September 1998

feATURES

- 100MHz Pixel Switching
- -3dB Bandwidth: 250MHz
- Small 16-Pin SSOP Package
- Channel Switching Time: $2.5 n \mathrm{n}$
- Expandable to Larger Arrays
- Drives Cables Directly
- High Slew Rate: $1100 \mathrm{~V} / \mathrm{us}$
- Low Switching Transient: 50 mV
- Shutdown Supply Current: OmA
- Output Short-Circuit Protected

APPLICATIONS

- RGB Switching
- Workstation Graphics
- Pixel Switching
- Coaxial Cable Drivers
- High Speed Signal Processing

DESCRIPTIOn

The LT ${ }^{\otimes} 1675$ is a high speed RGB multiplexer designed for pixel switching and fast workstation graphics. Included on chip are three SPDT switches and three
current feedback amplifiers. The current feedback amplifiers drive double-terminated 50Ω or 75Ω cables and are configured for a fixed gain of 2 , eliminating six external gain setting resistors. The SPDT switches are designed to be break-before-make to minimize unwanted signals coupling to the input.

The key to the LT1675 fast switching speed is Linear Technology's proprietary high speed bipolar process. This MUX can toggle between sources in excess of 100 MHz , has a slew rate over $1000 \mathrm{~V} / \mu \mathrm{s}$ and has a -3dB bandwidth of 250 MHz . The speed and ease of use of the LT1675 make it ideal for high performance PCs, workstations and professional video monitors. The input-referred switching transient is only $50 \mathrm{mV} V_{\text {p.p }}$ and lasts just 5 ns , making it virtually undetectable. Power supply requirements are $\pm 4 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$ and power dissipation is only 300 mW on $\pm 5 \mathrm{~V}$. The expandable feature uses the disable pin to reduce the power dissipation to near 0 mW in the off parts. Unlike competitive solutions that are in bulky high pin count packages, the LT1675 is in a 16 -lead narrow body SSOP. This small footprint, the size of an SO-8, results in a very clean high performance solution.

[^0]
TYPICAL APPLICATION

Select Pin Switches Inputs at 100MHz

ABSOLUTE MAXIMUM RATINGS
(Note 1)
Supply Voltage $\pm 6.3 \mathrm{~V}$
Inputs, ENABLE and SELECT, Current

\qquad
$\pm 20 \mathrm{~mA}$ Output Short-Circuit Duration (Note 2)Continuous Specified Temperature Range (Note 3) $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Junction Temperature (Note 4) $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS

$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}_{I N}=0 \mathrm{O}$ (Pins 1,2,3,6,7,8), $\overline{\text { ENABLE }}=0 \mathrm{O}$, unless otherwise specified.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Output Offset Voltage	Any Input Selected	\bullet		20	40	mV
Output Offset Matching	Between Outputs R1 to R2, G1 to G2, B1 to B2	\bullet		5	20	mV
Input Current	Any Input Selected	\bullet		-12	-30	$\mu \mathrm{A}$
Input Resistance	$\mathrm{V}_{\text {IN }}= \pm 1 \mathrm{~V}$	\bullet	100	700		$\mathrm{k} \Omega$
PSRR	$\mathrm{V}_{S}= \pm 2.6 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$, Measured at Output	\bullet	38	50		dB
DC Gain Error OV to 1V	$\begin{aligned} & V_{I N}=1 V, R_{L}=\infty \\ & V_{I N}=1 V, R_{L}=150 \Omega \\ & V_{I N}=1 V, R_{L}=75 \Omega \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{aligned} & 3 \\ & 4 \\ & 5 \end{aligned}$	$\begin{gathered} 6 \\ 8 \\ 10 \end{gathered}$	\% \% \%
DC Gain Error OV to -1V	$\begin{aligned} & \hline V_{I N}=-1 V, R_{L}=\infty \\ & V_{I N}=-1 V, R_{L}=150 \Omega \\ & V_{I N}=-1 V, R_{L}=75 \Omega \\ & \hline \end{aligned}$	\bullet		$\begin{aligned} & 3 \\ & 4 \\ & 8 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 6 \\ 8 \\ 20 \\ \hline \end{gathered}$	\% \% $\%$
Output Voltage	$\begin{aligned} & V_{I N}=2 V, R_{L}=\infty \\ & V_{I N}=2 V, R_{L}=150 \Omega \\ & V_{I N}=2 V, R_{L}=75 \Omega \end{aligned}$	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \end{aligned}$	$\begin{aligned} & 3.1 \\ & 2.8 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.4 \\ & 3.0 \\ & 2.8 \\ & \hline \end{aligned}$		V V V
	$\begin{aligned} & V_{I N}=-2 V, R_{L}=\infty \\ & V_{I N}=-2 V, R_{L}=150 \Omega \\ & V_{I N}=-2 V, R_{L}=75 \Omega \\ & \hline \end{aligned}$		$\begin{aligned} & -3.1 \\ & -2.7 \\ & -2.4 \end{aligned}$	$\begin{aligned} & -3.3 \\ & -3.0 \\ & -2.6 \end{aligned}$		V V V
Disabled Output Impedance	ENABLE Open	\bullet	1.1	1.5	2.0	k Ω
Maximum Output Current	$\mathrm{V}_{\text {IN }}= \pm 1 \mathrm{~V}, \mathrm{~V}_{0}=0 \mathrm{~V}$	\bullet	50	70		mA
Supply Current	$\begin{aligned} & \overline{\overline{\text { ENABLE }}=0 \mathrm{~V}} \\ & \overline{\text { ENABLE }}=4.7 \mathrm{~V} \end{aligned}$	\bullet	25	$\begin{gathered} 33 \\ 1 \end{gathered}$	$\begin{gathered} 42 \\ 100 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \end{aligned}$
$\overline{\text { ENABLE }}$ Pin Current	$\overline{\text { ENABLE }}=0 \mathrm{~V}$	\bullet		450	600	$\mu \mathrm{A}$
SELECT Pin Current	SELECT = OV	\bullet		90	180	$\mu \mathrm{A}$
SELECT Low	SELECT (See Truth Table)	\bullet			0.8	V
SELECT High	SELECT (See Truth Table)	\bullet	2			V

