

Functional Description

The 74VCXH16244 contains sixteen non－inverting buffers with 3－STATE outputs．The device is nibble（ 4 bits）con－ trolled with each nibble functioning identically，but indepen dent of each other．The control pins may be shorted together to obtain full 16 －bit operation．The 3－STATE out
puts are controlled by an Output Enable $\left(\overline{\mathrm{OE}}_{\mathrm{n}}\right)$ input．When $\overline{\mathrm{OE}}_{\mathrm{n}}$ is LOW，the outputs are in the 2 －state mode．When $\overline{\mathrm{OE}}_{\mathrm{n}}$ is HIGH，the standard outputs are in the high imped－ ance mode but this does not interfere with entering new data into the inputs．

Logic Diagram

Absolute Maximum Ratings(Note 3)

DC Electrical Characteristics (Continued)							
Symbol	Parameter		Conditions	V_{cc} (V)	Min	Max	Units
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage		$\begin{aligned} & \mathrm{l}=100 \mu \mathrm{~A} \\ & \mathrm{l}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=18 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$	$\begin{array}{\|c\|} \hline 2.7-3.6 \\ 2.7 \\ 3.0 \\ 3.0 \end{array}$		$\begin{gathered} \hline 0.2 \\ 0.4 \\ 0.4 \\ 0.55 \end{gathered}$	
			$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A} \\ & \mathrm{IOL}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=18 \mathrm{~mA} \end{aligned}$	$\begin{array}{c\|} \hline 2.3-2.7 \\ 2.3 \\ 2.3 \end{array}$		$\begin{aligned} & \hline 0.2 \\ & 0.4 \\ & 0.6 \end{aligned}$	V
			$\begin{aligned} & \mathrm{l} \mathrm{OL}=100 \mu \mathrm{~A} \\ & \mathrm{loL}=6 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \hline 1.65-2.3 \\ 1.65 \end{gathered}$		$\begin{aligned} & \hline 0.2 \\ & 0.3 \end{aligned}$	
			$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A} \\ & \mathrm{l}_{\mathrm{OL}}=2 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 1.4-1.6 \\ 1.4 \end{gathered}$		$\begin{gathered} \hline 0.2 \\ 0.35 \end{gathered}$	
I	Input Leakage Current	Control Pins	$0 \leq \mathrm{V}_{1} \leq 3.6 \mathrm{~V}$	1.4-3.6		± 5.0	$\mu \mathrm{A}$
		Data Pins	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND	1.4-3.6		± 5.0	$\mu \mathrm{A}$
$\overline{I_{\text {(HOLD }}}$	Bushold Input Minimum Drive Hold Current		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{array}{r} 75 \\ -75 \end{array}$		$\mu \mathrm{A}$
			$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=1.6 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.3 \\ & 2.3 \end{aligned}$	$\begin{array}{r} 45 \\ -45 \end{array}$		
			$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.57 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=1.07 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.65 \\ & 1.65 \end{aligned}$	$\begin{array}{r} 25 \\ -25 \end{array}$		
$\overline{I_{\text {(OD })}}$	Bushold Input Over-Drive Current to Change State		$\begin{aligned} & \hline \text { (Note 6) } \\ & \text { (Note 7) } \end{aligned}$	$\begin{aligned} & \hline 3.6 \\ & 3.6 \end{aligned}$	$\begin{array}{r} 450 \\ -450 \end{array}$		$\mu \mathrm{A}$
			$\begin{aligned} & (\text { Note 6) } \\ & (\text { Note } 7) \end{aligned}$	$\begin{aligned} & \hline 2.7 \\ & 2.7 \end{aligned}$	$\begin{array}{r} 300 \\ -300 \end{array}$		
			$\begin{array}{\|l\|} \hline \text { (Note 6) } \\ \text { (Note 7) } \end{array}$	$\begin{aligned} & 1.95 \\ & 1.95 \end{aligned}$	$\begin{array}{r} 200 \\ -200 \end{array}$		
I_{OZ}	3-STATE Output Leakage		$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{O}} \leq 3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	2.7-3.6		± 10	$\mu \mathrm{A}$
I ${ }_{\text {OFF }}$	Power-OFF Leakage Current		$0 \leq\left(\mathrm{V}_{0}\right) \leq 3.6 \mathrm{~V}$	0		10	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}$	2.7-3.6		20	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{CC}} \leq\left(\mathrm{V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V}$ (Note 8)	2.7-3.6		± 20	$\mu \mathrm{A}$
$\overline{\Delta l_{\text {cc }}}$	Increase in I_{CC} per Input		$\mathrm{V}_{\mathrm{HH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$	2.7-3.6		750	$\mu \mathrm{A}$
Note 6: An external driver must source at least the specified current to switch from LOW-to-HIGH. Note 7: An external driver must sink at least the specified current to switch from HIGH-to-LOW. Note 8: Outputs disabled or 3-STATE only.							

