

ADSD-1402

Dual, 14-Bit, 2MSPS Sampling A/D Converter

FEATURES

- 14-bit resolution; 2MSPS sampling rate
- Functionally complete; ±5V input range
- . No missing codes over full temperature range
- Edge-triggered; No pipeline delays
- ±5V supplies, 0.725 Watts
- Small, 40-pin, side-brazed, ceramic TDIP
- 79dB SNR, -80dB THD
- Ideal for both time and frequency domain applications
- · Out-of-range indicator

GENERAL DESCRIPTION

DATEL's ADSD-1402 is a functionally complete, dual 14-bit, 2MSPS, sampling A/D converter. Its standard, 40-pin, triple-wide ceramic DIP contains two fast-settling sample/hold amplifiers, two 14-bit A/D converters, multiplexed output buffers, a precision reference, and all the timing and control logic necessary to operate from either two or a single start convert pulse.

The ADSD-1402 is optimized for wideband frequency-domain applications and is fully FFT tested. The ADSD-1402 requires only ±5V supplies and typically consumes 0.725 Watts. Models are available in either commercial 0 to +70°C or military -55 to +125°C operating temperature ranges.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION	
1	INPUT A	40	INPUT B	
2	+5VA	39	+5VA	
3	ANALOG GROUND	38	ANALOG GROUND	
4	GAIN A	37	GAIN B	
5	OFFSET A	36	OFFSET B	
6	RANGE	35	N/C	
7	2.5V REF	34	N/C	
8	ANALOG GROUND	33	ANALOG GROUND	
9	–5V	32	_5V	
10	ENABLE A	31	ENABLE B	
11	START A	30	START B	
12	+5VD	29	EOC	
13	BIT 14 (LSB)	28	BIT 1 (MSB)	
14	BIT 13	27	BIT 2	
15	BIT 12	26	BIT 3	
16	BIT 11	25	BIT 4	
17	BIT 10	24	BIT 5	
18	BIT 9	23	BIT 6	
19	BIT 8	22	BIT 7	
20	DGND	21	DGND	

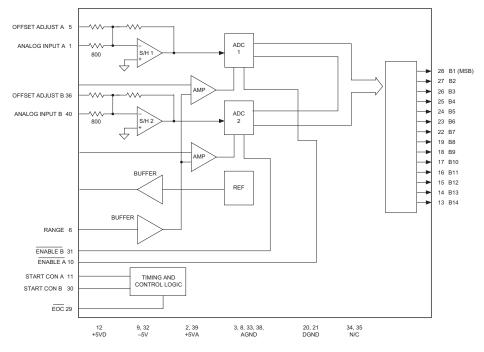


Figure 1. ADSD-1402 Functional Block Diagram

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS
+5V Supply (Pins 2, 12, 39)	0 to +6	Volts
–5V Supply (Pins 9, 32)	0 to -6	Volts
Digital Inputs (Pins 3, 10, 11, 31)	-0.3 to +VDD +0.3	Volts
Analog Input (Pins 1, 40)	±7	Volts
Lead Temp. (10 seconds)	+300	°C

FUNCTIONAL SPECIFICATIONS

(TA = $+25^{\circ}$ C, +VDD = +5V, Vee = -5V, 2MSPS sampling rate,Vin = ± 5 V and a minimum 7 minute warmup unless otherwise specified.)

ANALOG INPUTS	MIN.	TYP.	MAX.	UNITS
Input Voltage Range Input Impedence Input Capacitance	_ _ _	±5V 800 7	_ _ 15	Volts Ω pF
DIGITAL INPUTS				
Logic Levels Logic "1" Logic "0" Logic Loading "1" Logic Loading "0"	+2.0 — — —	_ _ _ _	 +0.8 +5 -600	Volts Volts µA µA
PERFORMANCE				
Integral Non-Linearity +25°C(fin=10kHz) 0 to +70°C -55 to +125°C Differential Non-Linearity (fin = 10kHz) +25°C		±1 ±1 ±2 ±0.5	 +1.75	LSB LSB LSB
0 to +70°C -55 to +125°C	-0.99 -0.99	±0.5 ±0.75	+1.75 +1.75	LSB LSB
Offset Error +25°C (see Figure 3) 0 to +70°C -55 to +125°C	_ _ _	±0.25 ±0.25 ±0.5	±0.5 ±0.5 ±0.8	%FSR %FSR %FSR
Gain Error +25°C (see Figure 3) 0 to +70°C -55 to +125°C	_ _ _	±0.3 ±0.3 ±0.6	±0.6 ±0.6 ±0.8	%FSR %FSR %FSR
No Missing Codes (fin = 975kHz) 14 Bits Resolution	−55 to +125°C 14 Bits			
OUTPUTS				
Output Coding	Offset Bin.			
Logic Level Logic "1" Logic "0" Logic Loading "1" Logic Loading "0" Internal Reference	+2.4 — — —	_ _ _ _		Volts Volts µA mA
Voltage, +25°C 0 to +70°C External Current	+2.45 +2.45 —	+2.5 +2.5 —	+2.55 +2.55 5	Volts Volts mA

Footnote:

① Same specification as In-Band Harmonics and Peak Harmonics.

