December 1999 Revised March 2000 74VCXH16240 Low Voltage 16-Bit Inverting Buffer/Line Driver

74VCXH16240 Low Voltage 16-Bit Inverting Buffer/Line Driver with Bushold

General Description

FAIRCHILD

SEMICONDUCTOR

The VCXH16240 contains sixteen inverting buffers with 3-STATE outputs to be employed as a memory and address driver, clock driver, or bus oriented transmitter/receiver. The device is nibble (4-bit) controlled. Each nibble has separate 3-STATE control inputs which can be shorted together for full 16-bit operation.

The VCXH16240 data inputs include active bushold circuitry, eliminating the need for external pull-up resistors to hold unused or floating inputs at a valid logic level.

The 74VCXH16240 is designed for low voltage (1.65V to 3.6V) $\rm V_{CC}$ applications with output capability up to 3.6V.

The 74VCXH16240 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining low CMOS power dissipation.

Features

- 1.65V–3.6V V_{CC} supply operation
- 3.6V tolerant control inputs and outputs
- Bushold on data inputs eliminates the need for external pull-up/pull-down resistors
- t_{PD}
 - 2.5 ns max for 3.0V to 3.6V V_{CC} 3.0 ns max for 2.3V to 2.7V V_{CC} 6.0 ns max for 1.65V to 1.95V V_{CC}
- Static Drive (I_{OH}/I_{OL})
 ±24 mA @ 3.0V V_{CC}
 - ±18 mA @ 2.3V V_{CC} ±6 mA @ 1.65V V_{CC}
- Uses patented noise/EMI reduction circuitry
- Latch-up performance exceeds 300 mA
- ESD performance:
 - Human body model > 2000V Machine model > 200V

Ordering Code:

Package Order Number Package Descriptions Number 74VCXH16240MTD MTD48 48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. Logic Symbol **Pin Descriptions** Pin Names Description 13 4 40 42 43 44 45 OEn Output Enable Input (Active LOW) ΘĒτ $I_0 - I_{15}$ **Bushold Inputs** ŌĒ \overline{o}_1 \overline{o}_2 \overline{o}_3 \overline{o}_4 \overline{o}_5 \overline{o}_6 \overline{o}_7 \overline{o}_8 \overline{o}_9 \overline{o}_{10} \overline{o}_{11} \overline{o}_{12} \overline{o}_{13} \overline{o}_{14} \overline{o}_1 $\overline{O}_0 - \overline{O}_{15}$ Outputs

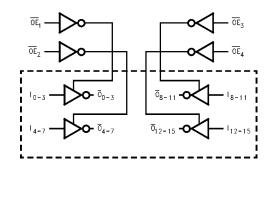
© 2000 Fairchild Semiconductor Corporation DS500232

74VCXH16240

Connection Diagram						
Connection D	1 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	48 OE2 47 Io 46 I1 45 GND 44 I2 43 I3 42 V2 39 GND 38 I6 37 I7 36 I8 35 I9 33 I10 32 I11 31 VCC 32 I11 31 VCC 32 I13 28 GND 27 I14 28 GNA 27 I15				
¯€ ₄ —	24	25 — OE ₃				

Truth Tables

Ing	outs	Outputs
OE ₁	I ₀ –I ₃	$\overline{O}_0 - \overline{O}_3$
L	L	Н
L	н	L
Н	х	Z
Ing	outs	Outputs
OE ₂	I ₄ –I ₇	$\overline{O}_4 - \overline{O}_7$
L	L	Н
L	н	L
Н	х	Z
Ing	outs	Outputs
OE ₃	I ₈ -I ₁₁	0 ₈ –0 ₁₁
L	L	Н
L	Н	L
L	н х	L Z
H		_
H	х	Z
- H 	X	Z
H Ing OE ₄	X Duts I ₁₂ -I ₁₅	Z Outputs $\overline{0}_{12}$ - $\overline{0}_{15}$


H = HIGH Voltage Level

X = Inmaterial (HIGH or LOW, inputs may not float) Z = High Impedance

Functional Description

The 74VCXH16240 contains sixteen inverting buffers with 3-STATE outputs. The device is nibble (4 bits) controlled with each nibble functioning identically, but independent of each other. The control pins may be shorted together to obtain full 16-bit operation. The 3-STATE outputs are controlled by an Output Enable (\overline{OE}_n) input. When \overline{OE}_n is LOW, the outputs are in the 2-state mode. When \overline{OE}_n is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the inputs.

