FAIRCHILD

SEMICONDUCTOR TM

NC7SBU3157 TinyLogic™ Low Voltage UHS SPDT Analog Switch with –2V Undershoot Protection

General Description

The NC7SBU3157 is a high performance, single-pole/double-throw (SPDT) Analog Switch or 2:1 Multiplexer/Demultiplexer Bus Switch from Fairchild's Ultra High Speed Series of TinyLogicTM. The device is fabricated with advanced sub-micron CMOS technology to achieve high speed enable and disable times and low On Resistance. The break before make select circuitry prevents disruption of signals on the B Port due to both switches temporarily being enabled during select pin switching. The device is specified to operate over the 1.65 to 5.5V V_{CC} operating range. The control input tolerates voltages up to 5.5V independent of the V_{CC} operating range.

Fairchild's integrated Undershoot Hardened Circuit (UHCTM) senses undershoot at the I/Os, and responds by preventing voltage differentials from developing and turning the switch on.

Features

Useful in both analog and digital applications

April 2002

Revised May 2002

- Space saving SC70 6-lead surface mount package
- Low On Resistance: < 10Ω on typ @ 3.3V V_{CC}
- Broad V_{CC} operating range: 1.65V to 5.5V
- Rail-to-rail signal handling
- Power down high impedance control input
- Overvoltage tolerance of control input to 7.0V
- Break before make enable circuitry
- 250 MHz 3dB bandwidth

Ordering Code:

Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As
NC7SBU3157P6X	MAA06A	U7A	6-Lead SC70, EIAJ SC88, 1.25mm Wide	3k Units on Tape and Reel

 $\mathsf{TinyLogic^{TM}}$ and $\mathsf{UHC^{TM}}$ are trademarks of Fairchild Semiconductor Corporation.

NC7SBU3157

Analog Symbol

Connection Diagrams

(Top View)

Pin One Orientation Diagram

AAA = Product Code Top Mark - see ordering code.

Note: Orientation of Top Mark determines Pin One location. Read the top product code mark left to right, Pin One is the lower left pin (see diagram).

Function Table

	Input (S)	Function
	L	B ₀ Connected to A
	Н	B ₁ Connected to A
j	H = HIGH Logic Le	vel L = LOW Logic Level

Pin Descriptions

Pin Names	Description
A, B ₀ , B ₁	Data Ports
S	Control Input

```
www.fairchildsemi.com
```

Absolute Maximum Ratings(Note 1)

	0
Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Switch Voltage (V _S) (Note 2)	–0.5V to V _{CC} +0.5V
DC Input Voltage (V _{IN}) (Note 2)	-0.5V to +7.0V
DC Input Diode Current (IIK)	
@ (I _{IK}) V _{IN} < 0V	–50 mA
DC Output Current (I _{OUT})	128 mA
DC V _{CC} or Ground Current (I_{CC}/I_{GND})	±100 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Junction Temperature under Bias (T_J)	150°C
Junction Lead Temperature (TL)	
(Soldering, 10 seconds)	260°C
Power Dissipation (P _D) @ +85°C	180 mW

Recommended Operating Conditions (Note 3)

Supply Voltage Operating (V_{CC})	1.65V to 5.5V
Control Input Voltage (VIN)	0V to V_{CC}
Switch Input Voltage (VIN)	0V to V _{CC}
Output Voltage (V _{OUT})	0V to V_{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Input Rise and Fall Time (t_r, t_f)	
Control Input $V_{CC} = 2.3V - 3.6V$	0 ns/V to 10 ns/V
Control Input $V_{CC} = 4.5V - 5.5V$	0 ns/V to 5 ns/V
Thermal Resistance (θ_{JA})	350°C/W

Note 1: Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 3: Control input must be held HIGH or LOW, it must not float.

