Quad Operational Amplifier

HITACHI

Description

HA17324 is quad operational amplifier that provide high gain and internal phase compensation, with single power supply. They can be widely used to control equipments.

Features

- Wide range of supply voltage, and single power supply used
- Internal phase compensation
- Wide range of common mode voltage, and possible to operate with an input about 0V

Pin Arrangement

Notice:	The example of an applied circuit or combination with other equipment shown herein
	indicates characteristics and performance of semiconductor -applied products.
	The company shall assume no responsibility for any problem involving a patent caused when
	applying the descriptions in the example.

Preliminary: This document contains information on a new product. Specifications and information contained herein are subject to change without notice.

Circuit Schematic (1/4)

Ordering Information

Туре No.	Application	Package
HA17324FP	Industrial use	FP-14DA
HA17324F	Commercial use	FP-14DA

Item	Symbol	Rating	Unit
Supply voltage	V _{CC}	32	V
Sink current	Isink	50	mA
Power dissipation	PT	625*	mW
Common mode input voltage	V _{CM}	–0.3 to V_{CC}	V
Differential input voltage	Vin (diff)	±V _{CC}	V
Operating temperature	Topr	-20 to +75	°C
Storage temperature	Tstg	–55 to +125	°C

Absolute Maximum Ratings (Ta = 25° C)

Note: Tjmax is shown as follows.

Tjmax = θ j-a · P_Cmax + Ta (θ j-a; Thermal resistor between junction and ambient at set board use). The wiring density and the material of the set board must be chosen for thermal conductance of efficacy board.

And P_C max cannot be over the value of P_T .

Electrical Characteristics ($V_{CC} = +15V$, $Ta = 25^{\circ}C$)

Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Input offset voltage	V _{IO}	_	2	7	mV	V_{CM} = 7.5V, RS = 50 Ω , Rf = 50k Ω
Input offset current	I _{IO}	_	5	50	nA	$V_{CM} = 7.5V, \ I_{IO} = \ I_{I \ (-)} - I_{I \ (+)} $
Input bias current	I _I	_	30	500	nA	$V_{CM} = 7.5V$
Power source rejection ratio	PSRR	—	93	—	dB	f = 100Hz, R_S = 1k Ω , Rj = 100k Ω
Voltage gain	A _{VD}	75	90	_	dB	$R_S = 1 \ k\Omega$, $Rf = 100k\Omega$, $R_L =$
Common mode rejection ratio	CMR	—	80	—	dB	$R_S = 50\Omega$, $Rf = 5k\Omega$
Common mode input voltage range	V _{CM}	-0.3	_	13.5	V	$R_S = 1k\Omega$, $Rf = 100k\Omega$, $f = 100Hz$
Maximum output voltage	Vор-р	_	13.6	—	V	f = 100Hz, R _S = 1kΩ, Rf = 100kΩ, R _L = 20kΩ
Output source current	Isource	20	40	_	mA	$V_{IN}^{+} = 1V, V_{IN}^{-} = 0V, V_{OH} = 10V$
Output sink current	Isink	10	20	_	mA	$V_{IN} = 0V, V_{IN} = 1V, V_{OL} = 2.5V$
Supply current	I _{CC}	_	0.8	2	mA	$V_{IN} = GND, R_L = \infty$
Power dissipation	PT	_	12	30	mW	$R_L = \infty, V_{IN} = GND$
Slew rate	SR	—	0.19	—	V/µs	$f = 1.5 kHz, V_{CM} = 7.5 V, R_{L} =$
Channel separation	CS	—	120	—	dB	f = 1kHz
Output sink current	Isink	15	50	—	μA	$V_{IN}^{+} = 0V, V_{IN}^{-} = 1V, V_{OL} = 200mV$
	Isink	3	9	_	mA	$V_{IN}^{+} = 0V, V_{IN}^{-} = 1V, V_{OL} = 1V$
Output voltage	V _{OH}	13.2	13.6	_	V	$I_{OH} = -1mA$
	V _{OH}	12.0	13.3		V	$I_{OH} = -10mA$
Output voltage	Vol	_	0.8	1.0	V	I _{OL} = 1mA
	V _{OL}		1.1	1.8	V	$I_{OL} = 10 \text{mA}$

Characteristics Curve

Solder Mounting Method

- Small and light surface-mount packages require spicial attentions on solder mounting. On solder mounting, pre-heating before soldering is needed. The following figure show an example of infrared rays refow.
- The difference of thermal expansion coefficient between mounted substrates and IC leads may cause a failure like solder peeling or soler wet, and electrical characteristics may change by thermal stress. Therefore, mounting should be done after sufficient confirmation for especially in case of ceramic substrates.

Figure 1 An Example of Infrared Rays Reflow Conditions