Logic Diagram

Absolute Maximum Ra	tings(Note 1)	Recommended Operatin	g
Supply Voltage (V _{CC})	-0.5V to +4.6V	Conditions (Note 3)	
DC Input Voltage (VI)		Power Supply	
OEn	-0.5V to 4.6V	Operating	1.65V to 3.6V
I ₀ – I ₁₅	-0.5V to V _{CC} + 0.5V	Data Retention Only	1.2V to 3.6V
Output Voltage (V _O)		Input Voltage	-0.3V to V _{CC}
Outputs 3-STATED	-0.5V to +4.6V	Output Voltage (V _O)	
Outputs Active (Note 2)	-0.5V to V _{CC} +0.5V	Output in Active States	0V to V _{CC}
DC Input Diode Current (IIK)		Output in 3-STATE	0.0V to 3.6V
V ₁ < 0V	–50 mA	Output Current in I _{OH} /I _{OL}	
DC Output Diode Current (I _{OK})		$V_{CC} = 3.0V$ to 3.6V	±24 mA
V _O < 0V	–50 mA	$V_{CC} = 2.3V$ to 2.7V	±18 mA
$V_{O} > V_{CC}$	+50 mA	V _{CC} = 1.65V to 2.3V	±6 mA
DC Output Source/Sink Current		Free Air Operating Temperature (T _A)	-40° C to $+85^\circ$ C
(I _{OH} /I _{OL})	±50 mA	Minimum Input Edge Rate ($\Delta t/\Delta V$)	
DC V _{CC} or GND Current per		$V_{IN} = 0.8V$ to 2.0V, $V_{CC} = 3.0V$	10 ns/V
Supply Pin (I _{CC} or GND)	±100 mA	Note 1: The Absolute Maximum Ratings are those	
Storage Temperature Range (T _{STG})	-65°C to +150°C	the safety of the device cannot be guaranteed. Th operated at these limits. The parametric values d Characteristics tables are not guaranteed at the A ings. The "Recommended Operating Conditions" tat tions for actual device operation.	efined in the Electrical bsolute Maximum Rat-

Note 2: I_O Absolute Maximum Rating must be observed. Note 3: Floating or unused control inputs must be held HIGH or LOW.

DC Electrical Characteristics (2.7V $< V_{CC} \leq 3.6V)$

Symbol	Parameter		Conditions	V _{CC} (V)	Min	Max	Units
VIH	HIGH Level Input Voltage			2.7 – 3.6	2.0		V
VIL	LOW Level Input Voltage	LOW Level Input Voltage		2.7 – 3.6		0.8	V
V _{OH}	HIGH Level Output Voltage		I _{OH} = -100 μA	2.7 – 3.6	V _{CC} - 0.2		V
			$I_{OH} = -12 \text{ mA}$	2.7	2.2		V
			I _{OH} = -18 mA	3.0	2.4		V
			I _{OH} = -24 mA	3.0	2.2		V
V _{OL} LOW L	LOW Level Output Voltage	OW Level Output Voltage		2.7 – 3.6		0.2	V
			I _{OL} = 12 mA	2.7		0.4	V
			I _{OL} = 18 mA	3.0		0.4	V
			I _{OL} = 24 mA	3.0		0.55	V
l _l	Input Leakage Current	Control Pins	$0 \le V_I \le 3.6V$	2.7 – 3.6		±5.0	μΑ
		Data Pins	$V_I = V_{CC}$ or GND	2.7 – 3.6		±5.0	μΑ
I _{I(HOLD)}	Bushold Input Minimum		$V_{IN} = 0.8V$	3.0	75		μA
	Drive Hold Current		$V_{IN} = 2.0V$	3.0	-75		μΛ
I _{I(OD)}	Bushold Input Over-Drive		(Note 4)	3.6	450		μA
	Current to Change State		(Note 5)	3.6	-450		μ
I _{OZ}	3-STATE Output Leakage		$0 \le V_O \le 3.6V$	2.7 – 3.6		±10	μA
			$V_{I} = V_{IH} \text{ or } V_{IL}$	2.7 0.0		10	μ.
I _{OFF}	Power-OFF Leakage Currer	nt	$0 \le (V_O) \le 3.6V$	0		10	μΑ
I _{CC}	Quiescent Supply Current		$V_I = V_{CC}$ or GND	2.7 – 3.6		20	μΑ
			$V_{CC} \le (V_O) \le 3.6V$ (Note 6)	2.7 – 3.6		±20	μΑ
ΔI_{CC}	Increase in I _{CC} per Input		$V_{IH} = V_{CC} - 0.6V$	2.7 – 3.6		750	μΑ

Note 4: An external driver must source at least the specified current to switch from LOW-to-HIGH.