AC CHARACTERISTICS

$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{~V}_{I N}=\mathbf{O V}$ (Pins $1,2,3,6,7,8$), $\overline{\text { ENABLE }}=0 V$, unless otherwise specified.

PARAMETER	CONDITIONS	MIN TYP	MAX	UNITS
Slew Rate	$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}_{\text {P-P }}$	1100		$\mathrm{V} / \mathrm{\mu s}$
Full Power Bandwidth (Note 5)	$V_{\text {OUT }}=6 \mathrm{~V}_{\text {P-P }}$	58		MHz
Small-Signal -3dB Bandwidth	Less Than 1dB Peaking	250		MHz
Gain Flatness	Less Than 0.1dB	70		MHz
Gain Matching	R to G to B R1 to R2, G1 to G2, B1 to B2	$\begin{aligned} & 0.10 \\ & 0.01 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Channel-to-Channel Select Time Delay Time Switching Time	$\mathrm{R} 1=\mathrm{OV}, \mathrm{R} 2=1 \mathrm{~V}$ Measured from Time SELECT Pin Crosses Logic Threshold Time for $V_{\text {OUT }}$ to $G o$ from OV to 1 V	$\begin{aligned} & 5.0 \\ & 2.5 \end{aligned}$		ns ns
Enable Time		10		ns
Disable Time		100		ns
Input Pin Capacitance		2		pF
SELECT Pin Capacitance		2.2		pF
ENABLE Pin Capacitance		2.1		pF
Output Pin Capacitance (Disabled)	$\overline{\text { ENABLE }}$ Open	4.4		pF
Small-Signal Rise Time	$\mathrm{V}_{\text {IN }}=300 \mathrm{mV} \mathrm{V}_{\text {- }}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	1.85		ns
Propagation Delay	$V_{\text {IN }}=300 \mathrm{mV} \mathrm{V}_{\text {P-P, }}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	3		ns
Overshoot	$\mathrm{V}_{\text {IN }}=300 \mathrm{~m} \mathrm{~V}_{\text {P-P }}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	10		\%
On-Channel to Off-Channel Crosstalk	Measured at 10MHz	60		dB
Chip Disable Crosstalk	Measured at 10MHz, $\overline{\text { ENABLE }}$ Open	90		dB
Channel Select Output Transient	Measured Between Back Termination and Load	50		$\mathrm{mV} \mathrm{P}_{\text {- }}$
Differential Gain (Note 6)		0.07		\%
Differential Phase (Note 6)		0.05		DEG

The \bullet denotes specifications that apply over the specified temperature range.
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: May require a heat sink.
Note 3: The LT1675 is guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ and is designed, characterized and expected to meet these extended temperature limits, but are not tested at $-40^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$. Guaranteed I grade parts are available; consult factory.
Note 4: T_{J} is calculated from the ambient temperature T_{A} and power dissipation P_{D} according to the following formula:
$T_{J}=T_{A}+\left(P_{D}\right)\left(120^{\circ} \mathrm{C} / \mathrm{W}\right)$
Note 5: Full power bandwidth is calculated from the slew rate measurement:
$F P B W=S R / 2 \pi V_{\text {PEAK }}$.

Note 6: Differential Gain and Phase are measured using a Tektronix TSG120 YC/NTSC signal generator and a Tektronix 1780R Video Measurement Set. The resolution of this equipment is 0.1% and 0.1°. Nine identical MUXs were cascaded giving an effective resolution of 0.011% and 0.011°.