DYNAMIC PERFORMANCE	MIN.	TYP.	MAX.	UNITS	
Total Harm. Distort. (-0.5dB)					
dc to 500kHz	_	-79	-72	dB	
500kHz to 1MHz		-73 -73	-72 -70	dB dB	
Signal-to-Noise Ratio	_	-/3	-70	ub	
(w/o distortion, -0.5dB dc to 500kHz	75	79		dB	
			_		
500kHz to 1MHz	75	78	_	dB	
Signal-to-Noise Ratio					
(and distortion, –0.5dB)					
dc to 500kHz	71	76	_	dB	
500kHz to 1MHz	69	73	_	dB	
Spurious Free Dyn. Range ①					
dc to 500kHz	_	-85	-70	dB	
500kHz to 1MHz	_	-74	-70	dB	
Two-tone IMD					
Distortion (fin = 975kHz,					
fs = 2.0Mhz, -0.5dB	-76	_	_	dB	
Input Bandwidth (-3dB)					
Small Signal (-20dB input)	_	16	_	MHz	
Large Signal (-0.5dB input)	_	12	_	MHz	
Slew Rate	_	±250	_	V/µs	
Aperture Delay Time	_	_	±10	ns i	
Aperature Uncertainty	_	_	5	ps	
S/H Acq. Time, (to ±0.003%FSR)			-		
Step input	_	100	150	ns	
Conversion Rate					
	2	_	_	MHz	
Feedthrough Rejection	_				
(fin = 1MHz)	_	85	_	dB	
Noise	_	250	_	μVrms	
110.00		200		prino	
POWER REQUIREMENTS					
Power Supply Ranges					
–5V Supply	-5.25	- 5	-4.75	Volts	
+5V Supply	+4.75	+5.0	+5.25	Volts	
Power Supply Currents	14.70	10.0	10.20	VOILO	
-5V Supply	-80	-70	_	m A	
+5V Supply	-00	-70 +50	 +70	mA	
Power Dissipation	_	0.6	0.725	Watts	
	_	0.6			
Power Supply Rejection		_	±0.01	%FSR%V	
PHYSICAL/ENVIRONMENTAL					
Oper. Temp. Range, Ambient					
ADSD-1402MC	0	_	+70	°C	
ADSD-1402MO ADSD-1402MM	-55		+125	o C	
Storage Temperature Range	-55 -65		+125	°C	
•					
Package Type	40-pin, metal-sealed, ceramic TDIP				

TECHNICAL NOTES

 Rated performance requires using good high-frequency circuit board layout techniques. Connect the digital and analog grounds to one point, the analog ground plane beneath the converter. Due to the inductance and resistance of the power supply return paths, return the analog and digital ground separately to the power supplies.

CALIBRATION PROCEDURE

 Connect the converter per Figure 3. Apply a pulse of 100 nanoseconds minimum to START CONVERT (pin 11) at a rate of 200kHz. This rate is chosen to reduce flicker if LED's are used on the outputs for calibration purposes.

2. Zero (Offset) Adjustments

Apply a precision voltage reference source between ANA-LOG INPUT A (pin 1) and SIGNAL GROUND (pin 3), then adjust the reference source output per Table 2. Adjust trimpot R2 until the code flickers equally between 10 0000 0000 0000 and 10 0000 0000 0001.

3. Full-Scale (Gain) Adjustments

Set the output of the voltage reference used in step 2 to the value shown in Table 2.

Table 2. Offset and Gain Adjustments

Input	Offset Adjust	Gain Adjust
Range	+1/2 LSB	FS – 1½ LSB
±5V	+0.000305V	+4.999085V

Adjust the gain trimpot R1 until the output code flickers equally between 11 1111 1111 1110 and 11 1111 1111 1111

- Repeat above steps for Analog Input B (Pin 40). Use trimpot R3 for the zero (Offset) adjustment and trimpot R4 for the Full-Scale (Gain) adjustment.
- To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in Table 3.

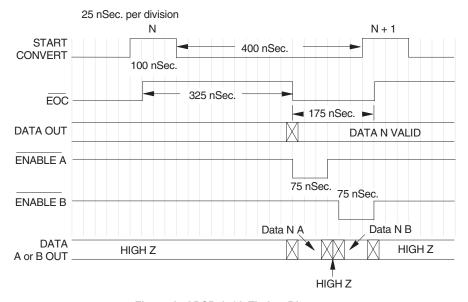
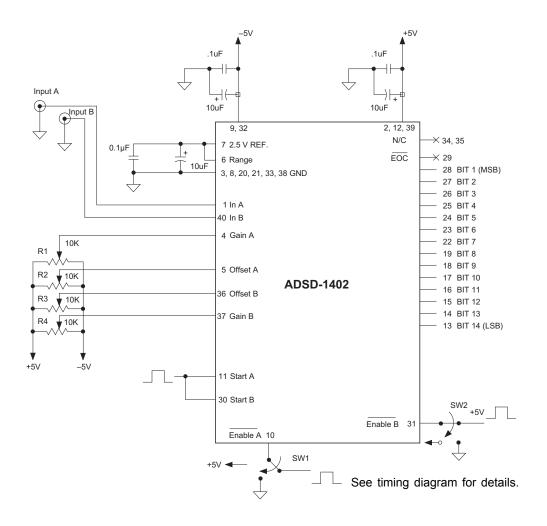



