POWER ZENERS

Transient Suppressor Diodes

FEATURES

- 1500 Watts for 1ms Pulse Power Capability
- Small Physical Size
- Designed to be Used in Mil-Std-704A Applications

DESCRIPTION

Zener diodes with high surge capability qualified to MIL-S-19500/434.

4

ABSOLUTE MAXIMUM RATINGS (at 25°C except where otherwise noted)

	1N5610	1N5611	1N5612	1N5613
Zener Voltage		See Electrical S	Specifications	
Forward Surge Current	. 200A	200A	200A	200A
Zener Surge Current, at 25°C	32.0A	24.0A	19.0A	5.7A
Surge Current, at 150°C	5.5A	4.8A	3,2A	1.0A
Surge Power		See Graph	1	
Storage and Operating Temperature			to +175°C	

ELECTRICAL SPECIFICATIONS (at 25°C unless noted)

Туре	Min. Zener Voltage § Vz @ ImA	Max. 2 Volta Vz @	ge†	Max. Reverse Leakage Current I _R @ V _R		Max. Forward Voltage‡ @ 100 Amps	Typical Temperature Coefficient
	Volts	Volts	Amps	μA	Volts	Volts	%/°C
1N5610*	33.0	47.5	32.0	5.0	30.5	4.8	.093
1N5611*	43.7	63.5	24.0	5.0	40.3	4.8	.094
1N5612*	54.0	78.5	19.0	5.0	49.0	4.8	.096
1N5613*	191.0	265.0	5.7	5.0	175.0	4.8	.100

Notes: * Available as JAN, JANTX and JANTXV.

§ Duration of applied current ≤ 300ms, duty cycle ≤ 2%
† Utilizing a pulse which decays exponentially to 50% of the peak value in 1ms. See graph entitled "Pulse Waveform".
‡ Peak Sinusoidal surge current of 8.3ms duration, non-repetitive.

Voltage transients can be suppressed with series elements, shunt elements, or a combination of both. These elements may be passive or active. For low and medium power applications, a series resistor and zener clamp offer several attractive features:

- Simplicity of design
- High reliability
- 3. Fast response time

The 1N5610 series of surge suppressors will suppress the following transients defined by MIL-S-704A without the use of any series limiting resistance beyond that provided by the source:

- 1. All 600V transients (category #1 on chart below)
- All 80V transients except those generated by the main voltage regulator (category #2 on chart below)
- The overvoltage transients generated by the main voltage regulator (category #3 on chart below) will also be suppressed by the 1N5610 series if:

 - a. A 20 chm series limiting resistor is used, or b. No series resistance is used but the zener is protected within 500 μs by using, for example, an SCR crowbar

The above statements are based on the source impedances and dv/dt characteristics as given in ARINC* Specification #413. This report entitled "Guidance for Aircraft Electrical Power Utilization and Transient Protection" serves to further define MIL-STD-704A for large aircraft electrical systems.

Category	Source of Transient	Maximum Amplitude	Duration	Min. Source Impedance	dv/dt
1.	Inductive Switching	600 V	≤ 10 μs	50 ohms	
2.	BUS Switching	80 V	≤ 10 ms	15 ohms	
3.	Main Voltage Regulator	80 V	≥ 10 ms	0.2 ohms	50V/ms

These Surge Suppressors are useful in a variety of other applications where semiconductor devices must function reliably in an environment subject to extremely high but short term surges.

^{*} ARINC stands for Aeronautical Radio, Inc. (Annapolis, Maryland 21401)