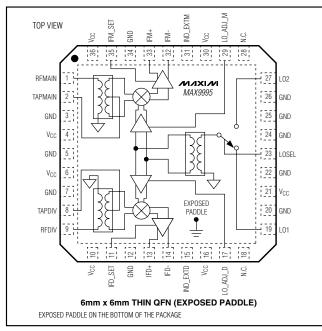
General Description

The MAX9995 dual, high-linearity, downconversion mixer provides 6.1dB gain, +25.6dBm IIP3, and 9.8dB NF for UMTS/WCDMA, DCS, and PCS base-station applications. The MAX9995 is ideal for low-side LO injection. (For a mixer variant optimized for high-side LO injection, contact the factory.)


This device integrates baluns in the RF and LO ports, a dual-input LO selectable switch, an LO buffer, two doublebalanced mixers, and a pair of differential IF output amplifiers. The MAX9995 requires a typical LO drive of 0dBm and supply current is guaranteed to be below 380mA.

These devices are available in a compact 36-pin thin QFN package (6mm \times 6mm) with an exposed paddle. Electrical performance is guaranteed over the extended temperature range, from T_C = -40°C to +85°C.

UMTS/WCDMA and cdma2000® 3G Base Stations DCS1800 and EDGE Base Stations PCS1900 and EDGE Base Stations **Applications**

PHS/PAS Base Stations Fixed Broadband Wireless Access Wireless Local Loop Private Mobile Radio Military Systems

Pin Configuration/ Functional Diagram

Features

♦ 1700MHz to 2200MHz RF Frequency Range

- 1400MHz to 2000MHz LO Frequency Range (MAX9995)
- 1900MHz to 2400MHz LO Frequency Range (Contact Factory)
- ♦ 40MHz to 350MHz IF Frequency Range
- ♦ 6.1dB Conversion Gain
- +25.6dBm Input IP3
- 9.8dB Noise Figure
- 66dBc 2RF–2LO Spurious Rejection at P_{RF} = -10dBm
- Dual Channels Ideal for Diversity Receiver Applications
- Integrated LO Buffer
- Integrated RF and LO Baluns for Single-Ended Inputs
- Low -3dBm to +3dBm LO Drive
- Built-In SPDT LO Switch with 50dB LO1–LO2 Isolation and 50ns Switching Time
- ♦ 44dB Channel-to-Channel Isolation

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX9995ETX	$T_{C}^{**} = -40^{\circ}C \text{ to } +85^{\circ}C$	36 Thin QFN-EP*
MAX9995ETX-T	$T_C = -40^{\circ}C \text{ to } +85^{\circ}C$	36 Thin QFN-EP*
MAX9995ETX+D	$T_{\rm C} = -40^{\circ}{\rm C}$ to $+85^{\circ}{\rm C}$	36 Thin QFN-EP* lead free, bulk
MAX9995ETX+TD	$T_{\rm C} = -40^{\circ}{\rm C}$ to $+85^{\circ}{\rm C}$	36 Thin QFN-EP* lead free, T/R

*EP = Exposed pad.

** T_C = Case temperature.

cdma2000 is a registered trademark of Telecommunications Industry Association.

_ Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

MAX9995

ABSOLUTE MAXIMUM RATINGS

V _{CC} C).3V to +5.5V
LO1, LO2 to GND	±0.3V
IFM_, IFD_, IFM_SET, IFD_SET, LOSEL,	
LO_ADJ_M, LO_ADJ_D to GND0.3V to	(V _{CC} + 0.3V)
RFMAIN, RFDIV, and LO_ Input Power	+20dBm
RFMAIN, RFDIV Current (RF is DC shorted to GND	through
balun)	

Continuous Power Dissipation ($T_A = +70^{\circ}C$)
36-Lead Thin QFN (derate 26mW/°C
above +70°C)2100mW
θJA+38°C/W
θJC+7.4°C/W
Operating Temperature Range (Note A) \dots T _C = -40°C to +85°C
Maximum Junction Temperature Range+150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (soldering, 10s)+300°C

Note A: T_C is the temperature on the exposed paddle of the package.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

(*Typical Application Circuit*, no input RF or LO signals applied, $V_{CC} = 4.75V$ to 5.25V, $T_C = -40^{\circ}C$ to $+85^{\circ}C$. Typical values are at $V_{CC} = 5.0V$, $T_C = +25^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNITS
Supply Voltage	VCC		4.75	5	5.25	V
		Total supply current		332	380	
		V _{CC} (pin 16)		82	90	
Supply Current	Icc	V _{CC} (pin 30)		97	110	mA
		IFM+/IFM- (total of both)		70	90	
		IFD+/IFD- (total of both)		70	90	
LOSEL Input High Voltage	VIH		2			V
LOSEL Input Low Voltage	VIL				0.8	V
LOSEL Input Current	I_{IL} and I_{IH}		-10		+10	μA

