HIGH-SPEED 3.3V 16/8K X 9 SYNCHRONOUS PIPELINED DUAL-PORT STATIC RAM ### PRELIMINARY IDT70V9169/59L ### **Features:** - True Dual-Ported memory cells which allow simultaneous access of the same memory location - High-speed clock to data access - Commercial: 6.5/7.5/9ns (max.) - Industrial: 7.5ns (max.) - Low-power operation - IDT70V916/59L/59L Active: 450mW (typ.) Standby: 1.5mW (typ.) - ◆ Flow-Through or Pipelined output mode on either port via the FT/PIPE pins - Counter enable and reset features - Dual chip enables allow for depth expansion without additional logic - Full synchronous operation on both ports - 3.5ns setup to clock and Ons hold on all control, data, and address inputs - Data input, address, and control registers - Fast 6.5ns clock to data out in the Pipelined output mode - Self-timed write allows fast cycle time - 10ns cycle time, 100MHz operation in Pipelined output mode - Separate upper-byte and lower-byte controls for multiplexed bus and bus matching compatibility - LVTTL- compatible, single 3.3V (±0.3V) power supply - Industrial temperature range (-40°C to +85°C) is available for 83 MHz - Available in a 100-pin Thin Quad Flatpack (TQFP) and 100pin fine pitch Ball Grid Array (fpBGA) packages. ### **Functional Block Diagram** ### NOTE: 1. A₁₃ is a NC for IDT70V9159. **JULY 2002** E 13 С ## **Description:** The IDT70V9169/59 is a high-speed 16/8K x 9 bit synchronous Dual-Port RAM. The memory array utilizes Dual-Port memory cells to allow simultaneous access of any address from both ports. Registers on control, data, and address inputs provide minimal setup and hold times. The timing latitude provided by this approach allows systems to be designed with very short cycle times. With an input data register, the IDT70V9169/59 has been optimized for applications having unidirectional or bidirectional data flow in bursts. An automatic power down feature, controlled by $\overline{\text{CE}}_0$ and CE₁, permits the on-chip circuitry of each port to enter a very low standby power mode. Fabricated using IDT's CMOS high-performance technology, these devices typically operate on only 450mW of power. ### Pin Configurations (1,2,3,4) - 1. A13 is a NC for IDT70V9159. - All VDD pins must be connected to power supply. - 3. All Vss pins must be connected to ground supply. - Package body is approximately 14mm x 14mm x 1.4mm. - This package code is used to reference the package diagram. - This text does not indicate orientation of the actual part-marking. ## Pin Configurations (cont'd) $^{(1,2,3,4)}$ 70V9169/59PF BF100⁽⁵⁾ 100-PinfpBGA Top View⁽⁶⁾ 06/21/02 | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 | |-----------|-------------|--------------------|---------------------|--------------|-----------|---------------------|---------------|---------------|----------------| | A6R | A 9R | A12R | NC | Vss | Vss | NC | R/WR | Vss | NC | | B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B9 | B10 | | A4R | A5R | A8R | A 10R | NC | NC | NC | OEr | NC | I/O6R | | C1 | C2 | C3 | C4 | C5 | C6 | | C8 | C9 | С10 | | A3R | NC | NC | A7R | NC | CEor | | PL/FTR | I/O7R | I/Озк | | D1 | D2 | D3 | D4 | D5 | | D7 | D8 | D9 | D10 | | Aor | CLKR | A1R | A2R | A 11R | | CNTRST _R | I/O8R | I/O5R | I/O1R | | E1 | E2 | E3 | E4 | E5 | E6 | E7 | E8 | E9 | E10 | | Vss | ADSR | CNTEN _R | A1L | ADSL | Vss | I/O4R | I/O2R | I/Oor | Vdd | | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | | Vss | CLKL | AoL | A3L | Vdd | Vss | Vdd | I/O2L | I/O1L | I/O0L | | G1 | G2 | G3 | G4 | G5 | G6 | _{G7} | G8 | G9 | G10 | | CNTEN∟ | NC | A5L | A12L | NC | R∕WL | NC | I/O4L | Vss | I/ O 3L | | H1 | H2 | нз | H4 | H5 | H6 | H7 | H8 | H9 | H10 | | A2L | A4L | А 9L | A13L ⁽¹⁾ | NC | CE1L | NC | I/O7L | I/O6L | I/O5L | | J1 | J2 | J3 | J4 | J5 | J6 | J7 | J8 | ^{J9} | J10 | | NC | A 7L | A10L | NC | NC | NC | OEL | Vss | Vss | I/O8L | | K1
A6L | K2
A8L | K3
A11L | K4
NC | K5
Vdd | K6
Vdd | | K8
CNTRST∟ | | K10
NC | 5655 drw 03 - 1. A₁₃ is a NC for IDT70V9159. - 2. All V_{DD} pins must be connected to power supply. - 3. All Vss pins must be connected to ground supply. - 4. Package body is approximately 10mm x 10mm x 1.4mm with 0.8mm ball pitch. - 5. This package code is used to reference the package diagram. - 6. This text does not indicate orientation of the actual part-marking. ### **Pin Names** | Left Port | Right Port | Names | | | |------------------------------|------------------------------|-----------------------|--|--| | CEOL, CE1L | CEOR, CE1R | Chip Enables | | | | R/WL | R/W̄R | Read/Write Enable | | | | ŌĒL | OE R | Output Enable | | | | Aol - A13L ⁽¹⁾ | Aor - A13R ⁽¹⁾ | Address | | | | 1/Ool - 1/O8L | 1/Oor - 1/O8R | Data Input/Output | | | | CLKL | CLKr | Clock | | | | AD S _L | AD S _R | Address Strobe | | | | CNTENL | <u>CNTEN</u> R | Counter Enable | | | | CNTRSTL | <u>CNTRST</u> _R | Counter Reset | | | | FT/PIPEL | FT/PIPER | Flow-Through/Pipeline | | | | V | DD | Power (3.3V) | | | | V | SS | Ground (0V) | | | NOTE: 1. A₁₃ is a NC for IDT70V9159. ## Truth Table I—Read/Write and Enable Control^(1,2,3) 5655 tbl 01 | ŌĒ | CLK | Œ | CE ₁ | R/W | I/O ₀₋₈ | Mode | |----|------------|---|-----------------|-----|--------------------|-----------------------| | Х | \uparrow | Н | Χ | Χ | High-Z | Deselected—Power Down | | Х | 1 | Х | L | Х | High-Z | Deselected—Power Down | | Х | 1 | L | Н | L | DATAIN | Write | | L | 1 | L | Н | Н | DATAout | Read | | Н | Χ | L | Н | Χ | High-Z | Outputs Disabled | 5655 tbl 02 - "H" = V_IH, "L" = V_IL, "X" = Don't Care. ADS, CNTEN, CNTRST = X. OE is an asynchronous input signal. ### Truth Table II—Address Counter Control^(1,2) | External
Address | Previous
Internal
Address | Internal
Address
Used | CLK | ADS | CNTEN | CNTRST | I/O ⁽³⁾ | MODE | |---------------------|---------------------------------|-----------------------------|----------|------------------|------------------|------------------|--------------------|---| | An | Х | An | ↑ | L ⁽⁴⁾ | Х | Н | Dvo (n) | External Address Used | | Х | An | An + 1 | 1 | Н | L ⁽⁵⁾ | Н | Dvo(n+1) | Counter Enabled—Internal Address generation | | Х | An + 1 | An + 1 | 1 | Н | Н | Н | Dvo(n+1) | External Address Blocked—Counter disabled (An + 1 reused) | | Х | Х | A 0 | 1 | Х | Х | L ⁽⁴⁾ | Dvo(0) | Counter Reset to Address 0 | ### NOTES: 5655 tbl 03 - 1. "H" = V_{IH} , "L" = V_{IL} , "X" = Don't Care. - 2. \overline{CE}_0 , \overline{LB} , \overline{UB} , and \overline{OE} = VIL; CE1 and R/ \overline{W} = VIH. - 3. Outputs configured in Flow-Through Output mode: if outputs are in Pipelined mode the data out will be delayed by one cycle. - 4. ADS and CNTRST are independent of all other signals including CEo, CE1, UB and LB. - 5. The address counter advances if CNTEN = VIL on the rising edge of CLK, regardless of all other signals including CE₀, CE₁, UB and LB. ### **Recommended Operating Temperature and Supply Voltage** | Grade | Ambient
