

Absolute Maximum Ratings(Note 1)

Supply Voltage (V_{CC})
DC Switch Voltage (V_{S}) (Note 2)
DC Input Voltage ($\mathrm{V}_{\text {IN }}$) (Note 2)
DC Input Diode Current (I_{IK})

$$
@\left(I_{\mathrm{IK}}\right) \mathrm{V}_{\mathrm{IN}}<0 \mathrm{~V}
$$

DC Output Current (IOUT)
DC $V_{C C}$ or Ground Current $\left(I_{C C} / I_{G N D}\right)$
Storage Temperature Range ($\mathrm{T}_{\mathrm{STG}}$)
Junction Temperature under Bias (T_{J})
Junction Lead Temperature (T_{L})
(Soldering, 10 seconds)
Power Dissipation (P_{D}) @ $+85^{\circ} \mathrm{C}$
-0.5 V to +7.0 V -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ -0.5 V to +7.0 V
$-50 \mathrm{~mA}$
128 mA
$\pm 100 \mathrm{~mA}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $150^{\circ} \mathrm{C}$

Recommended Operating Conditions (Note 3)

Supply Voltage Operating $\left(\mathrm{V}_{\mathrm{CC}}\right)$	1.65 V to 5.5 V
Control Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$	0 V to V_{CC}
Switch Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$	0 V to V_{CC}
Output Voltage $\left(\mathrm{V}_{\mathrm{OUT}}\right)$	0 V to V_{CC}
Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Input Rise and Fall Time $\left(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\right)$	
\quad Control Input $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}-3.6 \mathrm{~V}$	$0 \mathrm{~ns} / \mathrm{V}$ to $10 \mathrm{~ns} / \mathrm{V}$
\quad Control Input $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V}$	$0 \mathrm{~ns} / \mathrm{V}$ to $5 \mathrm{~ns} / \mathrm{V}$
Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$	$350^{\circ} \mathrm{C} / \mathrm{W}$

$260^{\circ} \mathrm{C}$
180 mW

Note 1: Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.
Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
Note 3: Control input must be held HIGH or LOW, it must not float.

DC Electrical Characteristics

Symbol	Parameter	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions
			Min	Typ	Max	Min	Max		
$\overline{\mathrm{V}_{\mathrm{IH}}}$	HIGH Level Input Voltage	$\begin{gathered} 1.65-1.95 \\ 2.3-5.5 \end{gathered}$	$\begin{aligned} & 0.75 \mathrm{~V}_{\mathrm{CC}} \\ & 0.7 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{gathered} 0.75 \mathrm{~V}_{\mathrm{CC}} \\ 0.7 \mathrm{~V}_{\mathrm{CC}} \end{gathered}$		V	
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	$\begin{gathered} 1.65-1.95 \\ 2.3-5.5 \end{gathered}$			$\begin{gathered} 0.25 \mathrm{~V}_{\mathrm{CC}} \\ 0.3 \mathrm{~V}_{\mathrm{CC}} \end{gathered}$		$\begin{gathered} 0.25 \mathrm{~V}_{\mathrm{CC}} \\ 0.3 \mathrm{~V}_{\mathrm{CC}} \end{gathered}$	V	
I_{N}	Input Leakage Current	0-5.5		± 0.05	± 0.1		± 1	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$
Ioz	OFF State Leakage Current	1.65-5.5		± 0.05	± 0.1		± 1	$\mu \mathrm{A}$	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$
$\mathrm{R}_{\text {ON }}$	Switch On Resistance (Note 4)	4.5		3	15		15	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=30 \mathrm{~mA}$
				5	15		15	Ω	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-30 \mathrm{~mA}$
				7	15		15	Ω	$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-30 \mathrm{~mA}$
		3.0		4	20		20	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA}$
				10	20		20	Ω	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-24 \mathrm{~mA}$
		2.3		5	30		30	Ω	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=8 \mathrm{~mA}$
				13	30		30	Ω	$\mathrm{V}_{\text {IN }}=2.3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-8 \mathrm{~mA}$
		1.65		6.5	50		50	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=4 \mathrm{~mA}$
				17	50		50	Ω	$\mathrm{V}_{\mathrm{IN}}=1.65 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-4 \mathrm{~mA}$
$\overline{\mathrm{ICC}}$	Quiescent Supply Current All Channels ON or OFF	5.5			1		10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{I}_{\text {OUT }}=0 \end{aligned}$
	Analog Signal Range	V_{cc}	0		V_{CC}	0	V_{Cc}	V	
$\mathrm{R}_{\text {RANGE }}$	On Resistance Over Signal Range (Note 4)(Note 8)	4.5					25	Ω	$\mathrm{I}_{\mathrm{A}}=-30 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$
		3.0					50		$\mathrm{I}_{\mathrm{A}}=-24 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$
		2.3					100		$\mathrm{I}_{\mathrm{A}}=-8 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$
		1.65					300		$\mathrm{I}_{\mathrm{A}}=-4 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$
$\overline{\Delta \mathrm{R}_{\text {ON }}}$	On Resistance Match Between Channels (Note 4)(Note 5)(Note 6)	4.5		0.15				Ω	$\mathrm{I}_{\mathrm{A}}=-30 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}}=3.15$
		3.0		0.2					$\mathrm{I}_{\mathrm{A}}=-24 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}} 2.1$
		2.3		0.5					$\mathrm{I}_{\mathrm{A}}=-8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}}=1.6$
		1.65		0.5					$\mathrm{I}_{\mathrm{A}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}}=1.15$
$\mathrm{V}_{\text {IKU }}$	Voltage Undershoot	5.5					-2.0	V	$0.0 \mathrm{~mA} \geq \mathrm{I}_{\mathrm{IN}} \geq-50 \mathrm{~mA}, \overline{\mathrm{OE}} 5.5 \mathrm{~V}$