AC ELECTRICAL CHARACTERISTICS

(*Typical Application Circuit*, V_{CC} = 4.75V to 5.25V, RF and LO ports are driven from 50 Ω sources, P_{LO} = -3dBm to +3dBm, f_{RF} = 1700MHz to 2200MHz, f_{LO} = 1400MHz to 2000MHz, f_{IF} = 200MHz, with f_{RF} > f_{LO}, T_C = -40°C to +85°C. Typical values are at V_{CC} = 5.0V, P_{LO} = 0dBm, f_{RF} = 1900MHz, f_{LO} = 1700MHz, f_{IF} = 200MHz, and T_C = +25°C, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL		CONDITIONS	MIN	ТҮР	MAX	UNITS
RF Frequency	f _{RF}	(Note 7)		1700		2200	MHz
	6	(Note 7)		1400		2000	MHz
LO Frequency	flo	(Contact factory)	(Note 7)	1900		2400	MHz
IF Frequency	fıF	-	O frequency ranges; ponents affect the IF (Note 7)	40		350	MHz
			$f_{RF} = 1710MHz$ to 1875MHz		6		
Conversion Gain	GC		f _{RF} = 1850MHz to 1910MHz		6.2		dB
			$f_{RF} = 2110MHz$ to 2170MHz		6.1		

AC ELECTRICAL CHARACTERISTICS (continued)

(*Typical Application Circuit*, V_{CC} = 4.75V to 5.25V, RF and LO ports are driven from 50 Ω sources, P_{LO} = -3dBm to +3dBm, f_{RF} = 1700MHz to 2200MHz, f_{LO} = 1400MHz to 2000MHz, f_{IF} = 200MHz, with f_{RF} > f_{LO}, T_C = -40°C to +85°C. Typical values are at V_{CC} = 5.0V, P_{LO} = 0dBm, f_{RF} = 1900MHz, f_{LO} = 1700MHz, f_{IF} = 200MHz, and T_C = +25°C, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL		CONDITIONS	S	MIN	ТҮР	MAX	UNITS
		V _{CC} = 5.0V, T _C = +25°C,	f _{RF} = 1710	MHz to 1875MHz		±0.5	±1	
Gain Variation from Nominal		$P_{LO} = 0 dBm,$ $P_{RF} = -10 dBm$	f _{RF} = 1850	MHz to 1910MHz		±0.5	±1	dB
		(Note 3)	f _{RF} = 2110	MHz to 2170MHz		±0.5	±1	
Gain Variation with Temperature						±0.75		dB
			f _{RF} = 1710	MHz to 1875MHz		9.7		
Noise Figure	NF	No blockers present	f _{RF} = 1850	MHz to 1910MHz		9.8		dB
		present	f _{RF} = 2110	MHz to 2170MHz		9.9		
Noise Figure (with Blocker)		8dBm blocker tor 2000MHz, f _{RF} = P _{LO} = -3dBm				22		dB
Input 1dB Compression Point	P _{1dB}	(Note 3)			9.5	12.6		dBm
Input Third-Order Intercept Point	IIP3	(Notes 3, 4)			23	25.6		dBm
2RF-2LO Spur Rejection	2 x 2	$f_{RF} = 1900MHz,$ $f_{I,O} = 1700MHz,$		P _{RF} = -10dBm		66		dBc
	2.7.2	$f_{SPUR} = 1800MHz$	z (Note 3)	P _{RF} = -5dBm		61		abc
3RF-3LO Spur Rejection	3 x 3	f _{RF} = 1900MHz, f _{LO} = 1700MHz,		P _{RF} = -10dBm	70	88		dBc
	0 × 0	f _{SPUR} = 1766.7M	Hz (Note 3)	$P_{RF} = -5 dBm$	60	78		GDO
Maximum LO Leakage at RF Port		$f_{LO} = 1400MHz to$	o 2000MHz			-29		dBm
Maximum 2LO Leakage at RF Port		$f_{LO} = 1400MHz to$	o 2000MHz			-17		dBm
Maximum LO Leakage at IF Port		$f_{LO} = 1400MHz to$	o 2000MHz			-25		dBm
Minimum RF to IF Isolation		$f_{RF} = 1700MHz$ to	o 2200MHz, fj	F = 200MHz		37		dB
LO1-LO2 Isolation		$P_{LO1} = 0 dBm, P_{LO1}$	_ _{O2} = 0dBm (I	Note 5)	40	50.5		dB
Minimum Channel-to-Channel Isolation		P _{RF} = -10dBm, R power measured relative to IFMAIN all unused parts t	at IFDIV (IFM N (IFDIV),	AIN),	40	44		dB
LO Switching Time		50% of LOSEL to	IF settled to	within 2°		50		ns
RF Return Loss						14		dB
		LO port selected				18		
LO Return Loss		LO port unselecte	ed			21		dB
IF Return Loss		LO driven at 0dB	m, RF termina	ated into 50 Ω		21		dB