Temperature ⁽¹⁾ | GND | VDD | |------------|---------------------------------------|-----|--------------------| | Commercial | 0°C to +70°C | 0V | 3.3V <u>+</u> 0.3V | | Industrial | -40°C to +85°C | 0V | 3.3V <u>+</u> 0.3V | ### NOTES: 5655 thl 04 1. This is the parameter Ta. This is the "instant on" case temperature. ### **Recommended DC Operating Conditions** | Symbol | Parameter | Min. | Тур. | Мах. | Unit | |----------|--------------------|---------------------|------|--------------------------------------|------| | V_{DD} | Supply Voltage | 3.0 | 3.3 | 3.6 | V | | Vss | Ground | 0 | 0 | 0 | V | | VIH | Input High Voltage | 2.0 | _ | V _{DD} +0.3V ⁽²⁾ | V | | VIL | Input Low Voltage | -0.3 ⁽¹⁾ | _ | 0.8 | ٧ | 5655 tbl 05 ### NOTES: - 1. VIL > -1.5V for pulse width less than 10 ns. - 2. VTERM must not exceed VDD+0.3V. ## **Absolute Maximum Ratings**⁽¹⁾ | Symbol | Rating | Commercial
& Industrial | Unit | |----------------------|--------------------------------------|----------------------------|------| | VTERM ⁽²⁾ | Terminal Voltage with Respect to GND | -0.5 to +4.6 | ٧ | | TBIAS | Temperature
Under Bias | -55 to +125 | ۰C | | Tstg | Storage
Temperature | -65 to +150 | ۰C | | ЮИТ | DC Output Current | 50 | mA | ### NOTES: - 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. - 2. VTERM must not exceed VDD +0.3V for more than 25% of the cycle time or 10ns maximum, and is limited to \leq 20mA for the period of VTERM \geq VDD + 0.3V. ### Capacitance⁽¹⁾ $(TA = +25^{\circ}C, f = 1.0MHz)$ | Symbol | Parameter | Conditions ⁽²⁾ | Max. | Unit | |---------------------|--------------------|---------------------------|------|------| | Cin | Input Capacitance | VIN = 3dV | 9 | pF | | Cout ⁽³⁾ | Output Capacitance | Vout = 3dV | 10 | pF | ### NOTES: 5655 tbl 07 - 1. These parameters are determined by device characterization, but are not production tested. - 2. $\stackrel{\cdot}{3}\text{dV}$ references the interpolated capacitance when the input and output switch from 0V to 3V or from 3V to 0V. - 3. Cout also references Ci/o. ## **DC Electrical Characteristics Over the Operating** Temperature and Supply Voltage Range (VDD= 3.3V ± 0.3V) | | | | 70V91 | 69/59L | | |--------|--------------------------------------|---|-------|--------|------| | Symbol | Parameter | Test Conditions | | Max. | Unit | | ILI | Input Leakage Current ⁽¹⁾ | $V_{DD} = 3.6V$, $V_{IN} = 0V$ to V_{DD} | _ | 5 | μΑ | | ILO | Output Leakage Current | $\overline{\text{CE}}$ = VIH or CE1 = VIL, VOUT = 0V to VDD | - | 5 | μΑ | | Vol | Output Low Voltage | IOL = +4mA | - | 0.4 | V | | Vон | Output High Voltage | IOH = -4mA | 2.4 | _ | ٧ | NOTF: 5655 tb108 1. At $VDD \le 2.0V$ input leakages are undefined. ## **DC Electrical Characteristics Over the Operating** Temperature Supply Voltage Range⁽³⁾ (VDD = 3.3V ± 0.3V) | | | | | | | 70V9169/59L6
Com'l Only | | | 69/59L7
& Ind | 70V9169/59L9