DC Electrical Characteristics

Symbol	Symbol Parameter		$T_{A} = +25^{\circ}C$		$T_A=-40^\circ C$ to $+85^\circ C$		Units	Conditions	
Symbol	Parameter	(V)	Min	Тур	Max	Min	Max	Units	Conditions
VIH	HIGH Level	1.65 – 1.95	0.75 V _{CC}			0.75 V _{CC}		V	
	Input Voltage	2.3 - 5.5	0.7 V _{CC}			0.7 V _{CC}		v	
VIL	LOW Level	1.65 – 1.95			0.25 V _{CC}		0.25 V _{CC}	V	
	Input Voltage	2.3 – 5.5			0.3 V _{CC}		0.3 V _{CC}	v	
I _{IN}	Input Leakage Current	0 - 5.5		±0.05	±0.1		±1	μΑ	$0 \le V_{IN} \le 5.5V$
I _{OZ}	OFF State Leakage Current	1.65 – 5.5		±0.05	±0.1		±1	μΑ	$0 \le A, B \le V_{CC}$
R _{ON}	Switch On Resistance			3	15		15	Ω	V _{IN} = 0V, I _O = 30 mA
	(Note 4)	4.5		5	15		15	Ω	$V_{IN} = 2.4 V, I_O = -30 \text{ mA}$
				7	15		15	Ω	$V_{IN} = 4.5V, I_O = -30 \text{ mA}$
		3.0		4	20		20	Ω	V _{IN} = 0V, I _O = 24 mA
		3.0		10	20		20	Ω	$V_{IN} = 3V, I_{O} = -24 \text{ mA}$
		2.3		5	30		30	Ω	$V_{IN} = 0V$, $I_O = 8 \text{ mA}$
		2.5		13	30		30	Ω	$V_{IN} = 2.3V, I_O = -8 \text{ mA}$
		1.65		6.5	50		50	Ω	$V_{IN} = 0V, I_O = 4 \text{ mA}$
		1.05		17	50		50	Ω	$V_{IN} = 1.65V, I_O = -4 \text{ mA}$
I _{CC}	Quiescent Supply Current	5.5			1		10	μA	$V_{IN} = V_{CC}$ or GND
	All Channels ON or OFF	5.5			'		10	μΑ	$I_{OUT} = 0$
	Analog Signal Range	V _{CC}	0		V _{CC}	0	V _{CC}	V	
R _{RANGE}	On Resistance	4.5					25		$I_A = -30 \text{ mA}, \ 0 \leq V_{Bn} \leq V_{CC}$
	Over Signal Range	3.0					50	0	$I_A = -24 \text{ mA}, \ 0 \leq V_{Bn} \leq V_{CC}$
	(Note 4)(Note 8)	2.3					100	22	$I_A = -8 \text{ mA}, \ 0 \leq V_{Bn} \leq V_{CC}$
		1.65					300		$I_A = -4 \text{ mA}, 0 \le V_{Bn} \le V_{CC}$
ΔR_{ON}	On Resistance Match	4.5		0.15					$I_A = -30 \text{ mA}, V_{Bn} = 3.15$
	Between Channels	3.0		0.2				Ω	$I_A = -24 \text{ mA}, V_{Bn} 2.1$
	(Note 4)(Note 5)(Note 6)	2.3		0.5				32	$I_A = -8 \text{ mA}, V_{Bn} = 1.6$
		1.65		0.5					$I_A = -4 \text{ mA}, V_{Bn} = 1.15$
V _{IKU}	Voltage Undershoot	5.5					-2.0	V	$0.0 \text{ mA} \ge I_{IN} \ge -50 \text{ mA}, \overline{OE} 5.5 \text{V}$

NC7SBU3157

NC7SBU3157

DC Electrical Characteristics (Continued)

Symbol	Parameter	V _{CC}	$T_A = +25^{\circ}C$		$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions	
Gymbol	i urumeter	(V)	Min	Тур	Max	Min	Max	onno	Contailionio
R _{flat}	On Resistance Flatness	5.0		6					$I_A = -30 \text{ mA}, \ 0 \leq V_{Bn} \leq V_{CC}$
	(Note 4)(Note 5)(Note 7)	3.3		12				Ω	$I_A = -24 \text{ mA}, \ 0 \leq V_{Bn} \leq V_{CC}$
		2.5		28				32	$I_A = -8 \text{ mA}, \ 0 \leq V_{Bn} \leq V_{CC}$
		1.8		125					$I_A = -4 \text{ mA}, \ 0 \leq V_{Bn} \leq V_{CC}$
Note 4:	Measured by the voltage drop b	etween A and	B pins at the	ne indicated	I current thr	ough the swi	tch. On Resi	stance i	s determined by the lower of the

Note 4: Measured by the voltage drop between A and B voltages on the two (A or B Ports).

Note 5: Parameter is characterized but not tested in production.

Note 6: $\Delta R_{ON} = R_{ON} \text{ max} - R_{ON} \text{ min measured at identical V}_{CC}$, temperature and voltage levels.

Note 7: Flatness is defined as the difference between the maximum and minimum value of On Resistance over the specified range of conditions. Note 8: Guaranteed by Design.