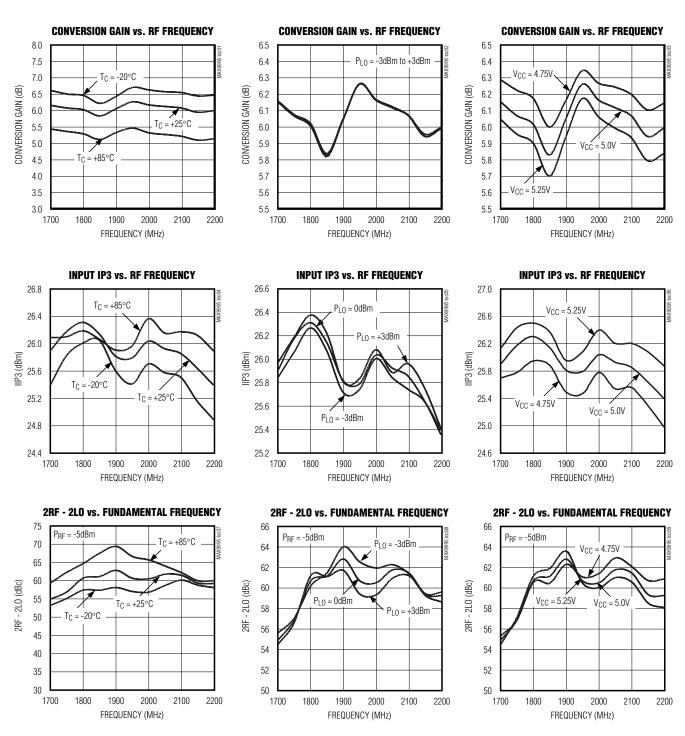
Note 1: Guaranteed by design and characterization.

Note 2: All limits reflect losses of external components. Output measurements taken at IF outputs of Typical Application Circuit.

Note 3: Production tested.

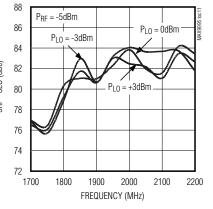
Note 4: Two tones 3MHz spacing, -5dBm per tone at RF port.

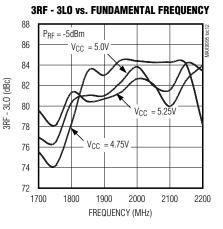
Note 5: Measured at IF port at IF frequency. f_{LO1} and f_{LO2} are offset by 1MHz.


Note 6: IF return loss can be optimized by external matching components.

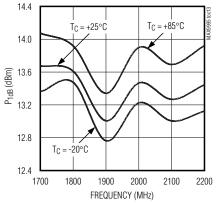
Note 7: Operation outside this frequency band is possible but has not been characterized. See the *Typical Operating Characteristics*.

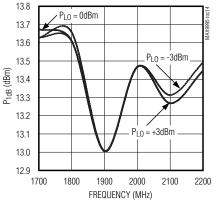

Typical Operating Characteristics

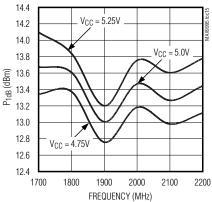

(*Typical Application Circuit*, V_{CC} = 5.0V, P_{RF} = -5dBm, P_{LO} = 0dBm, LO is low-side injected for a 200MHz IF, T_{C} = +25°C.)

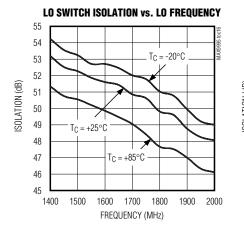


Typical Operating Characteristics (continued)

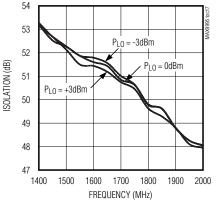

(*Typical Application Circuit*, $V_{CC} = 5.0V$, $P_{RF} = -5dBm$, $P_{LO} = 0dBm$, LO is low-side injected for a 200MHz IF, $T_{C} = +25^{\circ}C$.)

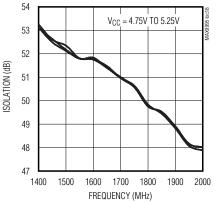



INPUT P1dB vs. RF FREQUENCY



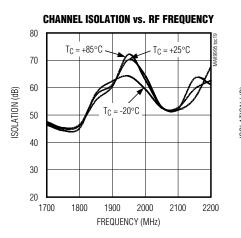
INPUT P1dB vs. RF FREQUENCY

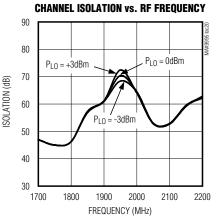

INPUT P1dB vs. RF FREQUENCY

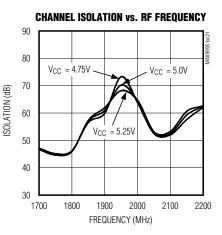


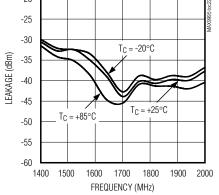
M/IXI/M

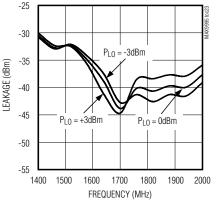
LO SWITCH ISOLATION vs. LO FREQUENCY


LO SWITCH ISOLATION vs. LO FREQUENCY




MAX9995


(*Typical Application Circuit*, $V_{CC} = 5.0V$, $P_{RF} = -5dBm$, $P_{LO} = 0dBm$, LO is low-side injected for a 200MHz IF, $T_{C} = +25^{\circ}C$.)



