DS2125 Ultra3 LVD/SE SCSI 15-Line Terminator

www.maxim-ic.com

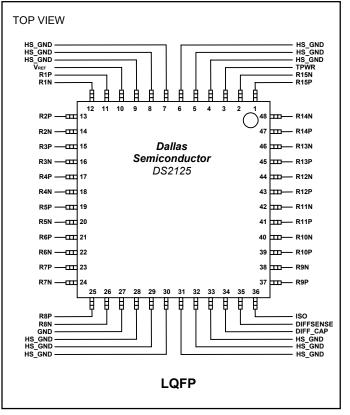
GENERAL DESCRIPTION

The DS2125 Ultra3 LVD/SE SCSI terminator is both a low-voltage differential (LVD) and single-ended (SE) terminator. The multimode operation enables the designer to implement LVD in current products while allowing the end user SE backward compatibility with legacy devices. If the device is connected in an LVD-only bus, the DS2125 uses LVD termination. If any SE devices are connected to the bus, the DS2125 uses SE termination, which is accomplished automatically inside the part by sensing the voltage on the SCSI bus DIFFSENS line.

For the LVD termination, the DS2125 integrates two current sources with 15 precision resistor strings. For the SE termination, one regulator and 15 precision 110Ω resistors are used. Two DS2125 terminators are needed for a wide SCSI bus.

APPLICATIONS

Raid Systems SCSI Host Bus Adapter (HBA) Cards Servers SCSI Cables Network Attached Storage (NAS) Storage Area Networks (SANs)


ORDERING INFORMATION

PART	TEMP RANGE	PIN-PACKAGE
DS2125	0°C to +70°C	48 LQFP

FEATURES

- Fully Compliant with Ultra3 SCSI
- Provides Multimode Low-Voltage Differential/Single-Ended (LVD/SE) Termination for 15 Signal Line Pairs
- Auto-Selection of LVD or SE Termination
- 5% Tolerance on SE and LVD Termination Resistance
- Low 3pF Power-Down Capacitance
- On-Board Thermal-Shutdown Circuitry
- SCSI Bus Hot-Plug-Compatible
- Fully Supports Actively Negated SE SCSI Signals

PIN CONFIGURATION

Note: Some revisions of this device may incorporate deviations from published specifications known as errata. Multiple revisions of any device may be simultaneously available through various sales channels. For information about device errata, click here: <u>www.maxim-ic.com/errata</u>.

ABSOLUTE MAXIMUM RATINGS

 V_{REF} , ISO, GND, DIFFSENSE, DIFF_CAP, TPWR, RxP, RxN (x = 1 . . . 15)-0.3V, +6.0V V_{REF} Continuous Output Current $\pm 200mA$ Continuous Power Dissipation (T_A = +70°C), 48-Pin LQFP2WOperating Temperature Range0°C to +70°CJunction Temperature+150°CStorage Temperature Range-65°C to +160°CLead Temperature (soldering, 10s)+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to the absolute maximum rating conditions for extended periods may affect device.

