dBm
Supply Current	IDD		-	50	100	μΑ
Switch Control Current	Icont		_	4	20	μΑ
Switch Control Speed	tsw		-	0.3	2.0	μS

Note Pin (0.1 dB) is the measured input power level when the insertion loss increases 0.1 dB more than that of linear range.

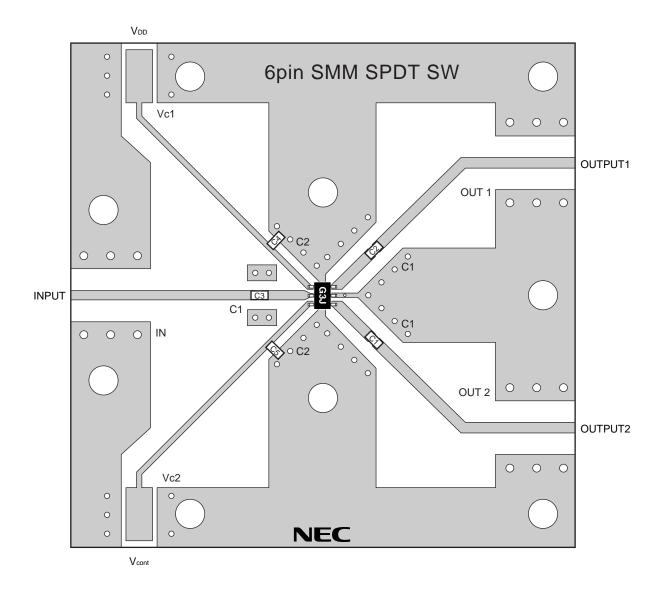
STANDARD CHARACTERISTICS FOR REFERENCE

(TA = +25°C, VDD = 2.8 V, Vcont = 2.8 V/0 V, DC blocking capacitors = 56 pF, unless otherwise specified)


Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
1 dB Gain Compression	Pin (1 dB)	f = 2.0 GHz	-	+30.0	-	dBm
Input Power Note						

Note Pin (1 dB) is the measured input power level when the insertion loss increases 1 dB more than that of linear range.

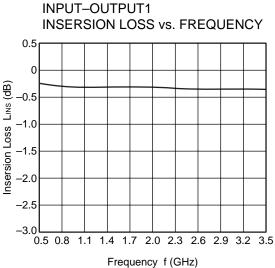
Caution It is necessary to use DC blocking capacitors with the device.

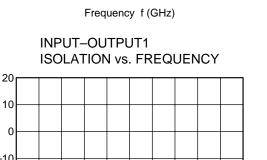

The value of DC blocking capacitors should be chosen to accommodate the frequency of operation, bandwidth, switching speed and the condition with actual board of your system. The range of recommended DC blocking capacitor value is less than 100 pF.

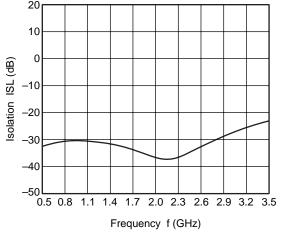
EVALUATION CIRCUIT (VDD = 2.8 V, Vcont = 2.8 V/0 V, DC blocking capacitors = 56 pF)

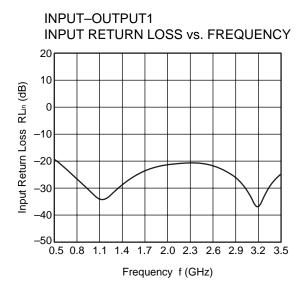
The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

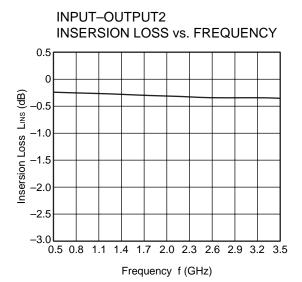
ILLUSTRATION OF THE TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD

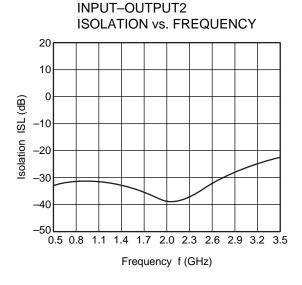


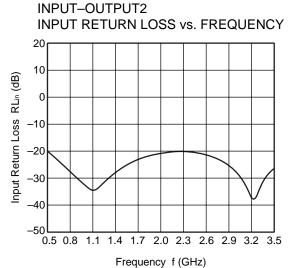

USING THE NEC EVALUATION BOARD

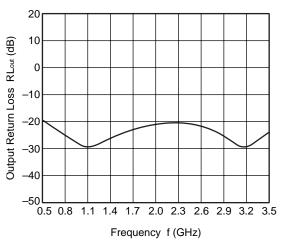

Symbol	Values
C1, C2, C3	56 pF
C4, C5	1 000 pF

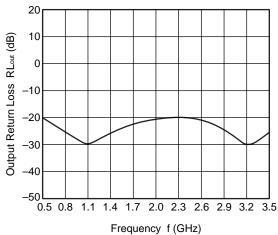

TYPICAL CHARACTERISTICS


(TA = 25°C, VDD = 2.8 V, Vcont = 2.8 V/0 V, DC blocking capacitors = 56 pF, unless otherwise specified)

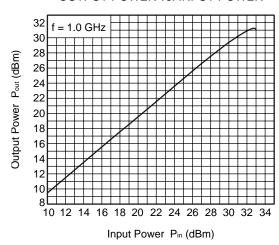


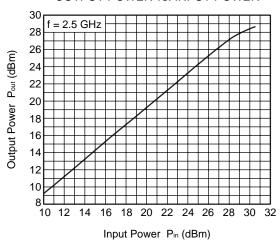




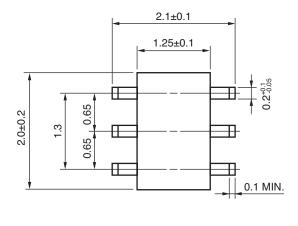


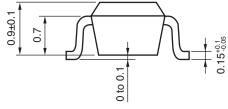
Remark The graphs indicate nominal characteristics.


INPUT-OUTPUT1 OUTPUT RETURN LOSS vs. FREQUENCY


INPUT-OUTPUT2 OUTPUT RETURN LOSS vs. FREQUENCY

OUTPUT POWER vs. INPUT POWER


OUTPUT POWER vs. INPUT POWER



Remark The graphs indicate nominal characteristics.

PACKAGE DIMENSIONS

6-PIN SUPER MINIMOLD (UNIT: mm)

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions		Condition Symbol
Infrared Reflow	Peak temperature (package surface temperature)	: 260°C or below	IR260
	Time at peak temperature	: 10 seconds or less	
	Time at temperature of 220°C or higher	: 60 seconds or less	
	Preheating time at 120 to 180°C	: 120±30 seconds	
	Maximum number of reflow processes	: 3 times	
	Maximum chlorine content of rosin flux (% mass)	: 0.2%(Wt.) or below	
VPS	Peak temperature (package surface temperature)	: 215°C or below	VP215
	Time at temperature of 200°C or higher	: 25 to 40 seconds	
	Preheating time at 120 to 150°C	: 30 to 60 seconds	
	Maximum number of reflow processes	: 3 times	
	Maximum chlorine content of rosin flux (% mass)	: 0.2%(Wt.) or below	
Wave Soldering	Peak temperature (molten solder temperature)	: 260°C or below	WS260
	Time at peak temperature	: 10 seconds or less	
	Preheating temperature (package surface temperature)	: 120°C or below	
	Maximum number of flow processes	: 1 time	
	Maximum chlorine content of rosin flux (% mass)	: 0.2%(Wt.) or below	
Partial Heating	Peak temperature (pin temperature)	: 350°C or below	HS350
	Soldering time (per side of device)	: 3 seconds or less	
	Maximum chlorine content of rosin flux (% mass)	: 0.2%(Wt.) or below	

Caution Do not use different soldering methods together (except for partial heating).

Life Support Applications

These NEC products are not intended for use in life support devices, appliances, or systems where the malfunction of these products can reasonably be expected to result in personal injury. The customers of CEL using or selling these products for use in such applications do so at their own risk and agree to fully indemnify CEL for all damages resulting from such improper use or sale.

California Eastern Laboratories, Your source for NEC RF, Microwave, Optoelectronic, and Fiber Optic Semiconductor Devices.
4590 Patrick Henry Drive • Santa Clara, CA 95054-1817 • (408) 988-3500 • FAX (408) 988-0279 • www.cel.com

DATA SUBJECT TO CHANGE WITHOUT NOTICE