LO LEAKAGE AT IF PORT vs. LO FREQUENCY

LO LEAKAGE AT IF PORT vs. LO FREQUENCY

LO LEAKAGE AT RF PORT vs. LO FREQUENCY

 $P_{LO} = -3dBm$

FREQUENCY (MHz)

1600 1700

 $P_{L0} = +3dBm$

 $P_{L0} = 0 dBm$

1900 2000

1800

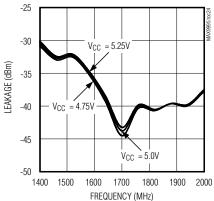
-20

-25

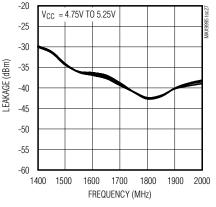
-30

-35

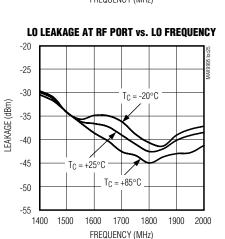
-40

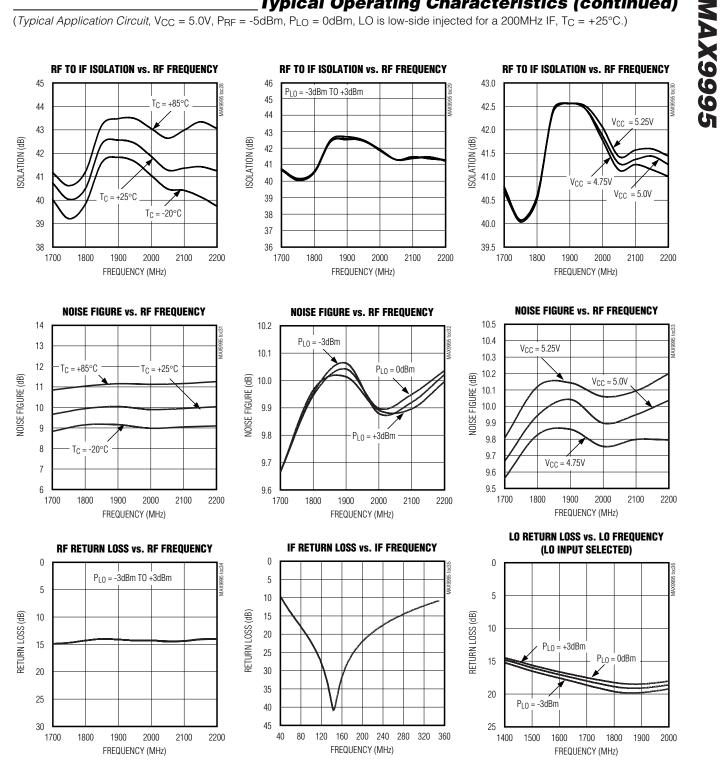

-45

-50


1400 1500

LEAKAGE (dBm)

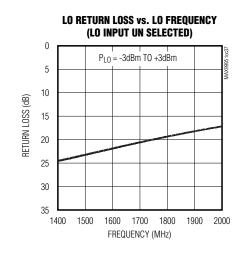

LO LEAKAGE AT IF PORT vs. LO FREQUENCY

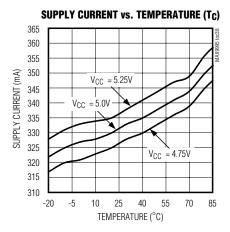


M/IXI/M

Typical Operating Characteristics (continued)

(Typical Application Circuit, $V_{CC} = 5.0V$, $P_{RF} = -5dBm$, $P_{LO} = 0dBm$, LO is low-side injected for a 200MHz IF, $T_C = +25^{\circ}C$.)




M /X / M

7

Typical Operating Characteristics (continued)

(*Typical Application Circuit*, $V_{CC} = 5.0V$, $P_{RF} = -5dBm$, $P_{LO} = 0dBm$, LO is low-side injected for a 200MHz IF, $T_{C} = +25^{\circ}C$.)