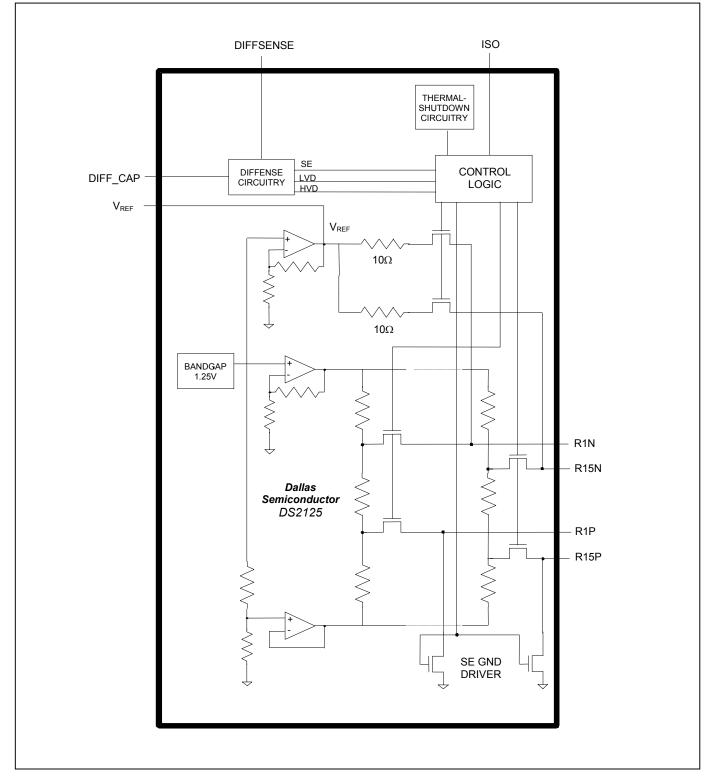
ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
TPWR Operating Supply	V	LVD	2.7		5.5	v
Range	V _{TPWR}	SE	4.0		5.5	v
TPWR SUPPLY CURREN	T					
TDM/D Ownership Ownership	ITPWR_LVD	LVD SCSI mode		20	35	mA
TPWR Supply Current	ITPWR SE	SE SCSI mode		1.6	10	mA
(All Lines Open)	ITPWR_ISO	ISO mode (terminators disabled)		250	750	μA
LVD TERMINATION (Appl	ies to each line	e pair, 1 to 15 in LVD mode)				
Differential-Mode	R _{DM}		100		110	Ω
Termination Resistance	INDM		100		110	52
Common-Mode	R _{CM}	R_P and R_N shorted together,	110		190	Ω
Termination Resistance		V_{CM} , max = 2V, V_{CM} , min = 0.5V	-			32
Differential-Mode Bias	V _{DM}	All lines open	100		125	mV
Common-Mode Bias	V _{CM}	R_P and R_N shorted together	1.125	1.25	1.375	V
SE TERMINATION (Applie	s to SE termin					
		$R_{SE} = (V_{Lx} - 0.2) / I_{Lx},$				
Single-Ended Mode	_	where V_{Lx} = voltage at terminator				
Termination Resistance	R _{SE}	pin with pin unloaded and	104.5	110	115.5	Ω
		I _{Lx} = current for each terminator pin				
		with the pin forced to 0.2V				
Termination Current	I _{SE}	Signal level at 0.2V, all lines low	-21.0	-24	-25.4	mA
Termination Current		Signal level at 0.5V	-18.0		-22.4	
SE Voltage Reference	V _{REF}		2.7	2.85	3.0	V
Pin Leakage		With ISO high			400	nA
Single-Ended GND	Р	Measured at R_P pins, I = 10mA		20	60	0
Resistance	R_{GND}	Measured at R_P pins, $I = 10 MA$		20	60	Ω
TERMINATOR PIN CAPA	CITANCE					
Terminator Pin	CIN	With ISO high (Note 1)			3	pF
Capacitance	OIN				0	P
		1				•
1.25V Regulator Output	V _{REF_LVD}	$0.5V \leq V_{CM} \leq 2.0V, V_{CM}$ applied to	1.125	1.25	1.375	V
Voltage	V REF_LVD	all R_P and R_N lines simultaneously	1.125	1.25	1.070	v
1.25V Regulator Short-	ISOURCE	V _{REF} = 0V	-375	-700	-1000	mA
Circuit Source Current	ISOURCE		0,0	100	1000	11// ٦
1.25V Regulator Short-	I _{SINK}	V _{REF} = 3.3V	170	300	700	mA
Circuit Sink Current	JOINK					
1.25V Regulator Line		V _{REF} unloaded; vary TPWR from		1.0	2.5	%
Regulation		2.7V to 5.5V		1.0	2.0	70
2.85V Regulator			2.7	2.85	3.0	V
2.85V Regulator Short-		V _{REF} = 0V	-375	-700	-1000	mA
Circuit Source Current			515	100	1000	
2.85V Regulator Short-		V _{REF} = 3.3V	170	300	700	mA
Circuit Sink Current			170	000	,00	

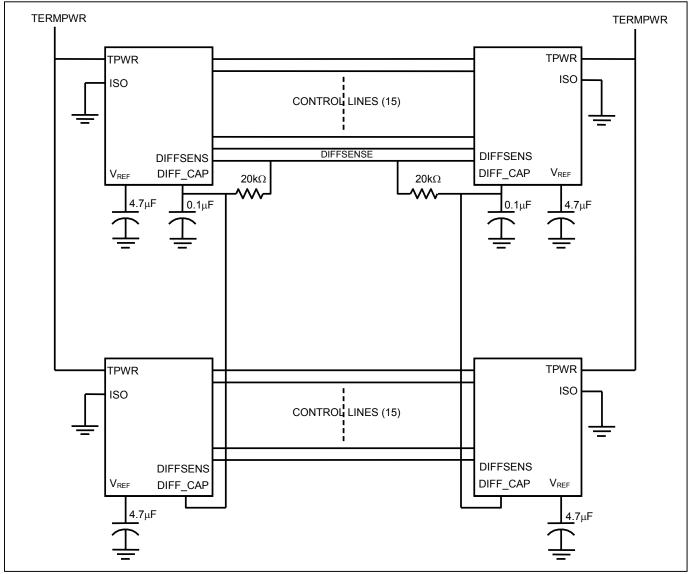
(TWPR = 5V, $T_A = 0^{\circ}C$ to +70°C, unless otherwise noted.)