Com'l Only | | | |-----------------|--|--|--------|---|---------------------|----------------------------|---------------------|------|---------------------|----------------------------|------|--| | Symbol | Parameter | Test Condition | Versio | n | Typ. ⁽⁴⁾ | Max. | Typ. ⁽⁴⁾ | Max. | Typ. ⁽⁴⁾ | Max. | Unit | | | l _{DD} | Dynamic Operating | CE _L and CE _R = VIL, | COM'L | L | 175 | 330 | 155 | 280 | 135 | 230 | mA | | | | Current (Both
Ports Active) | Outputs Disabled,
f = fMAX ⁽¹⁾ | IND | L | | | 155 | 330 | | | | | | ISB1 | Standby Current | CEL = CER = VIH | COM'L | L | 50 | 80 | 40 | 70 | 30 | 60 | mA | | | | (Both Ports - TTL
Level Inputs) | f = fMAX ⁽¹⁾ | IND | L | | | 40 | 80 | | | | | | ISB2 | | CE"A" = VIL and | COM'L | L | 115 | 185 | 105 | 170 | 95 | 155 | mA | | | | Current (One
Port - TTL
Level Inputs) | \overline{CE} "B" = VH ⁽⁵⁾ Active Port Outputs Disabled, f=fMAX ⁽¹⁾ | IND | L | | _ | 105 | 180 | | | | | | ISB3 | Full Standby | Both Ports CEL and | COM'L | L | 0.5 | 3.0 | 0.5 | 3.0 | 0.5 | 3.0 | mA | | | | Ports - CMOS VIN > V | $ \begin{array}{l} \overline{CE}_R \geq V_{DD} - 0.2V, \\ V_{IN} \geq V_{DD} - 0.2V \text{ or} \\ V_{IN} \leq 0.2V, f = 0^{(2)} \\ \end{array} $ | IND | L | | _ | 0.5 | 3.0 | | _ | | | | ISB4 | Full Standby | <u>CE</u> "A" ≤ 0.2V and | COM'L | L | 105 | 175 | 95 | 160 | 85 | 145 | mA | | | | Current (One
Port - CMOS
Level Inputs) | $\begin{array}{ll} \overline{CE"B"} \geq V_{DD} - 0.2V^{(5)} \\ VIN \geq V_{DD} - 0.2V \text{ or} \\ VIN \leq 0.2V, \text{ Active Port,} \\ Outputs \text{ Disabled, } f = fMAX^{(1)} \end{array}$ | IND | L | | | 95 | 175 | | | | | 5655 tbl 09 - 1. At f = fmax, address and control lines (except Output Enable) are cycling at the maximum frequency clock cycle of 1/tcyc, using "AC TEST CONDITIONS" at input levels of GND to 3V. - 2. f = 0 means no address, clock, or control lines change. Applies only to input at CMOS level standby. - 3. Port "A" may be either left or right port. Port "B" is the opposite from port "A". - 4. VDD = 3.3V, TA = 25°C for Typ, and are not production tested. lcc cc(f=0) = 90mA (Typ). - 5. $\overline{CE}x = V_{IL} \text{ means } \overline{CE}_{0x} = V_{IL} \text{ and } CE_{1x} = V_{IH}$ - $\overline{\text{CE}}_{X} = \text{Vih means } \overline{\text{CE}}_{0X} = \text{Vih or CE}_{1X} = \text{Vil}$ - $\overline{\text{CE}}\text{x} \leq 0.2 \text{V}$ means $\overline{\text{CE}}\text{ox} \leq 0.2 \text{V}$ and $\text{CE}\text{1x} \geq \text{V}\text{dd}$ 0.2 V - $\overline{\text{CE}}\text{x} \geq \ \text{Vdd} 0.2 \text{V} \text{ means } \overline{\text{CE}}\text{ox} \geq \ \text{Vdd} 0.2 \text{V} \text{ or } \text{CE}\text{1x} \leq 0.2 \text{V}$ - "X" represents "L" for left port or "R" for right port. ### **AC Test Conditions** | Input Pulse Levels | GND to 3.0V | |-------------------------------|------------------| | Input Rise/Fall Times | 2ns Max. | | Input Timing Reference Levels | 1.5V | | Output Reference Levels | 1.5V | | Output Load | Figures 1, 2 & 3 | 5655 tbl 10 Figure 1. AC Output Test load. Figure 2. Output Test Load (For tcklz, tcklz, tolz, and tolz). *Including scope and jig. Figure 3. Typical Output Derating (Lumped Capacitive Load). # AC Electrical Characteristics Over the Operating Temperature Range (Read and Write Cycle Timing) $^{(3)}$ (VDD= 3.3V ± 0.3V, TA = 0°C to +70°C) | | and write Cycle Tilling). 7 (VIII | 70V91 | 69/59L6