Pin Description

PIN	NAME	FUNCTION
1	RFMAIN	Main Channel RF Input. Internally matched to 50Ω . Requires an input DC-blocking capacitor.
2	TAPMAIN	Main Channel Balun Center Tap. Connect a 0.033µF capacitor from this pin to the board ground.
3, 5, 7, 12, 20, 22, 24, 25, 26, 34	GND	Ground
4, 6, 10, 16, 21, 30, 36	V _{CC}	Power Supply. Connect bypass capacitors as close to the pin as possible (see the <i>Typical Application Circuit</i>).
8	TAPDIV	Diversity Channel Balun Center Tap. Connect a 0.033µF capacitor from this pin to the ground.
9	RFDIV	Diversity Channel RF Input. Internally matched to 50 Ω . Requires an input DC-blocking capacitor.
11	IFD_SET	IF Diversity Amplifier Bias Control. Connect a $1.2k\Omega$ resistor from this pin to ground to set the bias current for the diversity IF amplifier.
13, 14	IFD+, IFD-	Diversity Mixer Differential IF Output. Connect pullup inductors from each of these pins to V _{CC} (see the <i>Typical Application Circuit</i>).
15	IND_EXTD	Connect a 10nH inductor from this pin to ground to increase the RF-IF and LO-IF isolation.
17	LO_ADJ_D	LO Diversity Amplifier Bias Control. Connect a 392Ω resistor from this pin to ground to set the bias current for the diversity LO amplifier.
18, 28	N.C.	No Connection. Not internally connected.
19	LO1	Local Oscillator 1 Input. This input is internally matched to 50Ω . Requires an input DC-blocking capacitor.
23	LOSEL	Local Oscillator Select. Set this pin to high to select LO1. Set to low to select LO2.

Pin Description (continued)

PIN	NAME	DESCRIPTION
27	LO2	Local Oscillator 2 Input. This input is internally matched to 50Ω . Requires an input DC-blocking capacitor.
29	LO_ADJ_M	LO Main Amplifier Bias Control. Connect a 392Ω resistor from this pin to ground to set the bias current for the main LO amplifier.
31	IND_EXTM	Connect a 10nH inductor from this pin to ground to increase the RF-IF and LO-IF isolation.
32, 33	IFM-, IFM+	Main Mixer Differential IF Output. Connect pullup inductors from each of these pins to V _{CC} (see the <i>Typical Application Circuit</i>).
35	IFM_SET	IF Main Amplifier Bias Control. Connect a $1.2k\Omega$ resistor from this pin to ground to set the bias current for the main IF amplifier.
Exposed Paddle	GND	Exposed Ground Plane. This paddle affects RF performance and provides heat dissipation. The paddle must be connected to ground.

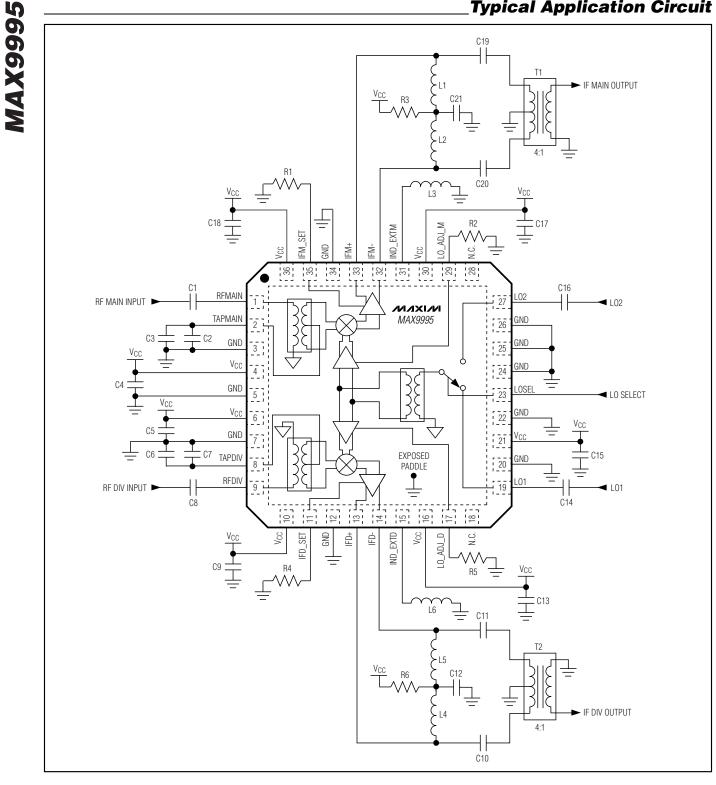
Detailed Description

The MAX9995 dual, high-linearity, downconversion mixer provides 6.1dB gain and +25.6dBm IIP3, with a 9.8dB noise figure. Integrated baluns and matching circuitry allow 50 Ω single-ended interfaces to the RF and LO ports. A single-pole, double-throw (SPDT) LO switch provides 50ns switching time between LO inputs, with 50dB LO-to-LO isolation. Furthermore, the

COMPONENT	VALUE	DESCRIPTION
C1, C8	4pF	Microwave capacitors (0402)
C2, C7	10pF	Microwave capacitors (0402)
C3, C6	0.033µF	Microwave capacitors (0603)
C4, C5, C14, C16	22pF	Microwave capacitors (0402)
C9, C13, C15, C17, C18	0.01µF	Microwave capacitors (0402)
C10, C11, C12, C19, C20, C21	150pF	Microwave capacitors (0603)
L1, L2, L4, L5	330nH	Wire-wound high-Q inductors (0805)
L3, L6	10nH	Wire-wound high-Q inductors (0603)
R1, R4	1.21kΩ	±1% resistors (0402)
R2, R5	392 Ω	±1% resistors (0402)
R3, R6	10Ω	±1% resistors (1206)
T1, T2	4:1 (200:50)	IF baluns

Table 1. Component Values

integrated LO buffer provides a high drive level to the mixer core, reducing the LO drive required at the MAX9995's inputs to -3dBm. The IF port incorporates a differential output, which is ideal for providing enhanced 2RF-2LO performance.