74VCXH16244
AC Electrical Characteristics (Note 9)

Symbol	Parameter	Conditions	V_{CC} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Figure Number
				Min	Max		
$\overline{\mathrm{t}_{\mathrm{PHL}}}$ $t_{\text {PLH }}$	Propagation Delay	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	0.8	2.5	ns	Figures 1, 2
			2.5 ± 0.2	1.0	3.0		
			1.8 ± 0.15	1.5	6.0		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1	1.0	12.0		$\begin{gathered} \hline \text { Figures } \\ 5,6 \end{gathered}$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Output Enable Time	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	0.8	3.5	ns	Figures$1,3,4$
			2.5 ± 0.2	1.0	4.1		
			1.8 ± 0.15	1.5	8.2		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1	1.0	16.4		$\begin{gathered} \hline \text { Figures } \\ 5,7,8 \end{gathered}$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Output Disable Time	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	0.8	3.5	ns	Figures$1,3,4$
			2.5 ± 0.2	1.0	3.8		
			1.8 ± 0.15	1.5	6.8		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1	1.0	13.6		$\begin{gathered} \hline \text { Figures } \\ 5,7,8 \end{gathered}$
toshL tosLh	Output to Output Skew (Note 10)	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3		0.5	ns	
			2.5 ± 0.2		0.5		
			1.8 ± 0.15		0.75		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1		1.5		

Note 9: For $\mathrm{C}_{\mathrm{L}}=50_{\mathrm{p}} \mathrm{F}$, add approximately 300 ps to the AC maximum specification
Note 10: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (toshl) or LOW-to-HIGH (tosLh).

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	V_{cc}	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Units
			(V)	Typical	
$\mathrm{V}_{\text {OLP }}$	Quiet Output Dynamic Peak V_{OL}	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	0.25	v
			2.5	0.6	
			3.3	0.8	
$\mathrm{V}_{\text {OLV }}$	Quiet Output Dynamic Valley $\mathrm{V}_{\text {OL }}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	-0.25	v
			2.5	-0.6	
			3.3	-0.8	
$\mathrm{V}_{\text {OHV }}$	Quiet Output Dynamic Valley V_{OH}	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	1.5	v
			2.5	1.9	
			3.3	2.2	

Capacitance

Symbol	Parameter	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Units
			Typical	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=1.8,2.5 \mathrm{~V}$ or $3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	6	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{1}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ or 3.3 V	7	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{f}=10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ or 3.3 V	20	pF

AC Loading and Waveforms ($\mathrm{V}_{\mathrm{Cc}} 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ to $1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$)

TEST	SWITCH
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Open
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PLZ }}$	6 V at $\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} ;$
	$\mathrm{V}_{\mathrm{CC}} \times 2$ at $\mathrm{V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V} ; 1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PHZ }}$	GND

FIGURE 1. AC Test Circuit

FIGURE 2. Waveform for Inverting and Non-Inverting Functions

FIGURE 3. 3-STATE Output High Enable and Disable Times for Low Voltage Logic

FIGURE 4. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic

Symbol	$\mathrm{V}_{\mathbf{C C}}$		
	$\mathbf{3 . 3 V} \pm \mathbf{0 . 3} \mathrm{V}$	$\mathbf{2 . 5} \mathbf{V} \pm \mathbf{0 . 2 V}$	$\mathbf{1 . 8} \mathbf{V} \pm \mathbf{0 . 1 5} \mathrm{V}$
V_{mi}	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{X}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{Y}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$

AC Loading and Waveforms ($\mathrm{V}_{\mathrm{Cc}} 1.5 \pm 0.1 \mathrm{~V}$)

TEST
SIGNAL

TEST	SWITCH
$\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}$	Open
$\mathrm{t}_{\mathrm{PZL}}, \mathrm{t}_{\mathrm{PLZ}}$	$\mathrm{V}_{\mathrm{CC}} \times 2$ at $\mathrm{V}_{\mathrm{CC}}=1.5 \pm 0.1 \mathrm{~V}$
$\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PHZ}}$	GND

FIGURE 5. AC Test Circuit

FIGURE 6. Waveform for Inverting and Non-Inverting Functions

FIGURE 7. 3-STATE Output High Enable and Disable Times for Low Voltage Logic

FIGURE 8. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic

Symbol	$\mathbf{V}_{\mathbf{C C}}$
	$\mathbf{1 . 5 V} \pm \mathbf{0 . 1} \mathbf{V}$
V_{mi}	$\mathrm{V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	$\mathrm{V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{X}}$	$\mathrm{V}_{\mathrm{OL}}+0.1 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{Y}}$	$\mathrm{V}_{\mathrm{OH}}-0.1 \mathrm{~V}$

Physical Dimensions inches (millimeters) unless otherwise noted

NOTES:
A. THIS PACKAGE CONFORMS TO JEDEC M0-205
B. ALL DIMENSIONS IN MILLIMETERS
C. LAND PATTERN RECOMMENDATION: NSMD (Non Solder Mask Defined)
.35MM DIA PADS WITH A SOLDERMASK OPENING OF .45MM CONCENTRIC TO PADS
D. DRAWING CONFORMS TO ASME Y14.5M-1994

BGA54ArevD
54-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide Package Number BGA54A

Preliminary