Truth Table

SELECT	ENABLE	RED OUT	GREEN OUT	BLUE OUT
1	0	RED 1	GREEN 1	BLUE 1
0	0	RED 2	GREEN 2	BLUE 2
X	1	OFF	OFF	OFF

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMAOCE CHARACTERISTICS

1675 G1

1675 G16

TYPICAL PERFORMAOCE CHARACTERISTICS

Input Bias Current vs
Temperature

675

Toggling RED 2 to RED 1

Small-Signal Rise Time

Output Offset Voltage vs Temperature

1675 G18

Slew Rate

MEASURED AT PIN 15
$R_{L}=150 \Omega$, 10pF SCOPE PROBE
$S R=1100 \mathrm{~V} / \mu \mathrm{S}$
1675 G20

Enable and Disable

PIn fUnCTIOnS

RED 1 (Pin 1): Red 1 Input. The 1V video input signal to be switched is applied to this pin. If 2 V are applied to this pin, $V_{\text {OUT RED }}$ will clip. The input must be terminated.
GREEN 1 (Pin 2): Green 1 Input. The 1V video input signal to be switched is applied to this pin. If 2 V are applied to this pin, $V_{\text {OUT GREEN }}$ will clip. The input must be terminated.
BLUE 1 (Pin 3): Blue 1 Input. The 1 V video input signal to be switched is applied to this pin. If 2 V are applied to this pin, $V_{\text {OUT }}$ blue will clip. The input must be terminated.
GND (Pins 4, 5): Signal Ground. Connect to ground plane.
RED 2 (Pin 6): Red 2 Input. The 1 V video input signal to be switched is applied to this pin. If 2 V are applied to this pin, $V_{\text {OUT RED }}$ will clip. The input must be terminated.
GREEN 2 (Pin 7): Green 2 Input. The 1 V video input signal to be switched is applied to this pin. If 2 V are applied to this pin, VOUT GREEN will clip. The input must be terminated.
BLUE 2 (Pin 8): Blue 2 Input. The 1 V video input signal to be switched is applied to this pin. If 2 V are applied to this pin, $V_{\text {OUT }}$ blue will clip. The input must be terminated.
$\overline{\text { ENABLE (Pin 9): Chip Enable. Ground this pin for normal }}$ operation. Take this pin to within 300 mV of V^{+}, or open to shut down the part. This pin is also used for router applications. When the part is disabled, the supply current is $10 \mu \mathrm{~A}$.

SELECT (Pin 10): Channel Select. Use this pin to select between RGB1 inputs and RGB2 inputs. Use this pin for fast toggling. HIGH Selects RGB1.
V- (Pins 11, 12): Negative Power Supply. Connect these pins to -5 V and bypass with good tantalum capacitor $(4.7 \mu \mathrm{~F})$. The pin may also require a $0.1 \mu \mathrm{~F}$ or $0.01 \mu \mathrm{~F}$ depending on layout.
$V_{\text {OUt blue }}$ (Pin13): Blue Output. It is twice BLUE 1 or BLUE 2 depending on which channel is selected by Pin 10. VOUT BLUE drives 50Ω or 75Ω double-terminated cables. Do not add capacitance to this pin.
$V_{\text {OUt GREEN }}$ (Pin14): Green Output. It is twice GREEN 1 or GREEN 2 depending on which channel is selected by Pin 10. VOUT GREEN drives 50Ω or 75Ω double-terminated cables. Do not add capacitance to this pin.
$V_{\text {OUt Red (Pin 15): Red Output. It is twice RED } 1 \text { or RED } 2}$ depending on which channel is selected by Pin 10. VOUT RED drives 50Ω or 75Ω double-terminated cables. Do not add capacitance to this pin.
V ${ }^{+}$(Pin 16): Positive Power Supply. Connect this pin to 5V and bypass with good tantalum capacitor ($4.7 \mu \mathrm{~F}$). The pin may also require a $0.1 \mu \mathrm{~F}$ or $0.01 \mu \mathrm{~F}$ depending on layout.

APPLLCATIONS INFORMATION

Power Supplies

The LT1675 will function with supply voltages below $\pm 2 \mathrm{~V}$ (4V total), however, to ensure a full 1 V p-p video signal ($2 \mathrm{~V}_{\mathrm{P}-\mathrm{p}}$ at the output pins), the power supply voltage should be between $\pm 4 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$. The LT1675 is designed to operate on $\pm 5 \mathrm{~V}$, and at no time should the supplies exceed $\pm 6 \mathrm{~V}$. The power supplies should be bypassed with quality tantalum capacitors. It may be necessary to add $0.01 \mu \mathrm{~F}$ or $0.1 \mu \mathrm{~F}$ in parallel with the tantalum capacitors if there is excessive ringing on the output waveform. Even though the LT1675 is well behaved, bypass capacitors should be placed as close to the LT1675 as possible.