Specifications are guaranteed over broad frequency ranges to allow for use in UMTS/WCDMA and 2G/2.5G/3G DCS1800, PCS1900, and cdma2000 base stations. The MAX9995 is specified to operate over an RF input range of 1700MHz to 2200MHz, an LO range of 1400MHz to 2000MHz, and an IF range of 400Hz to 350MHz. Operation beyond this is possible; however, performance is not characterized. This device can operate in high-side LO injection applications with an extended LO range, but performance degrades as fLO continues to increase. For a device with better high-side performance, contact the factory. This device is available in a compact 6mm x 6mm, 36-pin thin QFN package with an exposed paddle.

RF Input and Balun

The MAX9995's two RF inputs (RFMAIN and RFDIV) are internally matched to 50Ω , requiring no external matching components. DC-blocking capacitors are required as the inputs are internally DC shorted to ground through the on-chip baluns. Input return loss is typically 14dB over the entire RF frequency range of 1700MHz to 2200MHz.

LO Input, Switch, Buffer, and Balun

The mixers can be used for either high-side or low-side injection applications with an LO frequency range of 1400MHz to 2000MHz. For a device with an LO frequency range of 1900MHz to 2400MHz, contact the factory. As an added feature, the MAX9995 includes an

Typical Application Circuit

M/IXI/M

internal LO SPDT switch that can be used for frequency-hopping applications. The switch selects one of the two single-ended LO ports, allowing the external oscillator to settle on a particular frequency before it is switched in. LO switching time is typically less than 50ns, which is more than adequate for virtually all GSM applications. If frequency hopping is not employed, set the switch to either of the LO inputs. The switch is controlled by a digital input (LOSEL): logic high selects LO1, and logic low selects LO2. LO1 and LO2 inputs are internally matched to 50Ω , requiring only a 22pF DC-blocking capacitor.

A two-stage internal LO buffer allows a wide input power range for the LO drive. All guaranteed specifications are for an LO signal power from -3dBm to +3dBm. The on-chip low-loss balun, along with an LO buffer, drives the double-balanced mixer. All interfacing and matching components from the LO inputs to the IF outputs are integrated on-chip.

High Linearity Mixers

The core of the MAX9995 is a pair of double-balanced, high-performance passive mixers. Exceptional linearity is provided by the large LO swing from the on-chip LO buffer. When combined with the integrated IF amplifiers, the cascaded IIP3, 2RF-2LO rejection, and NF performance is typically +25.6dBm, 66dBc, and 9.8dB, respectively.

Differential IF Output Amplifiers

The MAX9995 mixers have an IF frequency range of 40MHz to 350MHz. The differential, open-collector IF output ports require external pullup inductors to V_{CC}. Note that these differential outputs are ideal for providing enhanced 2RF-2LO rejection performance. Single-ended IF applications require a 4:1 balun to transform the 200 Ω differential output impedance to a 50 Ω single-ended output. After the balun, VSWR is typically 1.5:1.

_Applications Information

Input and Output Matching

The RF and LO inputs are internally matched to 50Ω . No matching components are required. Return loss at each RF port is typically 14dB over the entire input range (1700MHz to 2200MHz), and return loss at the LO ports is typically 18dB (1400MHz to 2000MHz). RF and LO inputs require only DC-blocking capacitors for interfacing.

The IF output impedance is 200Ω (differential). For evaluation, an external low-loss 4:1 (impedance ratio) balun transforms this impedance down to a 50Ω single-ended output (see the *Typical Application Circuit*).

Bias Resistors

Bias currents for the LO buffer and the IF amplifier are optimized by fine tuning the resistors R1, R2, R4, and R5. If reduced current is required at the expense of performance, contact factory. If the $\pm 1\%$ bias resistor values are not readily available, substitute standard $\pm 5\%$ values.