AC Electrical Characteristics

Symbol	Parameter	V_{CC} $T_A = +25^{\circ}C$			$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions	Figure	
Symbol		(V)	Min	Тур	Max	Min	Max	Units	Conditions	Number
t _{PHL}	Propagation Delay	1.65 – 1.95								
t _{PLH}	Bus to Bus	2.3 – 2.7			1.2		1.2	ns	V _I = OPEN	Figures
	(Note 10)	3.0 - 3.6			0.8		0.8	115	VIEULEN	2, 3
		4.5 – 5.5			0.3		0.3			
t _{PZL}	Output Enable Time	1.65 – 1.95	7		23	7	24			
t _{PZH}	Turn on Time	2.3 – 2.7	3.5		13	3.5	14	ns	$V_I = 2 \times V_{CC}$ for t_{PZL}	Figures
	(A to B _n)	3.0 - 3.6	2.5		6.9	2.5	7.6	115	$V_I = 0V$ for t_{PZH}	2, 3
		4.5 – 5.5	1.7		5.2	1.7	5.7			
t _{PLZ}	Output Disable Time	1.65 – 1.95	3		12.5	3	13			Figures 2, 3
t _{PHZ}	Turn Off Time	2.3 – 2.7	2		7	2	7.5		$V_I = 2 \times V_{CC}$ for t_{PLZ}	
	(A Port to B Port)	3.0 – 3.6	1.5		5	1.5	5.3	ns	$V_I = 0V$ for t_{PHZ}	
		4.5 - 5.5	0.8		3.5	0.8	3.8			
t _{B-M}	Break Before Make Time	1.65 – 1.95	0.5			0.5				
	(Note 9)	2.3 – 2.7	0.5			0.5				Figure 4
		3.0 - 3.6	0.5			0.5		ns		Figure 4
		4.5 - 5.5	0.5			0.5				
Q	Charge Injection (Note 9)	5.0		7				pC	$C_L = 0.1 \text{ nF}, V_{GEN} = 0V$	Einun E
		3.3		3				ρC	$R_{GEN} = 0\Omega$	Figure 5
OIRR	Off Isolation (Note 11)	1.65 – 5.5		-57				dB	$R_L = 50\Omega$	Figure C
								uв	f = 10MHz	Figure 6
Xtalk	Crosstalk	1.65 – 5.5		-54				dB	$R_L = 50\Omega$	Eiguro 7
								uБ	f = 10MHz	Figure 7
BW	-3dB Bandwidth	1.65 – 5.5		250				MHz	$R_L = 50\Omega$	Figure 10
THD	Total Harmonic Distortion								$R_L = 600 \Omega$	
	(Note 9)	5		0.011				%	0.5 V _{P-P}	
									f = 20 Hz to 20 KHz	

Note 9: Guaranteed by Design.

Note 10: This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the On Resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).

Note 11: Off Isolation = 20 $\log_{10} [V_A / V_{Bn}]$

		_	Max			Figure
Symbol	Parameter	Тур		Units	Conditions	Number
CIN	Control Pin Input Capacitance	2.3		pF	$V_{CC} = 0V$	
C _{IO-B}	B Port Off Capacitance	6.5		pF	$V_{CC} = 5.0V$	Figure 8
CIOA-ON	A Port Capacitance When Switch Is Enabled	18.5		pF	$V_{CC} = 5.0V$	Figure 9

NC7SBU3157

Note 12: $T_A = +25^{\circ}C$, f = 1 MHz, Capacitance is characterized but not tested in production.

Undershoot Characteristic (Note 13)

Symbol	Parameter	Min	Тур	Max	Units	Conditions	
V _{OUTU}	Output Voltage During Undershoot	2.5	V _{OH} - 0.3		V	Figure 1	
Next 40. This test is intereded to show the device is extended as a solution of the stand sized intered to device an interface of the solution of the standard to the solution of the solution							

Note 13: This test is intended to characterize the device's protective capabilities by maintaining output signal integrity during an input transient voltage undershoot event.

FIGURE 1.

Device Test Conditions

Parameter	Value	Units
V _{IN}	see Waveform	V
$R_1 = R_2$	100K	Ω
V _{TRI}	7.0	V
V _{CC}	5.5	V

Transient Input Voltage (V_{IN}) Waveform

Tape and Reel Specification

TAPE FORMAT				
Package	Таре	Number	Cavity	Cover Tape
Designator	Section	Cavities	Status	Status
	Leader (Start End)	125 (typ)	Empty	Sealed
P6X	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed

TAPE DIMENSIONS inches (millimeters)

SECTION A-A

BEND RADIUS NOT TO SCALE

Package	Tape Size	DIM A	DIM B	DIM F	DIM K _o	DIM P1	DIM W
SC70-6	8 mm	0.093	0.096	0.138 ± 0.004	0.053 ± 0.004	0.157	0.315 ± 0.004
		(2.35)	(2.45)	$(\textbf{3.5}\pm\textbf{0.10})$	(1.35 ± 0.10)	(4)	(8 ± 0.1)

