POWER ZENERS ## **Transient Suppressor Diodes** ### **FEATURES** - 1500 Watts for 1ms Pulse Power Capability - Small Physical Size - Designed to be Used in Mil-Std-704A Applications #### DESCRIPTION Zener diodes with high surge capability qualified to MIL-S-19500/434. 4 ### ABSOLUTE MAXIMUM RATINGS (at 25°C except where otherwise noted) | | 1N5610 | 1N5611 | 1N5612 | 1N5613 | |-----------------------------------|--------|------------------|----------------|--------| | Zener Voltage | | See Electrical S | Specifications | | | Forward Surge Current | . 200A | 200A | 200A | 200A | | Zener Surge Current, at 25°C | 32.0A | 24.0A | 19.0A | 5.7A | | Surge Current, at 150°C | 5.5A | 4.8A | 3,2A | 1.0A | | Surge Power | | See Graph | 1 | | | Storage and Operating Temperature | | | to +175°C | | #### ELECTRICAL SPECIFICATIONS (at 25°C unless noted) | Туре | Min. Zener
Voltage §
Vz @ ImA | Max. 2
Volta
Vz @ | ge† | Max.
Reverse
Leakage
Current
I _R @ V _R | | Max.
Forward
Voltage‡
@ 100 Amps | Typical
Temperature
Coefficient | |---------|-------------------------------------|-------------------------|------|--|-------|---|---------------------------------------| | | Volts | Volts | Amps | μA | Volts | Volts | %/°C | | 1N5610* | 33.0 | 47.5 | 32.0 | 5.0 | 30.5 | 4.8 | .093 | | 1N5611* | 43.7 | 63.5 | 24.0 | 5.0 | 40.3 | 4.8 | .094 | | 1N5612* | 54.0 | 78.5 | 19.0 | 5.0 | 49.0 | 4.8 | .096 | | 1N5613* | 191.0 | 265.0 | 5.7 | 5.0 | 175.0 | 4.8 | .100 | Notes: * Available as JAN, JANTX and JANTXV. § Duration of applied current ≤ 300ms, duty cycle ≤ 2% † Utilizing a pulse which decays exponentially to 50% of the peak value in 1ms. See graph entitled "Pulse Waveform". ‡ Peak Sinusoidal surge current of 8.3ms duration, non-repetitive. Voltage transients can be suppressed with series elements, shunt elements, or a combination of both. These elements may be passive or active. For low and medium power applications, a series resistor and zener clamp offer several attractive features: - Simplicity of design - High reliability - 3. Fast response time The 1N5610 series of surge suppressors will suppress the following transients defined by MIL-S-704A without the use of any series limiting resistance beyond that provided by the source: - 1. All 600V transients (category #1 on chart below) - All 80V transients except those generated by the main voltage regulator (category #2 on chart below) - The overvoltage transients generated by the main voltage regulator (category #3 on chart below) will also be suppressed by the 1N5610 series if: - a. A 20 chm series limiting resistor is used, or b. No series resistance is used but the zener is protected within 500 μs by using, for example, an SCR crowbar The above statements are based on the source impedances and dv/dt characteristics as given in ARINC* Specification #413. This report entitled "Guidance for Aircraft Electrical Power Utilization and Transient Protection" serves to further define MIL-STD-704A for large aircraft electrical systems. | Category | Source of
Transient | Maximum
Amplitude | Duration | Min. Source
Impedance | dv/dt | |----------|---------------------------|----------------------|----------------|--------------------------|--------| | 1. | Inductive
Switching | 600 V | ≤ 10 μs | 50 ohms | | | 2. | BUS
Switching | 80 V | ≤ 10 ms | 15 ohms | | | 3. | Main Voltage
Regulator | 80 V | ≥ 10 ms | 0.2 ohms | 50V/ms | These Surge Suppressors are useful in a variety of other applications where semiconductor devices must function reliably in an environment subject to extremely high but short term surges. ^{*} ARINC stands for Aeronautical Radio, Inc. (Annapolis, Maryland 21401)