

POWERTIP TECH. CORP.

DISPLAY DEVICES FOR BETTER ELECTRONIC DESIGN

Specification For Approval

11151	tomer Sign Sales Sig	'n	Approved By Prepared By	•
	Edit	:	<u>A</u>	
	Mass Production Co	de:	PG12864LRS-JNN-B-SA	
	Sample Code	:		
	Model Type	:	LCD Module	
	Customer	:		

CONTENTS

1.SPECIFICATIONS

- 1.1 Features
- 1.2 Mechanical Specifications
- 1.3 Absolute Maximum Ratings
- 1.4 DC Electrical Characteristics
- 1.5 Optical Characteristics
- 1.6 Backlight Characteristics

2.MODULE STRUCTURE

- 2.1 Counter Drawing
- 2.2 Interface Pin Description
- 2.3 Timing Characteristics
- 2.4 Display Command

3.RELIABILITY

3.1 Content of Reliability Test

1. SPECIFICATIONS

1.1 Features

- Full dot-matrix structure with 128 dots *64 dots
- 1/64 Duty, 1/9 bias
- STN LCD, positive
- Transflective LCD, gray
- 6 o'clock viewing angle
- 8 bits parallel data input
- LED Backlight

1.2 Mechanical Specifications

• Outline dimension : 75.0 mm(L)*52.7 mm(W)*8.4 mm(H)

Viewing area
 Active area
 Dot size
 Dot pitch
 60.0mm *32.6mm
 27.49mm
 0.39mm *0.39mm
 0.43mm *0.43mm

1.3 Absolute Maximum Ratings

Item	Symbol	Conditions	Min.	Max.	Unit
Power supply Voltage	Vcc	-	0	6.7	V
LCD drive Supply voltage	VCC-VLC	1	0	8.15	V
Input voltage	VIN	1	0	Vcc+0.3	V
Operating temperature	TOPR	1	0	+50	°C
Storage temperature	TSTG	1	-20	+70	°C
Humidity*1	HD	1	Ī	90	%RH

1.4 DC Electrical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Logic Supply voltage	VCC	-	4.5	5	5.5	V
"H" input voltage	VIH	-	0.7VCC	-	VCC	V
"L" input voltage	Vil	-	0	-	0.3VCC	V
Supply current	Idd	Vcc=5V	-	1.32	0.33	mA
LCD driving voltage	Vop	VCC-VLC	8.14	-	9.20	V

1.5 Optical Characteristics

1/64 duty, 1/9 bias, Vopr=8.15V, Ta=25°C

				J ,		
Item	Symbol	Conditions	Min.	Тур.	Max	Reference
Viewing angle	θ	C≥2.0,Ø=0°C	30°	-	ı	Notes 1 & 2
Contrast	С	θ=5°, Ø=0°	2	3	ı	Note 3
Response time(rise)	tr	θ=5°, Ø=0°	-	130ms	200ms	Note 4
Response time(fall)	tf	θ=5°, Ø=0°	-	300ms	500ms	Note 4

Note 1: Definition of angles θ and \emptyset

Light (when reflected) $z (\theta=0^{\circ})$ Sensor θ LCD panel

Light (when transmitted) $Y(\emptyset=0^{\circ})$ $(\theta=90^{\circ})$

Note 2: Definition of viewing angles $\theta 1$ and $\theta 2$

viewing angle θ (\emptyset fixed)

Note: Optimum viewing angle with the naked eye and viewing angle θ at Cmax. Above are not always the same.

Note 3: Definition of contrast C

Brightness (reflection) of unselected dot (B2)

Ø

X(∅=90°)

 $C = \frac{}{\text{Brightness (reflection) of selected dot (B1)}}$

Note 4: Definition of response time

Note:Measured with a transmissive LCD panel which is displayed 1 cm²

Vopr : Operating voltgae fFRM : Frame frequency tr : Response time (rise) tf : Response time(fall)

1.6 Backlight Characteristic

The LCD Module is backlight using a LED panel

•. Maximum Ratings

Item	Symbol	Conditions	Min.	Max.	Unit
Forward current	IF	TA=25°C	1	25	mA
Reverse voltage	VR	TA=25°C	1	8	V
Power dissipation	РО	TA=25°C	-	1.5	W
Operating Temperature	TOPR	-	-20	70	°C
Storage temperature	TSTG	-	-40	80	°C

•. Electrical Ratings

Item	Symbol	Condition	Min.	Тур.	Max.	Unit			
Forward voltage	VF	IF=100mA	-	4.1	4.4	V			
Reverse current	IR	VR=8V	-	-	0.2	mA			
Luminous intensity	Iv	IF=100mA	-	20	-	cd/m ²			
Wavelength	HUE	IF=100mA	571	-	576	nm			
Color	Yellow Green								

•.Light LED Backlight

2. MODULE STRUCTURE

2.1 Counter Drawing

*See Appendix

2.2 Interface Pin Description

Pin No.	Symbol	Function
1	Vdd	Power supply for logic (+5V)
2	Vss	Signal ground (GND)
3	VLC	Operating voltage for LCD (variable)
4 -7	DB0~	Four low order bi-directional three-state data bus lines. Use for data transfer between the MPU and the LCD module.
- ,	DB3	These four are not used during 4-bit operation.
8 -11	DB4~	For high order bi-directional three-state data bus lines. Used for data transfer between the MPU and the LCD module.
0-11	DB7	DB7 can be used as a busy flag.
12	/CS1	Chip enable for D2 (segment 1 to segment 64)
13	/CS2	Chip enable for D3 (segment 65 to segment 128)
14	RST	Reset signal
15	R/W	R/W signal input is used to select the read/write mode High =Read mode, Low =Write mode
16	D/ I	Register selection input High =Data register Low =Instruction register (for write) Busy flag address counter (for read)
17	E	Start enable signal to read or write the data
18	Vss	Ground
19	A	LED Backlight(+)
20	K	LED Backlight(-)