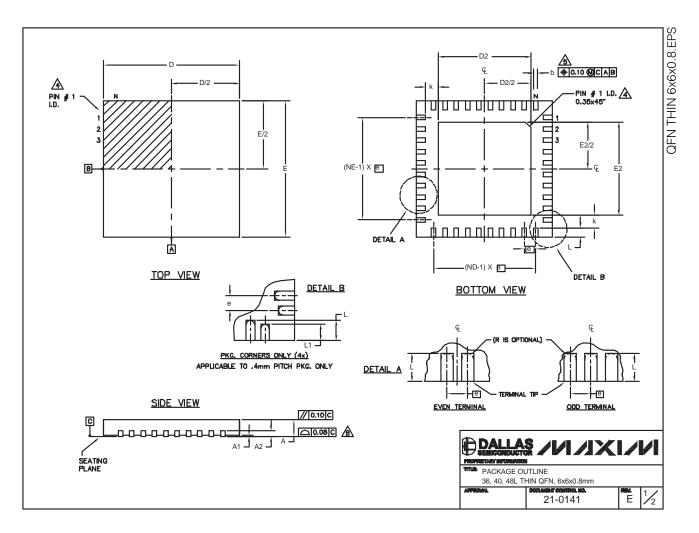
Layout Considerations

A properly designed PC board is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. For the best performance, route the ground pin traces directly to the exposed pad under the package. The PC board exposed pad **MUST** be connected to the ground plane of the PC board. It is suggested that multiple vias be used to connect this pad to the lower-level ground planes. This method provides a good RF/thermal-conduction path for the device. Solder the exposed pad on the bottom of the device package to the PC board. The MAX9995 Evaluation Kit can be used as a reference for board layout. Gerber files are available upon request at www.maxim-ic.com.

Power-Supply Bypassing

Proper voltage-supply bypassing is essential for high-frequency circuit stability. Bypass each V_{CC} pin with a capacitor as close to the pin as possible (*Typical Application Circuit*).

Exposed Pad RF/Thermal Considerations


The exposed paddle (EP) of the MAX9995's 36-pin thin QFN-EP package provides a low thermal-resistance path to the die. It is important that the PC board on which the MAX9995 is mounted be designed to conduct heat from the EP. In addition, provide the EP with a low-inductance path to electrical ground. The EP **MUST** be soldered to a ground plane on the PC board, either directly or through an array of plated via holes.