I Only | 70V91 | 69/59L7
& Ind | 70V91 | 69/59L9
I Only | | |----------------|---|-------|-------------------|-------|------------------|-------|-------------------|------| | Symbol | Parameter | Min. | Max. | Min. | Мах. | Min. | Max. | Unit | | tcyc1 | Clock Cycle Time (Flow-Through) ⁽²⁾ | 19 | _ | 22 | _ | 25 | _ | ns | | tcyc2 | Clock Cycle Time (Pipelined) ⁽²⁾ | 10 | _ | 12 | | 15 | _ | ns | | tcH1 | Clock High Time (Flow-Through) ⁽²⁾ | 6.5 | _ | 7.5 | _ | 12 | _ | ns | | tcl1 | Clock Low Time (Flow-Through) ⁽²⁾ | 6.5 | _ | 7.5 | _ | 12 | _ | ns | | tcH2 | Clock High Time (Pipelined) ⁽²⁾ | 4 | _ | 5 | _ | 6 | _ | ns | | tcL2 | Clock Low Time (Pipelined) ⁽²⁾ | 4 | _ | 5 | _ | 6 | _ | ns | | tr | Clock Rise Time | _ | 3 | _ | 3 | _ | 3 | ns | | tr | Clock Fall Time | _ | 3 | | 3 | _ | 3 | ns | | tsa | Address Setup Time | 3.5 | _ | 4 | _ | 4 | _ | ns | | tha | Address Hold Time | 0 | _ | 0 | _ | 1 | _ | ns | | tsc | Chip Enable Setup Time | 3.5 | _ | 4 | _ | 4 | _ | ns | | tнc | Chip Enable Hold Time | 0 | _ | 0 | _ | 1 | _ | ns | | tsB | Byte Enable Setup Time | 3.5 | _ | 4 | _ | 4 | _ | ns | | tнв | Byte Enable Hold Time | 0 | _ | 0 | | 1 | _ | ns | | tsw | R/W Setup Time | 3.5 | _ | 4 | | 4 | _ | ns | | thw | R/W Hold Time | 0 | _ | 0 | | 1 | _ | ns | | tsp | Input Data Setup Time | 3.5 | _ | 4 | | 4 | _ | ns | | thd | Input Data Hold Time | 0 | _ | 0 | | 1 | _ | ns | | tsad | ADS Setup Time | 3.5 | _ | 4 | | 4 | _ | ns | | thad | ADS Hold Time | 0 | _ | 0 | | 1 | _ | ns | | tscn | CNTEN Setup Time | 3.5 | _ | 4 | _ | 4 | _ | ns | | then | CNTEN Hold Time | 0 | _ | 0 | _ | 1 | _ | ns | | tsrst | CNTRST Setup Time | 3.5 | _ | 4 | _ | 4 | _ | ns | | thrst | CNTRST Hold Time | 0 | _ | 0 | _ | 1 | _ | ns | | toe | Output Enable to Data Valid | _ | 6.5 | | 7.5 | _ | 9 | ns | | toLZ | Output Enable to Output Low-Z ⁽¹⁾ | 2 | _ | 2 | _ | 2 | _ | ns | | tонz | Output Enable to Output High-Z ⁽¹⁾ | 1 | 7 | 1 | 7 | 1 | 7 | ns | | tcD1 | Clock to Data Valid (Flow-Through) ⁽²⁾ | _ | 15 | | 18 | _ | 20 | ns | | tcD2 | Clock to Data Valid (Pipelined)(2) | _ | 6.5 | _ | 7.5 | _ | 9 | ns | | toc | Data Output Hold After Clock High | 2 | _ | 2 | _ | 2 | _ | ns | | tckHz | Clock High to Output High-Z ⁽¹⁾ | 2 | 9 | 2 | 9 | 2 | 9 | ns | | tcklz | Clock High to Output Low-Z ⁽¹⁾ | 2 | | 2 | | 2 | _ | ns | | Port-to-Port [| Delay | | | | | | | | | tcwdd | Write Port Clock High to Read Data Delay | _ | 24 | | 28 | _ | 35 | ns | | tccs | Clock-to-Clock Setup Time | _ | 9 | | 10 | _ | 15 | ns | | | | | | | | | | | ^{1.} Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2). This parameter is guaranteed by device characterization, but is not production tested. ^{2.} The Pipelined output parameters (tcyc2, tcp2) apply to either or both the Left and Right ports when FT/PIPE = VIH. Flow-through parameters (tcyc1, tcp1) apply when $\overline{FT}/PIPE = V_{IL}$ for that port. ^{3.} All input signals are synchronous with respect to the clock except for the asynchronous Output Enable (OE), FT/PIPER, and FT/PIPEL. ## **Timing Waveform of Read Cycle for Flow-Through Output** $(\overline{FT}/PIPE"x" = ViL)^{(3,6)}$ ## **Timing Waveform of Read Cycle for Pipelined Operation** $(\overline{FT}/PIPE"x" = ViH)^{(3,6)}$ - 1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2). - $\overline{\text{OE}}$ is asynchronously controlled; all other inputs are synchronous to the rising clock edge. - 3. $\overline{ADS} = VIL, \overline{CNTEN}$ and $\overline{CNTRST} = VIH.