

POWERTIP TECH. CORP.

Specification For Approval

Customer	•	
Model Type	:	LCD Module
Sample Code	:	
Mass Production Code	:	PG12864LRS-HNN-B
Edit	:	0

Customer	Sign	Sales	Sign	Approved	Ву	Prepared	Ву

CONTENTS

1.SPECIFICATIONS

- 1.1 Features
- 1.2 Mechanical Specifications
- 1.3 Absolute Maximum Ratings
- 1.4 DC Electrical Characteristics
- 1.5 Optical Characteristics
- 1.6 Backlight Characteristics

2.MODULE STRUCTURE

- 2.1 Counter Drawing
- 2.2 Interface Pin Description
- 2.3 Timing Characteristics
- 2.4 Display Command

1. SPECIFICATIONS

1.1 Features

- Full dot-matrix structure with 128 dots *64 dots
- 1/64 Duty, 1/9 bias
- STN LCD, positive, gray display
- Transflective LCD
- 6 o'clock viewing angle
- 8 bits parallel data input ,with controller IC T6963C
- Built-in negative voltage and LED backlight

1.2 Mechanical Specifications

• Outline dimension : 87.0mm(L) *71.0mm(W)*14.3mm max.(H)

Viewing area : 62.0mm *44.0mm
 Active area : 56.27mm *38.35mm
 Dot size : 0.39mm *0.55mm
 Dot pitch : 0.44mm *0.6mm

1.3 Absolute Maximum Ratings

Item	Symbol	Conditions	Min.	Max.	Unit
Power supply Voltage	Vdd	-	4.5	5.5	V
LCD drive Supply voltage	VDD-VEE	-	12.0	17	V
Input voltage	VIN	-	-0.3	VDD+0.3	V
Operating temperature	TOPR	-	0	50	°C
Storage temperature	TSTG	-	-20	60	°C
Humidity*1	HD	-	-	90	%RH

1.4 DC Electrical Characteristics

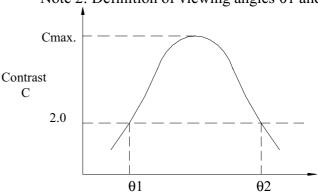
VDD=+5V+10%, VSS=0V, TA=25°C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Logic Supply voltage	Vdd	-	4.5	5	5.5	V
"H" input voltage	Vih	-	0.8VDD	ı	Vdd	V
"L" input voltage	VIL	-	0	-	0.2VDD	V
"H" output voltage	Vон	-	VDD-0.3	-	-	V
"L" output voltage	Vol	-	-	-	0.3	V
Supply current	Idd	VDD=5V	-	1	8	mA
LCD driving voltage	Vop	VDD-VO	-	8.4	-	V

1.5 Optical Characteristics

1/64 duty	1/9 bias	Vopr=10.3V.	$Ta=25^{\circ}C$
1/OI duty.	I/ J DIUD	1001 10.51.	1 u 25 C

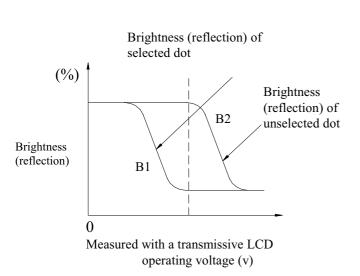
Item	Symbol	Conditions	Min.	Тур.	Max	Reference
Viewing angle	θ	C≥2.0,Ø=0°C	-30°	-	30°	Notes 1 & 2
Contrast	С	θ=5°, Ø=0°	-	3	-	Note 3
Response time(rise)	tr	θ=5°, Ø=0°	-	150ms	300ms	Note 4
Response time(fall)	tf	θ=5°, Ø=0°	-	300ms	500ms	Note 4

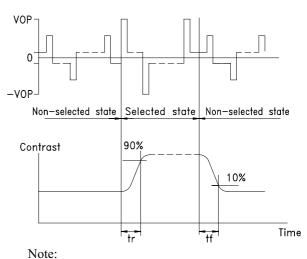

Note 1: Definition of angles θ and \emptyset

Light (when reflected) z (θ = 0°)

Sensor $Y'(\emptyset$ = 180°)

LCD panel X' Z'Light (when transmitted) $Y(\emptyset$ = 0°) $(\theta$ = 90°)