Chip Information

TRANSISTOR COUNT: 1414 PROCESS: SiGe BiCMOS

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

			cc	MMON	DIMENS	IONS						EXPO	ISED PA	d vari	TIONS			DOWN
PKG.		36L 6x6			40L 6x6	i		48L 6x6	6		PKG.		DZ			E2		BONDS
SYMBO	L MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		CODES	MIN.	NOM.	MAX.	MIN.	NON.	MAX.	
A	0.70	0.75	0.80	0.70	0.75	0.60	0.70	0.75	0.80		T3666-1	3.60	3.70	3.80	3.60	3.70	3.80	NO
A1	0	0.02	0.05	0	0.02	0.05	0	-	0.05		T3666-2	3.60	3.70	3.80	3.60	3.70	3.80	YES
A2		0.20 REF			0.20 REF.			0.20 REF			T3666-3	3.60	3.70	3.80	3.60	3.70	3.80	NO
b	0.20	0.25	D.3D	0.20	0.25	0.30	0.15	0.20	0.25		T4066-1	4.00	4.10	4.20	4.00	4.10	4.20	NO
D	5.90	6.00	6.10	5,90	6.00	6.10	5.90	6.00	6.10		T4066-2	4.00	4.10	4.20	4.00	4.10	4.20	YES
E	5.90	6.DD	6.10	5.90	6.00	6.10	5.90	00.ð	6.10		T4066-3	4.00	4.10	4.20	4.00	4.10	4.20	YES
e		0.50 BSC			0.50 BSC.	i		0.40 BSC			T4066-4	4.00		4.20	4.00	4.10	4.20	NO
k	0.25	-	-	0.25	-	-	0.25	0.35	0.45		T4066-5	4.00		4.20	4.00	4.10	4.20	NO
L	0.45	0.55	D.65	0.30	0.40	0.50	0.40	0.50	0.60		T4866-1	4.20	4.30	4.40	4.20	4.30	4.40	YES
L1	-		-	-	-	-	0.30	0.40	0.50									
ND ND	_	<u>36</u> 9			40 10			48 12										
ME																		
NE JEDEC		9 WJJD-1			10 10 WJJD-2			12 12 -										
JEDEC DIMENS ALL DIM N IS TH THE TEI SPP-012	SIONING & ENSIONS E TOTAL N	8 WJD-1 TOLERA ARE IN M UMBER IDENTIF	IILLIMET OF TERM IER AND MINAL #	ERS. AN IINALS. TERMIN 1 IDENT	10 WJJD-2 M TO AS IGLES AI IAL NUM	RE IN DE IBERING RE OPTIC	GREES CONVE	12 -	BE LOC	ATED WIT		1						
JEDEC TES: DIMENS ALL DIM N IS TH THE TEI SPP-012 ZONE IN	SIONING & ENSIONS E TOTAL N RMINAL #1 2. DETAILS	9 WJJD-1 TOLERA ARE IN N UMBER IDENTIF S OF TER THE TEI LIES TO	nillimet of term ier and minal # Rminal #	ERS. AN IINALS. TERMIN 1 IDENT 1 IDENT	ID WJJD-2 M TO AS IGLES AI IAL NUM IFIER AF	re in de Ibering Re optic Ay be ei	GREES CONVE DNAL, BI	12 - SNTION S UT MUST A MOLD C	DR MARK	ATED WIT	HIN THE JRE.	1						
JEDEC TES: DIMENS ALL DIM N IS TH THE TEL SPP-012 ZONE IN ZONE IN FROM T	SIONING & ENSIONS E TOTAL N RMINAL #1 2. DETAILS IDICATED. ION b APP	9 WJJD-1 TOLERA ARE IN M UMBER IDENTIF S OF TER THE TEI LIES TO TIP.	11LLIMET OF TERM IER AND MINAL # RMINAL # METALLI	ERS. AN IINALS. TERMIN 1 IDENT 1 IDENT 2 IDENT ZED TEI	10 WJJD-2 M TO AS IGLES AI IAL NUM IFIER AF IFIER M RMINAL	RE IN DE IBERING RE OPTIC IAY BE EI AND IS M	CONVE DNAL, BI THER A	12 - S. UT MUST MOLD C RED BETV	BE LOC. DR MARK WEEN 0.2	ATED WIT ED FEATU 5 mm ANI	HIN THE JRE. D 0.30 mm	I						
TES: DIMENS ALL DIM N IS TH THE TEI SPP-012 ZONE IN ZONE IN GIMENS FROM T	GIONING & ENSIONS E TOTAL N RMINAL #1 2. DETAIL IDICATED. ION b APP ERMINAL	9 WJJD-1 TOLERA ARE IN N UMBER 1 IDENTIF S OF TER S OF TER S OF TER THE TEI LIES TO TIP. R TO TH	ILLIMET OF TERM IER AND MINAL # METALLI E NUMBE	ERS. AN IINALS. TERMIN 1 IDENT 11 IDENT 2ED TEI 2ED TEI	10 WJJD-2 M TO AS IGLES AI IAL NUM IFIER AR IFIER M RMINAL	RE IN DE IBERING RE OPTIC AY BE EI AND IS M LS ON EA	CONVE DNAL, BU THER A MEASUR	12 - S. UT MUST MOLD C RED BETV	BE LOC. DR MARK WEEN 0.2	ATED WIT ED FEATU 5 mm ANI	HIN THE JRE. D 0.30 mm							
TES: DIMENS ALL DIM N IS TH SPP-012 ZONE IN ADIMENS FROM T ND AND DEPOP	IONING & ENSIONS E TOTAL N RMINAL #1 2. DETAILS IDICATED. ION b APP ERMINAL D NE REFE	9 WJJD-1 TOLERA ARE IN N UMBER 1 IDENTIF S OF TER THE TEI LIES TO TIP. R TO TH S POSSII	IILLIMET OF TERM IER AND MINAL # RMINAL # METALLI E NUMBE BLE IN A	ERS. AN IINALS. TERMIN 1 IDENT 11 IDENT 2ED TEI ER OF TI SYMME	10 WJJD-2 W TO AS IGLES AI IFIER AF IFIER M RMINAL ERMINAL TRICAL I	RE IN DE IBERING RE OPTIC AY BE EI AND IS M LS ON EA FASHION	CONVE MAL, BU THER A MEASUR ACH D A	12 - STION S UT MUST MOLD C RED BET	DE LOC DR MARK WEEN 0.2 DE RESPI	ATED WIT ED FEATU 5 mm ANN	HIN THE JRE. D 0.30 mm		DAI		S /			<u>×I</u>
JEDEC DIMENS ALL DIM N IS TH THE TEI SPP-012 ZONE IN DIMENS FROM T ND ANE DEPOP	IONING & ENSIONS E TOTAL N RMINAL #1 2. DETAILS DICATED. ION b APP ERMINAL D NE REFE ULATION I	9 WJJD-1 TOLERA ARE IN N UMBER IDENTIF S OF TER THE TEI LIES TO TIP. R TO TH S POSSII PPLIES T	IILLIMET OF TERN IER AND IMINAL # METALLI E NUMBE BLE IN A O THE E	ERS. AN IINALS. TERMIN 1 IDENT 1 IDENT 2ED TEI 2ED TEI 2ER OF TI SYMME (POSED	10 WJJD-2 M TO AS IGLES AI IFIER AF IFIER M RMINAL ERMINAL TRICAL I HEAT S	RE IN DE IBERING RE OPTIC IAY BE EI AND IS M LS ON EA FASHION SINK SLU	GREES CONVE DNAL, BI THER A MEASUR ACH D A J. G AS W	12 - - - - - - - - - - - - - - - - - - -	T BE LOC. DR MARK WEEN 0.2 DE RESPI	ATED WIT ED FEATU 5 mm ANI ECTIVELY MINALS.	HIN THE JRE. D 0.30 mm					'M		XL

ed) MAX9995

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ___

is a registered trademark of Maxim Integrated Products.

____ 13