ELECTRICAL CHARACTERISTICS (continued)

(TWPR = 5V, $T_A = 0^{\circ}C$ to +70°C, unless otherwise noted.)


PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
VREF REGULATOR						
2.85V Regulator Line Regulation		V _{REF} unloaded; vary TPWR from 4.0V to 5.5V		1.0	2.5	%
DIFFSENS OUTPUT						
DIFFSENS Driver Output Voltage	V _{DSO}	$-5mA \leq I_{DFFSENS} \leq 50 \mu A$	1.2		1.4	V
DIFFSENS Driver Source Current	I _{DSH}	V _{DIFFSENS} = 0V	5		15	mA
DIFFSENS Driver Sink Current	I _{DSL}	V _{DIFFSENS} = 2.75V	20		200	μA
DIFFSENS Leakage	I _{LEAK, LOW}	With ISO high, V _{DIFFSENS} = 0.3V	-3		+1	μΑ
	I _{LEAK, HIGH}	With ISO high, V _{DIFFSENS} - V _{TPWR} = 0.3V	1		3	
THERMAL SHUTDOWN		1				
Thermal-Shutdown Threshold		For increasing temperature (Note 1)		150		°C
Thermal-Shutdown Hysteresis		(Note 1)		10		°C
MODE CHANGE DELAY/F	ILTER	1				
Mode Change Delay	t DELAY		0.66	1.25	2.00	ms
LOGICAL SIGNALS (ISO)						
Input Low Voltage	V _{IL}		-0.3		+0.8	V
Input High Voltage	VIH		2		TPWR + 0.3	V
Input Current	I _{IL}	$V_{CC} = 3.3V$	-30	-10		μA
DIFF_CAP						
Input Current	١L	V _{IL} = -0.3V	-1		+1	μA
DIFF_CAP SE Operating Range	V _{SEOR}		-0.3		+0.5	V
DIFF_CAP LVD Operating Range	VLVDOR		0.7		1.9	V
DIFF_CAP HVD Operating Range	V _{HVDOR}		2.4		V _{TPWR} + 0.3	V

Note 1: Guaranteed by design.


PIN DESCRIPTION

PIN	NAME	FUNCTION		
1, 2, 11–26, 37–48	RxP, RxN	Signal Termination. Connect to SCSI bus signal lines.		
3	TPWR	Termination Power. Connect to the SCSI TERMPWR line and decouple with a $2.2 \mu F$ capacitor.		
4–9, 28–33	HS_GND	Heat-Sink Ground. Internally connected to the mounting pad. This should be grounded.		
10	V _{REF}	Reference Voltage. 2.85V reference in SE mode and 1.25V reference in LVD mode; must be decoupled with a 4.7μ F capacitor.		
27	GND	Ground. Signal ground, 0V.		
34	DIFF_CAP	DIFFSENSE Capacitor. Connect a 0.1μ F capacitor for the DIFFSENSE filter. Input to detect the type of device (differential or single-ended) on the SCSI bus.		
35	DIFFSENSE	DIFFSENSE. Output to drive the SCSI bus DIFFSENS line.		
36	ISO	Isolation. When pulled high, the DS2125 isolates its bus pins (RxN, RxP) from the SCSI bus.		

Figure 1. Block Diagram

Figure 2. SCSI Bus Configuration

Detailed Description

Note: The following terms are used throughout this data sheet:

DIFFSENS: Refers to the SCSI bus signal.

DIFFSENSE: Refers to the DS2125 pin name and internal circuitry capable of driving the DIFFSENS line. DIFF_CAP: Refers to the DS2125 pin name and internal circuitry relating to monitoring the DIFFSENS line.

The DS2125 combines LVD and SE termination with DIFFSENSE sourcing and detection. A bandgap reference is fed into two amplifiers, which creates a 1.25V reference voltage and a 2.85V reference voltage. The control logic determines which of these references are applied to the termination resistors. If the SCSI bus is in LVD mode, the 1.25V reference is used. If the SCSI bus is in SE mode, the 2.85V reference is used. That same control logic switches in/out parallel resistors to change the total termination resistance accordingly. Finally, in SE mode the R_p pins are switched to ground.

The DIFFSENSE circuitry decodes trinary logic. There is one of three voltages on the SCSI control line called DIFFSENS. Two comparators and a NAND gate determine if the voltage is below 0.6V, above 2.15V, or in between, which indicates the mode of the bus as SE, HVD, or LVD, respectively.