DC Electrical Characteristics (Continued)							
Symbol	Parameter	V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions	
			Min Typ Max	Min Max			
$\mathrm{R}_{\text {flat }}$	On Resistance Flatness (Note 4)(Note 5)(Note 7)	5.0	6		Ω	$\mathrm{I}_{\mathrm{A}}=-30 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$	
		3.3	12			$\mathrm{I}_{\mathrm{A}}=-24 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$	
		2.5	28			$\mathrm{I}_{\mathrm{A}}=-8 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$	
		1.8	125			$\mathrm{I}_{\mathrm{A}}=-4 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$	
Note 4: Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B Ports). Note 5: Parameter is characterized but not tested in production. Note 6: $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}} \max -\mathrm{R}_{\mathrm{ON}}$ min measured at identical V_{CC}, temperature and voltage levels. Note 7: Flatness is defined as the difference between the maximum and minimum value of On Resistance over the specified range of conditions. Note 8: Guaranteed by Design. AC Electrical Characteristics							
Symbol	Parameter	V_{CC} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions	Figure Number
			Min Typ Max	Min Max			
$\mathrm{t}_{\mathrm{PHL}}$ $t_{\text {PLH }}$	Propagation Delay Bus to Bus (Note 10)	1.65-1.95			ns	$V_{1}=$ OPEN	Figures 2, 3
		$2.3-2.7$	1.2	1.2			
		3.0-3.6	0.8	0.8			
		4.5-5.5	0.3	0.3			
$\begin{aligned} & \overline{t_{\mathrm{PZL}}} \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Output Enable Time Turn on Time (A to B_{n})	1.65-1.95	723	$7 \quad 24$	ns	$\begin{aligned} & V_{1}=2 \times V_{C C} \text { for } t_{P Z L} \\ & V_{I}=0 V \text { for } t_{P Z H} \end{aligned}$	Figures$2,3$
		2.3-2.7	3.513	3.514			
		3.0-3.6	2.56 .9	$2.5 \quad 7.6$			
		4.5-5.5	1.7 5.2	1.75			
$\begin{aligned} & \overline{t_{P L Z}} \\ & t_{P H Z} \end{aligned}$	Output Disable Time Turn Off Time (A Port to B Port)	1.65-1.95	$3 \quad 12.5$	313	ns	$\begin{aligned} & V_{\mathrm{I}}=2 \times \mathrm{V}_{\mathrm{CC}} \text { for } t_{\mathrm{PLZ}} \\ & \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Figures 2, 3
		$2.3-2.7$	2 7	27.5			
		3.0-3.6	1.5	1.5 5.3			
		4.5-5.5	$\begin{array}{ll}0.8 & 3.5\end{array}$	$0.8 \quad 3.8$			
$\mathrm{t}_{\mathrm{B}-\mathrm{M}}$	Break Before Make Time (Note 9)	1.65-1.95	0.5	0.5	ns		Figure 4
		2.3-2.7	0.5	0.5			
		3.0-3.6	0.5	0.5			
		4.5-5.5	0.5	0.5			
Q	Charge Injection (Note 9)	$\begin{aligned} & 5.0 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 7 \\ & 3 \end{aligned}$		pC	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{aligned}$	Figure 5
OIRR	Off Isolation (Note 11)	1.65-5.5	-57		dB	$\begin{aligned} & R_{L}=50 \Omega \\ & f=10 \mathrm{MHz} \end{aligned}$	Figure 6
Xtalk	Crosstalk	1.65-5.5	-54		dB	$\begin{aligned} & R_{L}=50 \Omega \\ & f=10 \mathrm{MHz} \end{aligned}$	Figure 7
BW	-3dB Bandwidth	1.65-5.5	250		MHz	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	$\begin{gathered} \hline \text { Figure } \\ 10 \end{gathered}$
THD	Total Harmonic Distortion (Note 9)	5	0.011		\%	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & 0.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \\ & \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{KHz} \end{aligned}$	
Note 9: Guaranteed by Design. Note 10: This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the On Resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance). Note 11: Off Isolation $=20 \log _{10}\left[V_{\mathrm{A}} / \mathrm{V}_{\mathrm{Bn}}\right]$							

AC Loading and Waveforms (Continued)

FIGURE 5. Charge Injection Test

FIGURE 6. Off Isolation

FIGURE 8. Channel Off Capacitance

FIGURE 7. Crosstalk

FIGURE 9. Channel On Capacitance

FIGURE 10. Bandwidth

TAPE DIMENSIONS inches (millimeters)

SECTION B-B

SECTION A-A

bend radius not to scale

Package	Tape Size	DIM A	DIM B	DIM F	DIM K $_{\mathbf{o}}$	DIM P1	DIM W
SC70-6	mm	0.093	0.096	0.138 ± 0.004	0.053 ± 0.004	0.157	0.315 ± 0.004
		(2.35)	(2.45)	(3.5 ± 0.10)	(1.35 ± 0.10)	(4)	(8 ± 0.1)

Tape and Reel Specification (Continued)
NC7SBU3157 TinyLogic ${ }^{\text {TM }}$ Low Voltage UHS SPDT Analog Switch with -2V Undershoot Protection
Physical Dimensions inches (millimeters) unless otherwise noted

NOTES
A. CONFORMS TO EIAJ REGISTERED OUTLINE DRAWING SG88.
B. DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH
MAA06ARevC
C. DIMENSIONS ARE IN MILLIMETERS
6-Lead SC70, EIAJ SC88, 1.25 mm Wide Package Number MAA06A
Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