Figure 2. ADSD-1402 Timing Diagram

Table 3. Output Coding

OUTPUT CODING	INPUT RANGE	BIPOLAR
MSB LSE	±5V	SCALE
11 1111 1111 1111	+4.999390	+FS - 1LSB
11 1000 0000 0000	+4.250000	+3/4FS
11 0000 0000 0000	+2.500000	+1/2FS
10 0000 0000 0000	±0.000000	0
01 0000 0000 0000	-2.500000	-1/2FS
00 1000 0000 0000	-4.250000	-3/4FS
00 0000 0000 0001	-4.999390	-FS+1LSB
00 0000 0000 0000	-5.000000	-FS

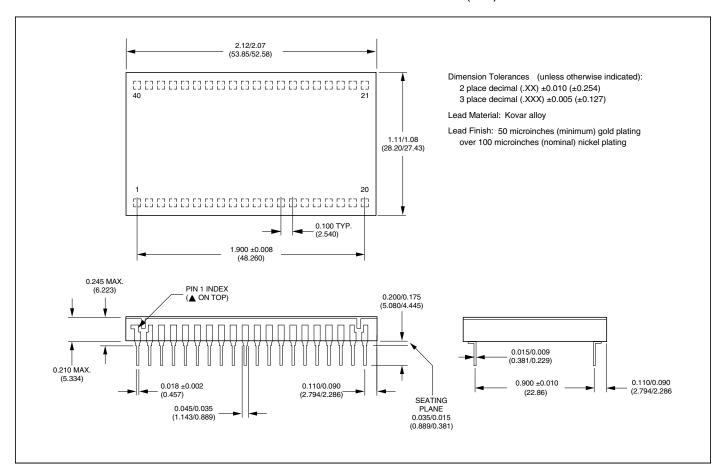
Notes:

- ① Recommended to use same supply source for +5 Analog and +5 Digital. Try using as clean of a supply as possible (Bypass caps., 10uF and .1uF).
- ② Outputs are enabled by either turning ENABLE A (Pin 10) or ENABLE B
 (Pin 31) low for prespective analog inputs A or B. A high on ENABLE A or ENABLE B results in disabling the output bus (High Z).

Figure 3. ADSD-1402 Connection Diagram

THERMAL REQUIREMENTS

The ADSD-1402 sampling A/D converter is fully characterized and specified over the commercial operating temperature (ambient) range of 0 to +70°C (MC suffix) and military temperature range of –55 to +125°C (MM suffix). All room-temperature ($T_A = +25^{\circ}C$) production testing is performed without the use of heat sinks or forced-air cooling. Thermal impedance figures for each device are listed in their respective specification tables.


These devices do not normally require heat sinks, however, standard precautionary design and layout procedures should be used to ensure devices do not overheat. The ground and power planes beneath the package, as well as all pcb signal runs to and from the device, should be as heavy as possible to help

conduct heat away from the package. Electrically-insulating, thermally-conductive "pads" may be installed underneath the package. Devices should be soldered to boards rather than "socketed", and of course, minimal air flow over the surface can greatly help reduce the package temperature.

In more severe ambient conditions, the package/junction temperature of a given device can be reduced dramatically (typically 35%) by using one of DATEL's HS Series heat sinks. See Ordering Information for the assigned part number. Request DATEL Application Note AN-8, "Heat Sinks for DIP Data Converters", or contact DATEL directly, for additional information.

MECHANICAL DIMENSIONS INCHES (mm)

ORDERING INFORMATION

 MODEL NUMBER
 OPERATING TEMP. RANGE
 ACCESSORIES

 ADSD-1402MC
 0 to +70°C
 HS-40
 Heat Sink for all ADSD-1402 models

 ADSD-1402MM
 -55 to +125°C
 HS-40
 Heat Sink for all ADSD-1402 models

Contact DATEL for high-reliability versions

150 9001 registered

DS-0520C 11/03

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1151 Tel: (508) 339-3000 / Fax: (508) 339-6356 For immediate assistance: (800) 233-2765

Internet: www.datel.com

DATEL (UK) LTD. Tadley, England Tel: (01256)-880444 DATEL S.A.R.L. Montigny Le Bretonneux, France Tel: 1-34-60-01-01 DATEL GmbH Munchen, Germany Tel: 89-544334-0 DATEL KK Tokyo, Japan Tel: 3-3779-1031, Osaka Tel: 6-6354-2025