Smallest Package and PC Board Space

The LT1675 has the internal gain set for $+2 \mathrm{~V} / \mathrm{V}$ or 6 dB , because it is designed to drive a double-terminated 50Ω or 75Ω cable that has an inherent 6 dB loss. There are several advantages to setting the gain internally. This topology eliminates six gain set resistors, reduces the pin count of the package and eliminates stray capacitance on the sensitivity feedback node. The LT1675 fits into the small SSOP package, and these advantages lead to the smallest PC board footprint with enhanced performance.

APPLICATIONS Information

Fast Switching

The key to the LT1675 fast switching speed is Linear Technology's proprietary high speed bipolar process. Internal switches can change state in less than 1ns, but the output of the MUX switches in about 2.5 ns, as shown in Figure 1. The additional delay is due to the finite bandwidth and the slew rate of the current feedback amplifier that drives the cable.

For minimum ringing, it is important to minimize the load capacitance on the output of the part. This is normally not a problem in a controlled impedance environment, but stray PC board capacitance and scope probe capacitance can degrade the pulse fidelity. Figure 2 shows the response of the output to various capacitive loads measured with a 10pF scope probe.

Figure 1. Toggling at 25MHz

Figure 3. Input-Referred Switching Transient

Switching Transients

This MUX includes fast current steering break-beforemake SPDT switches that minimize switching glitches. The switching transients of Figure 3 are input-referred (measured between 75Ω back termination and the 75Ω load). The glitch is only $50 \mathrm{mV} V_{P-p}$ and the duration is just 5 ns . This transient is small and fast enough to not be visible on quality graphics terminals. Additionally, the break-before-make SPDT switch is open before the alternate channel is connected. This means there is no input feedthrough during switching. Figure 4 shows the amount of alternate channel that is coupled at the input.

Figure 2. Response to Capacitive Loads

Figure 4. Switching Transient at RED 1 (Pin 1)

APPLICATIONS INFORMATION

Expanding Inputs

In video routing applications where the ultimate speed is not mandatory, as it is in pixel switching, it is possible to expand the number of MUX inputs by shorting the LT1675 outputs together and switching with the ENABLE pins. The internal gain set resistors have a nominal value of 750Ω and cause a 1500Ω shunt across the 75Ω cable termination. Figure 5 shows schematically the effect of expanding the number of inputs. The effect of this loading is to cause a gain error that can be calculated by the following formula:

Gain Error $(\mathrm{dB})=6 \mathrm{~dB}+20 \log \left(\frac{\frac{1575 \Omega}{\mathrm{n}-1} \| 75 \Omega}{75+\frac{1575 \Omega}{\mathrm{n}-1} \| 75 \Omega}\right) \mathrm{dB}$

Figure 5. Off Channels Load the Cable Termination with 1575Ω Each
where n is total number of LT1675s. For example, using ten LTC1675s (20 Red, 20 Green and 20 Blue) the Gain Error is only -1.7 dB per channel.

Figure 6 shows a 4-input RGB router. The response from RED 1 Input to Red Output is shown in Figure 7 for a 25 MHz square wave with Chip Select $=0 \mathrm{~V}$. In this case the Gain Error is -0.23 dB . Toggling with Chip Select between IC \#1 and IC \#2 is shown in Figure 8. In this case RED 1 Input is connected to OV and RED 3 Input is connected to an uncorrelated sinewave.

Figure 6. Two LT1675s Build a 4-Input RGB Router

APPLICATIONS Information

1675 F07
Figure 7. 4-Input Router Response

Figure 8. 4-Input Router Toggling

SIMPLIFIED SCHEMATIC

Dimensions in inches (millimeters) unless otherwise noted.

GN Package
16-Lead Plastic SSOP (Narrow 0.150)
(LTC DWG \# 05-08-1641)

* DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE

GN16 (SSOP) 0398
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED $0.010^{\prime \prime}$ (0.254 mm) PER SIDE

TYPICAL APPLICATION

High Speed RGB MUX

reLated parts

PART NUMBER	DESCRIPTION	COMMENTS
LT1203/LT1205	150MHz Video MUX	2-Input and 4-Input, 90dB Channel Separation, Wide Supply Range
LT1204	4-Input Video MUX with 75MHz Current Feedback Amp	Drives Cables, Adjustable Gain, 90dB Channel Separation
LT1260	Low Cost Dual and Triple 130MHz Current Feedback Amp with Shutdown	Drives Cables, Wide Supply Range, OuA Shutdown Current

[^0]: $\mathbf{\Sigma}$, LTC and LT are registered trademarks of Linear Technology Corporation