Note 2: Definition of viewing angles θ 1 and θ 2


 $\begin{array}{c} \text{viewing angle }\theta \ (\ensuremath{\varnothing} \text{ fixed}) \\ \text{Note:} \quad \text{Optimum viewing angle with the} \\ \text{naked eye and viewing angle }\theta \text{ at} \\ \text{Cmax. Above are not always the same} \end{array}$

Note 3: Definition of contrast C

 $C = \frac{\text{Brightness (reflection) of unselected dot (B2)}}{\text{Brightness (reflection) of selected dot (B1)}}$

Note 4: Definition of response time

panel which is displayed 1 cm²

 V_{OPR} : Operating voltage f_{FRM} : Frame frequency t_r : Response time (rise) t_f : Response time (fall)

POWERTIP TECHNOLOGY CORPORATION

1.6 Backlight Characteristic

The LCD Module is using a CCFL panel backlight

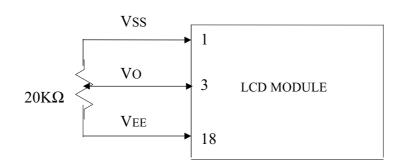
•. Maximum Ratings

Item	Symbol	Condition	Min.	Max.	Unit
Forward current	IF	TA=25°C	-	875	mA
Reverse voltage	VR	TA=25°C	-	8	V
Power dissipation	РО	TA=25°C	-	4.02	W
Operating temperature	TOPR	-	-20	70	°C
Storage temperature	TSTG	-	-40	80	°C

•. Electrical Ratings

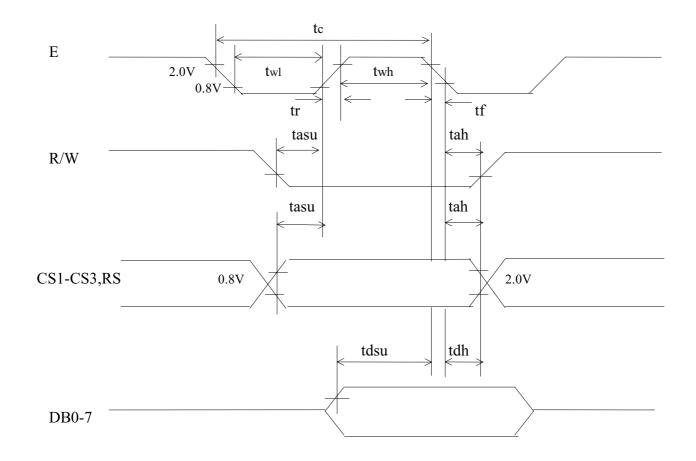
Item	Symbol	Condition	Min.	Тур.	Max.	Unit		
Forward voltage	VF	IF=350mA	3.8	4.2	4.6	V		
Reverse current	IR	VR=8V	İ	ı	0.2	mA		
Luminous intensity	PO	IF=350mA	220	270	ı	cd/m ²		
Wavelength	λp	IF=350mA	565	1	571	mArms		
Color	Yellow Green							