$ - 4. The output is disabled (High-Impedance state) by $\overline{\text{CE}}_0 = \text{V}_{\text{IH}}$, CE1 = VIL following the next rising edge of the clock. Refer to Truth Table 1. - Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only. - "X' here denotes Left or Right port. The diagram is with respect to that port. ## Timing Waveform of a Bank Select Pipelined Read (1,2) ## Timing Waveform with Port-to-Port Flow-Through Read (4,5,7) - 1. B1 Represents Bank #1; B2 Represents Bank #2. Each Bank consists of one IDT70V916/59L for this waveform, and are setup for depth expansion in this example. ADDRESS(B1) = ADDRESS(B2) in this situation. - 2. \overline{OE} and \overline{ADS} = VIL; CE1(B1), CE1(B2), R/W, \overline{CNTEN} , and \overline{CNTRST} = VIH. - 3. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2). - 4. $\overline{\text{CE}}_0$ and $\overline{\text{ADS}} = \text{Vil.}$; CE1, $\overline{\text{CNTEN}}$, and $\overline{\text{CNTRST}} = \text{Viii.}$ - 5. \overline{OE} = V_{IL} for the Right Port, which is being read from. \overline{OE} = V_{IH} for the Left Port, which is being written to. - 6. If tccs ≤ maximum specified, then data from right port READ is not valid until the maximum specified for tcwpb. If tccs > maximum specified, then data from right port READ is not valid until tccs + tcp1. tcwpb does not apply in this case. - 7. All timing is the same for both Left and Right ports. Port "A" may be either Left or Right port. Port "B" is the opposite from Port "A". ## Timing Waveform of Pipelined Read-to-Write-to-Read ($\overline{OE} = V_{IL}$)⁽³⁾ ## Timing Waveform of Pipelined Read-to-Write-to-Read (OE Controlled)(3) - 1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2). - 2. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals. - 3. $\overline{\text{CE}}_0$ and $\overline{\text{ADS}} = \text{Vil.}$; CE1, $\overline{\text{CNTEN}}$, and $\overline{\text{CNTRST}} = \text{ViH.}$ "NOP" is "No Operation". - 4. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only. - 5. "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be re-written to guarantee data integrity. ## Timing Waveform of Flow-Through Read-to-Write-to-Read ($\overline{OE} = V_{IL}$)⁽³⁾ ## Timing Waveform of Flow-Through Read-to-Write-to-Read (OE Controlled)(3) - 1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2). - 2. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals. - 3. CEo and ADS = VIL; CE1, CNTEN, and CNTRST = VIH. "NOP" is "No Operation". - 4. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only. - 5. "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be re-written to guarantee data integrity. ## Timing Waveform of Pipelined Read with Address Counter Advance⁽¹⁾ ## Timing Waveform of Flow-Through Read with Address Counter Advance $^{(1)}$ - 1. \overline{CE}_0 and \overline{OE} = V_{IL}; CE₁, R/ \overline{W} , and \overline{CNTRST} = V_{IH}. - 2. If there is no address change via $\overline{ADS} = VIL$ (loading a new address) or $\overline{CNTEN} = VIL$ (advancing the address), i.e. $\overline{ADS} = VIH$ and $\overline{CNTEN} = VIH$, then