Note 5: An external driver must source at least the specified current to switch from HIGH-to-LOW.

Note 6: Outputs disabled or 3-STATE only.

74VCXH16240

74VCXH16240

Symbol	Parameter		Conditions	V _{CC} (V)	Min	Мах	Units
VIH	HIGH Level Input Voltage			2.3 – 2.7	1.6		V
VIL	LOW Level Input Voltage			2.3 – 2.7		0.7	V
V _{OH}	HIGH Level Output Voltage		I _{OH} = -100 μA	2.3 – 2.7	V _{CC} - 0.2		V
			I _{OH} = -6 mA	2.3	2.0		V
			I _{OH} = -12 mA	2.3	1.8		V
			I _{OH} = -18 mA	2.3	1.7		V
V _{OL}	LOW Level Output Voltage	OW Level Output Voltage		2.3 – 2.7		0.2	V
			I _{OL} = 12 mA	2.3		0.4	V
			I _{OL} = 18 mA	2.3		0.6	V
l _l	Input Leakage Current	Control Pins	$0 \le V_I \le 3.6V$	2.3 – 2.7		±5.0	μΑ
		Data Pins	$V_I = V_{CC}$ or GND	2.3 – 2.7		±5.0	μΑ
I _{I(HOLD)}	Bushold Input Minimum	•	$V_{IN} = 0.7V$	2.3	45		
	Drive Hold Current		V _{IN} = 1.6V	2.3	-45		μA
I _{I(OD)}	Bushold Input Over-Drive		(Note 7)	2.7	300		
	Current to Change State		(Note 8)	2.7	-300		μA
l _{oz}	3-STATE Output Leakage	3-STATE Output Leakage		2.3 – 2.7		±10	
			$V_I = V_{IH} \text{ or } V_{IL}$	2.3 - 2.1		±ΙΟ	μΑ
I _{OFF}	Power-OFF Leakage Curren	t	$0 \le (V_O) \le 3.6V$	0		10	μΑ
I _{CC}	Quiescent Supply Current		$V_I = V_{CC}$ or GND	2.3 – 2.7		20	μΑ
			$V_{CC} \le (V_{O}) \le 3.6V$ (Note 9)	2.3 – 2.7		±20	μΑ

Note 7: An external driver must source at least the specified current to switch from LOW-to-HIGH.

Note 8: An external driver must source at least the specified current to switch from HIGH-to-LOW.

Note 9: Outputs disabled or 3-STATE only.

DC Electrical Characteristics (1.65V \leq V_{CC} < 2.3V)

Symbol	Paramete	ər	Conditions	V _{CC} (V)	Min	Max	Units
V _{IH}	HIGH Level Input Voltage			1.65 - 2.3	$0.65 imes V_{CC}$		V
V _{IL}	LOW Level Input Voltage			1.65 - 2.3		$0.35 \times V_{CC}$	V
V _{он}	HIGH Level Output Voltage		I _{OH} = -100 μA	1.65 - 2.3	V _{CC} - 0.2		V
			I _{OH} = -6 mA	1.65	1.25		V
V _{OL} LOV	LOW Level Output Voltage	LOW Level Output Voltage		1.65 - 2.3		0.2	V
			I _{OL} = 6 mA	1.65		0.3	V
I _I	Input Leakage Current	Control Pins	$0 \le V_I \le 3.6V$	1.65 - 2.3		±5.0	μΑ
		Data Pins	$V_I = V_{CC}$ or GND	1.65 - 2.3		±5.0	μΑ
I _{I(HOLD)}	Bushold Input Minimum		V _{IN} = 0.57V	1.65	25		۵
	Drive Hold Current		V _{IN} = 1.07V	1.65	-25		μA
I _{I(OD)}	Bushold Input Over-Drive		(Note 10)	1.95	200		μA
	Current to Change State		(Note 11)	1.95	-200		μA
l _{oz}	3-STATE Output Leakage		$0 \le V_O \le 3.6V$	1.65 - 2.3		±10	μA
			$V_I = V_{IH} \text{ or } V_{IL}$	1.03 - 2.3		10	μΑ
I _{OFF}	Power-OFF Leakage Current		$0 \le (V_O) \le 3.6V$	0		10	μΑ
I _{CC}	Quiescent Supply Current		$V_I = V_{CC}$ or GND	1.65 - 2.3		20	μΑ
			V _{CC} ≤ (V _O) ≤ 3.6V (Note 12)	1.65 – 2.3		±20	μA

Note 10: An external driver must source at least the specified current to switch from LOW-to-HIGH.