Contrast Adjust

2.3 Timing Characteristics

MPU Write timing

MPU Read timing

Characteristic	Symbol	Min.	Тур	Max	Unit
E Cycle	tC	1000	-	-	ns
E High Level Width	tWH	450		-	ns
E Low Level Width	tWL	450	-	-	ns
E Rise Time	tR	-	-	25	ns
E Fall Time	tF	-	-	25	ns
Address Set-Up time	tASU	140	-	-	ns
Address Hold Time	tAH	10	-	-	ns
Data Set-Up Time	tsu	200		-	ns
Data Delay Time	tD	-	-	320	ns
Data Hold Time (Write)	tDHW	10	-	-	ns
Data Hold Time (Read)	tDHR	20	-	-	ns

2.4 Display command

					C	ode						
Instructions	R/W	D/I	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Functions	
Display on/off	0	0	0	0	1	1	1	1	1	1/0	Controls display on/or	ff. RAM data and
											internal status are not	affected.
											(0:OFF,1:ON)	
Display start line	0	0	1	1	Disp	olay s	start 1	ine (0	-63)		Specifies the RAM lin	ne displayed at
						T	ı	1			the top of the screen.	
Set Page (x	0	0	1	0	1	1	1	Page	e (0-7	<u> </u>	Sets the page (X addre	ess) of RAM at
address)											the page (X address)	register.
Set Y address	0	0	0	1	Y ac	ddres	s (0-6	53)			Sets the Y address in	the Y address
							r	•		•	counter.	
Status read	1	0	Busy	0	ON/	Reset	0	0	0	0	Reads the status.	
					OFF						Reset 1: Reset	
											0: Norm	al
											ON/OFF 1: Displ	ay off
											0: Displ	ay on
											Busy 1: Intern	al operation
											0: Read	У
Write display data	0	1	Writ	te dat	a						Writes data DB0	Has access to
											(LSB) to DB7 (MSB)	the
											on the data bus into	address of the
											display	display RAM
											RAM.	specified in
Read display data	1	1	Read	d data	ì						Reads data DB0	advance. After
											(LSB)	the access, Y
											to DB7 (MSB) from	address is
											the display RAM to	increased by 1.
											the data bus.	

Detailed Explanation

Display On/Off

	R/W	D/I	DB7.						• • • • • •	DB0
Code	0	0	0	0	1	1	1	1	1	D
			MSB							LSB

The display data appears when D is 1 and disappears when D is 0. Though the data is not on the screen with D=0, it remains in the display data RAM. Therefore, you can make it appear by changing D=0 into D=1.

Display Start Line

Z address AAAAA (binary) of the display data RAM is set in the display start line register and displayed at the top of the screen. Figure 1 shows examples of display (1/64 duty cycle) when the start line=0-3. When the display duty cycle is 1/64 or more (ex. 1/32, 1/24 etc.), the data of total line number of LCD screen, from the line specified by display start line instruction, is displayed. See figure 1.

Set page (X address)

X address AAA (binary) of the display data RAM is set in the X address register. After that, writing or reading to or from MPU is executed in this specified page until the next page is set. See figure 2.

Set Y Address

Y address AAAAA (binary) of the display data RAM is set in the Y address Counter. After that, Y address counter is increased by 1 every time the data is written or read to or from MPU.

Status Read

• Busy

When busy is 1, the LSI is executing internal operations. No instructions are accepted while busy is 1, so you should make sure that busy is 0 before writing the next instruction.

• ON/OFF

Shows the liquid crystal display conditions: on condition or off condition.

When on/off is 1, the display is in off condition.

When on/off is 0, the display is in on condition.

• RESET

RESET=1 shows that the system is being initialized. In this condition, no instructions except status read can be accepted.

RESET=0 shows that initializing has finished and the system is in the usual operation condition.

Write Display Data

Write 8-bit data DDDDDDDD (binary) into the display data RAM. Then Y address is increased by 1 automatically.

Read Display Data

Reads out 8-bit data DDDDDDDD (binary) from the display data RAM. Then Y address is increased by 1 automatically.

One dummy read is necessary right after the address setting. For details, refer to the explanation of output register in "Function of Each Block".

Figure 2 Address Configuration of Display Data RAM

3. RELIABILITY

3.1 Content of Reliability Test

		Environmental Test	
NO	Test Item	Content of Test	Test Condition
1	High temperature storage	Endurance test applying the high storage temperature for a long time.	70° C 100 hrs
2	Low temperature storage	Endurance test applying the high storage temperature for a long time.	-30°C 100 hrs
3	High temperature operation	Endurance test applying the electric stress (Voltage & Current) and the thermal stress to the element for a long time.	70°C 100 hrs
4	Low temperature operation	Endurance test applying the electric stress under low temperature for a long time.	-20°C 100 hrs
5	High temperature /Humidity Storage	Endurance test applying the high humidity storage for a long time.	70°C,90%RH 50 hrs
6	High temperature /Humidity Operation	Endurance test applying the electric stress (Voltage & Current) and temperature / humidity stress to the element for a long time.	70°C,90%RH 50 hrs
7	Temperature Cycle	Endurance test applying the low and high temperature cycle. $-25^{\circ}\mathbb{C} \rightarrow 25^{\circ}\mathbb{C} \rightarrow 75^{\circ}\mathbb{C}$ $30\min \leftarrow 5\min \leftarrow 30\min$ $\leftarrow \qquad \qquad$	-25°C / 75°C 10 cycle