the data output remains constant for subsequent clocks. ## **Timing Waveform of Write with Address Counter Advance** (Flow-Through or Pipelined Outputs)(1) ## Timing Waveform of Counter Reset (Pipelined Outputs)(2) - 1. $\overline{CE_0}$ and $R/\overline{W} = V_{IL}$; CE_1 and $\overline{CNTRST} = V_{IH}$. - 2. $\overline{CE}_0 = VIL$; CE1 = VIH. - 3. The "Internal Address" is equal to the "External Address" when ADS = VIL and equals the counter output when ADS = VIH. - 4. Addresses do not have to be accessed sequentially since $\overline{ADS} = V_{IL}$ constantly loads the address on the rising edge of the CLK; numbers are for reference use only. - 5. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals. - No dead cycle exists during counter reset. A READ or WRITE cycle may be coincidental with the counter reset cycle. ADDRo will be accessed. Extra cycles are shown here simply for clarification. - 7. CNTEN = VIL advances Internal Address from 'An' to 'An +1'. The transition shown indicates the time required for the counter to advance. The 'An +1' Address is written to during this cycle. ### **Functional Description** The IDT70V9169/59 provides a true synchronous Dual-Port Static RAM interface. Registered inputs provide minimal set-up and hold times on address, data, and all critical control inputs. All internal registers are clocked on the rising edge of the clock signal, however, the self-timed internal write pulse is independent of the LOW to HIGH transition of the clock signal. An asynchronous output enable is provided to ease asynchronous bus interfacing. Counter enable inputs are also provided to stall the operation of the address counters for fast interleaved memory applications. $\overline{\text{CE}}_0 = \text{VIL}$ and $\text{CE}_1 = \text{VIH}$ for one clock cycle will power down the internal circuitry to reduce static power consumption. Multiple chip enables allow easier banking of multiple IDT70V9169/59's for depth expansion configurations. When the Pipelined output mode is enabled, two cycles are required with $\overline{\text{CE}}_0 = \text{VIL}$ and $\text{CE}_1 = \text{VIH}$ to re-activate the outputs. ### **Depth and Width Expansion** The IDT70V9169/59 features dual chip enables (refer to Truth Table I) in order to facilitate rapid and simple depth expansion with no requirements for external logic. Figure 4 illustrates how to control the various chip enables in order to expand two devices in depth. The IDT70V9169/59 can also be used in applications requiring expanded width, as indicated in Figure 4. Since the banks are allocated at the discretion of the user, the external controller can be set up to drive the input signals for the various devices as required to allow for 36-bit or wider applications. NOTE: 1. A14 is for IDT70V9169, A₁₃ is for IDT70V9159. ### **Ordering Information** NOTE: 1. Contact your local sales office for Industrial temp range for other speeds, packages and powers. ## **Preliminary Datasheet:** Definition "PRELIMINARY" datas heets contain descriptions for products that are in early release. ## **Datasheet Document History** 07/08/02: Initial Public Release **CORPORATE HEADQUARTERS** 2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com for Tech Support: 831-754-4613 DualPortHelp@idt.com