The DS2125's DIFF_CAP pin monitors the DIFFSENS line to determine the device's proper operating mode. The DIFFSENSE pin can also drive the SCSI DIFFSENS line to determine the SCSI bus-operating mode. The DS2125

switches to the termination mode that is appropriate for the bus based on the value of the DIFFSENS voltage. These modes are LVD mode, SE mode, and HVD isolation mode.

LVD Mode

A precision laser-trimmed resistor string with two amplifiers provides LVD termination. This configuration yields 105Ω differential and 150Ω common-mode impedance. A 112mV fail-safe bias is maintained when no drivers are connected to the SCSI bus.

SE Mode

When the external driver for a given signal line turns off, the active terminator pulls that signal line to 2.85V (quiescent state). The terminating resistors maintain their 110Ω value.

HVD Isolation Mode

The DS2125 identifies that there is an HVD device on the SCSI bus and isolates the termination pins from the bus.

When ISO is pulled high, the termination pins are isolated from the SCSI bus, and V_{REF} remains active. During thermal shutdown, the termination pins are isolated from the SCSI bus, and V_{REF} becomes high impedance. The DIFFSENSE driver is shut down during either of these two events. An internal pulldown resistor assures that the DS2125 is terminating the bus if the ISO pin is left floating.

To ensure proper operation, the TPWR pin should be connected to the SCSI bus TERMPWR line. As with all analog circuitry, the TERMPWR and V_{DD} lines should be bypassed locally. A 2.2µF capacitor and a 0.01µF high-frequency capacitor are recommended between TPWR and ground, and placed as close as possible to the DS2125. The DS2125 should be placed as close as possible to the SCSI connector to minimize signal and power trace length, thereby resulting in less input capacitance and reflections, which can degrade the bus signals.

To maintain the specified regulation, a 4.7μ F capacitor is required between the V_{REF} pin and ground of each DS2125. A high-frequency capacitor (0.1μ F ceramic recommended) can also be placed on the V_{REF} pin in applications that use fast rise/fall-time drivers. Figure 2 shows a typical SCSI bus configuration.

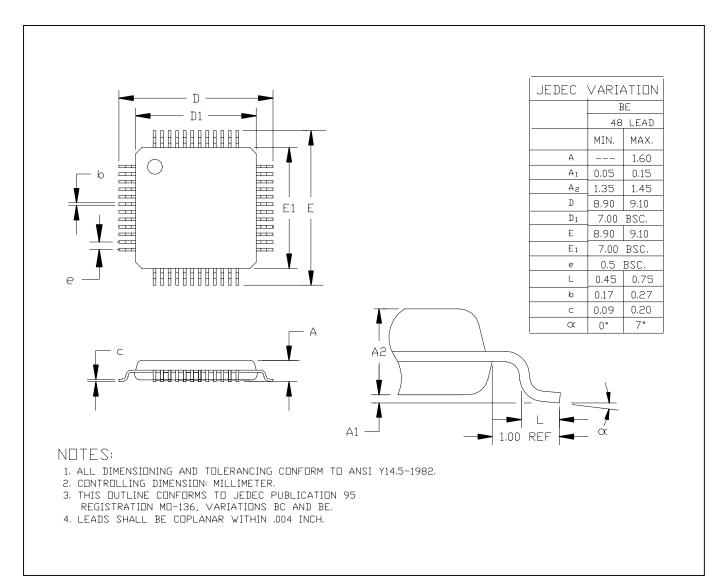
TITLE	T10 PROJECT DOCUMENT	T10 COMMITTEE FTP LINK	ANSI DOCUMENT NO.
SCSI Parallel Interface 2 (SPI-2)	Project: 1142-M, 1998	ftp://ftp.t10.org/t10/drafts/spi2/spi2r20b.pdf	X3.302:1998
SCSI Parallel Interface 3 (SPI-3)	Project: 1302-D, 1999	ftp://ftp.t10.org/t10/drafts/spi3/spi3r14.pdf	NCITS.336:2000
SCSI Parallel Interface 4 (SPI-4)	Project: 1365-D, 200x	ftp://ftp.t10.org/t10/drafts/spi4/spi4r10.pdf	INCITS.362:2002

Reference Documents

Suppliers

SUPPLIER	PHONE	WEBSITE
American National Standards Institute (ANSI)	212-642-4900	www.ansi.org/
Global Engineering Documents	800-854-7179	http://global.ihs.com/

Chip Information


TRANSISTOR COUNT: 8382 MOS and 87 Bipolar PROCESS: BICMOS SUBSTRATE CONNECTED TO GROUND

Thermal Information

Theta-JA: 65°C/W

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/DallasPackInfo.)