2. MODULE STRUCTURE

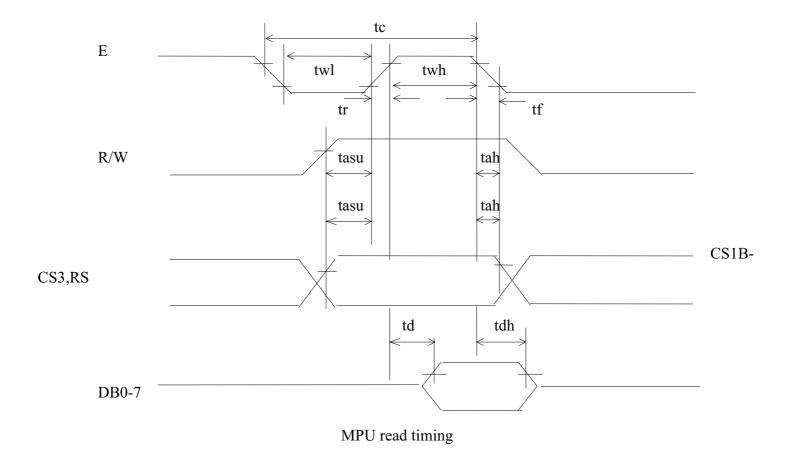

2.1 Counter Drawing

*See Appendix

2.2 Interface Pin Description


Pin No.	Symbol	Function
1	Vss	Signal ground (GND)
2	Vdd	Power supply for logic (+5V)
3	V0	Operating voltage for LCD (variable)
4	D/ I	Register selection input High = Data register Low = Instruction register (for write) Busy flag address counter (for read)
5	R/W	R/W signal input is used to select the read/write mode High = Read mode, Low = Write mode
6	Е	Start enable signal to read or write the data
7~10	DB0~DB3	Four low order bi-directional three-state data bus lines. Used for data transfer between the MPU and the LCD module. These four are not used during 4-bit operation.
11~14	DB4~DB7	For high order bi-directional three-state data bus lines. Used for data transfer between the MPU and the LCD module. DB7 can be used as a busy flag.
15	CS1	Chip enable for D2 (segment 1 to segment 64)
16	$\overline{\text{CS2}}$	Chip enable for D3 (segment 1 to segment 64)
17	RST	Reset signal
18	Vee	Negative voltage power supply
19	NC	Non-connection
20	NC	Non-connection

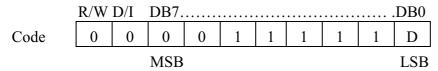
Contrast Adjust



2.3 Timing Characteristics

MPU write timing

Characteristic	Symbol	Min.	Тур	Max	Unit
E cycle time	tc	1000	-	-	ns
E High Level Width	twh	450	-	-	ns
E Low Level Width	twl	450	-	-	ns
E Rise Time	tr	-	-	25	ns
E Fall Time	tf	-	-	25	ns
Address Set-Up Time	tasu	140	-	-	ns
Address Hold Time	tah	10	-	-	ns
Data Set-Up Time	tsu	200	-	-	ns
Data Delay Time	td	-	-	320	ns
Data Hold Time (Write)	tdhw	10	-	-	ns
Data Hold Time (Read)	tdhr	20	_	-	ns


2.4 Display command

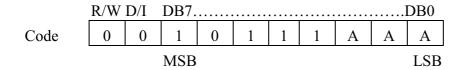
					Co	de					_		
	R/	D/I	DB7	DB	DB5	DB	DB	DB	DB	DB0			
Instructions	W			6		4	3	2	1		Functions		
Display on/off	0	0	0	0	1	1	1	1	1	1/0	Controls dis	play on/off. R	AM data and internal
											status are no	ot affected.	
Display start line	0	0	1	1	Disp	lay s	tart	line	(0-6	63)	•	e RAM line di	splayed at the top of
Set Page (x	0	0	1	0	1	1	1	Do	go (0-7)	the screen.	o (V addraga)	of RAM at the page
address)	U	U	1	U	1	1	1	1 a	gc (0-7)	(X address)		of KAWI at the page
Set Y address	0	0	0	1	Y ad	dres	s (()	-63)					address in the
Set 1 address	U	O	O	1	1 au	arcs	3 (0	-03)			counter.	daress in the	address in the
Status read	1	0	Busy	0	ON/	Res	set 0	0	0	0	Reads the st	atus.	
					OFF						Reads	1: Reset	
												0: Normal	
											ON/OFF	1: Display of	ff
												0: Display or	n
											Busy	1: Internal o	peration
												0: Ready	
Write display data	0	1	Writ	e da	ta						Writes data	DB0 (LSB)	Has access to the
											to DB7 (MS	B) on the	address of the
											data bus into	o display	display RAM
											RAM.		specified in
Read display data	1	1	Read	dat	ta						Reads data l	OB0 (LSB)	advance. After the
											to DB7 (MS	B) from the	access, Y address is
											display RAN	M to the data	increased by 1.
											bus.		

Note: Busy time varies with the frequency (f CLK) of \emptyset 1, and \emptyset 2. $(1/^f$ CLK \leq T BUSY \leq $3/^f$ CLK)

Detailed Explanation

Display On/Off

The display data appears when D is 1 and disappears when D is 0. Though the data is not on the screen with D=0, it remains in the display data RAM. Therefore, you can make it appear by changing D=0 into D=1.