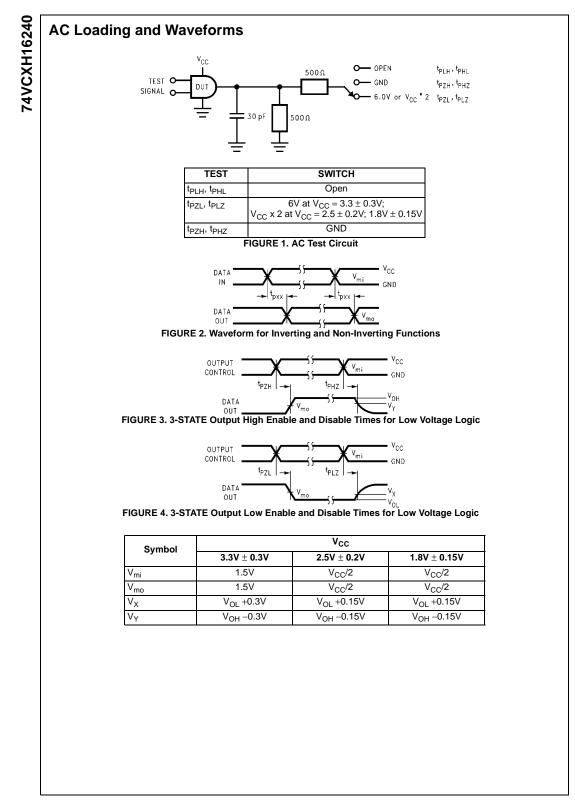
 $\label{eq:Note11:An external driver must source at least the specified current to switch from HIGH-to-LOW.$

Note 12: Outputs disabled or 3-STATE only.

AC Electrical Characteristics (Note 13)

AC Electrical Characteristics (Note 13)								
			T _A = -40	°C to +85°C,	$C_L = 30 \text{ pF, } F$	$R_L = 500\Omega$		
Symbol	Parameter	V _{CC} = 3.	$V_{CC}=3.3V\pm0.3V$		$V_{CC} = 2.5V \pm 0.2V \qquad \qquad V_{CC} = 1.8V \pm 0.15V$		Units	
		Min	Max	Min	Max	Min	Max	
t _{PHL} , t _{PLH}	Prop Delay	0.8	2.5	1.0	3.0	1.5	6.0	ns
t _{PZL} , t _{PZH}	Output Enable Time	0.8	3.5	1.0	4.1	1.5	8.2	ns
t _{PLZ} , t _{PHZ}	Output Disable Time	0.8	3.5	1.0	3.8	1.5	6.8	ns
tOSHL	Output to Output Skew	Ì	0.5		0.5		0.75	
t _{OSLH}	(Note 14)		0.5		0.5		0.75	ns

Note 13: For $C_L = 50_PF$, add approximately 300 ps to the AC maximum specification.


Note 14: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	V _{CC} (V)	T _A = +25°C Typical	Units
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0 \text{V}$	1.8	0.25	
			2.5	0.6	V
			3.3	0.8	
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	-0.25	
			2.5	-0.6	V
			3.3	-0.8	
V _{OHV}	Quiet Output Dynamic Valley V _{OH}	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	1.5	
			2.5	1.9	V
			3.3	2.2	

Capacitance

Symbol	Parameter	Conditions	T _A = +25°C Typical	Units
CIN	Input Capacitance	V_{CC} = 1.8, 2.5V or 3.3V, V_I = 0V or V_{CC}	6	pF
C _{OUT}	Output Capacitance	$V_{I} = 0V \text{ or } V_{CC}, V_{CC} = 1.8V, 2.5V \text{ or } 3.3V$	7	pF
C _{PD}	Power Dissipation Capacitance	$V_I = 0V$ or V_{CC} , f = 10 MHz, $V_{CC} = 1.8V$, 2.5V or 3.3V	20	pF

www.fairchildsemi.com

6

7