Display Start Line

	R/W	D/I	DB7.							.DB0
Code	0	0	1	1	A	A	A	A	A	A
			MSB							LSB


Z address AAAAA (binary) of the display data RAM is set in the display start line register and displayed at the top of the screen. Figure 1 shows examples of display (1/64 duty cycle) when the start line=0-3. When the display duty cycle is 1/64 or more (ex. 1/32, 1/24 etc.), the data of total line number of LCD screen, from the line specified by display start line instruction, is displayed.

Set page (X address)

X address AAA (binary) of the display data RAM is set in the X address register. After that, writing or reading to or from MPU is executed in this specified page until the next page is set. See figure 2.

Set Y Address

Y address AAAAA (binary) of the display data RAM is set in the Y address Counter. After that, Y address counter is increased by 1 every time the data is written or read to or from MPU.

Status Read

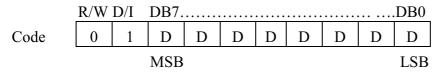
• Busy

When busy is 1, the LSI is executing internal operations. No instructions are accepted while busy is 1, so you should make sure that busy is 0 before writing the next instruction.

• ON/OFF

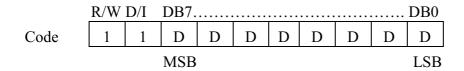
Shows the liquid crystal display conditions: on condition or off condition.

When on/off is 1, the display is in off condition.

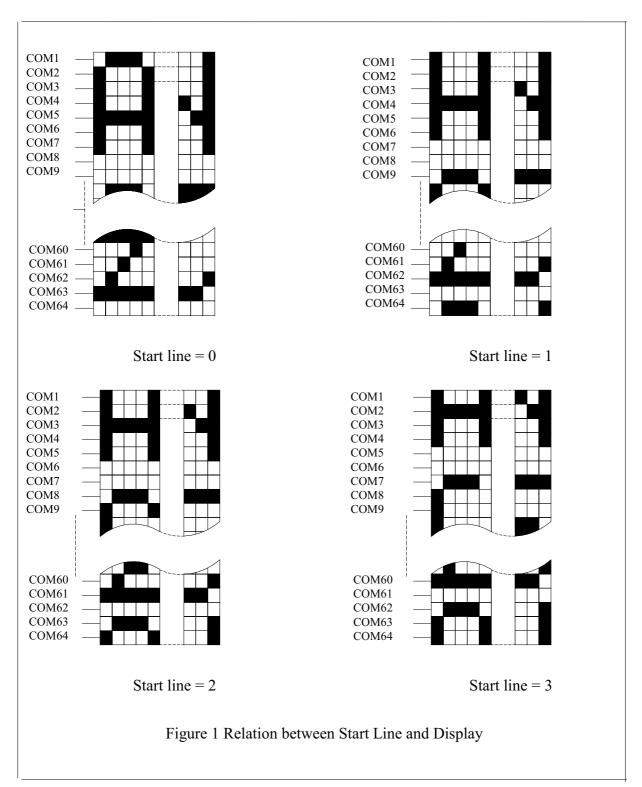

When on/off is 0, the display is in on condition.

• RESET

RESET=1 shows that the system is being initialized. In this condition, no instructions except status read can be accepted.


RESET=0 shows that initializing has finished and the system is in the usual operation condition.

Write Display Data


Write 8-bit data DDDDDDD (binary) into the display data RAM. Then Y address is increased by 1 automatically.

Read Display Data

Reads out 8-bit data DDDDDDD (binary) from the display data RAM. Then Y address is increased by 1 automatically.

One dummy read is necessary right after the address setting. For details, refer to the explanation of output register in "Function of Each Block".

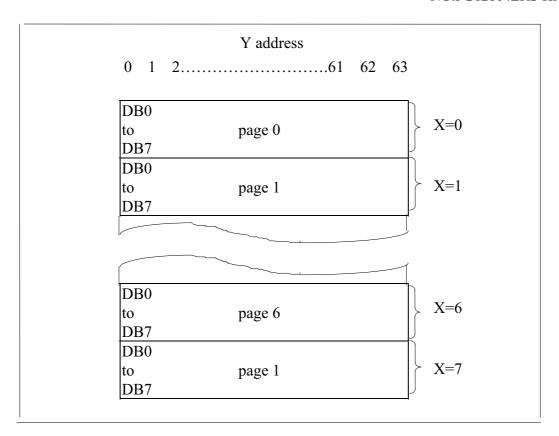


Figure 2 Address Configuration of Display Data RAM