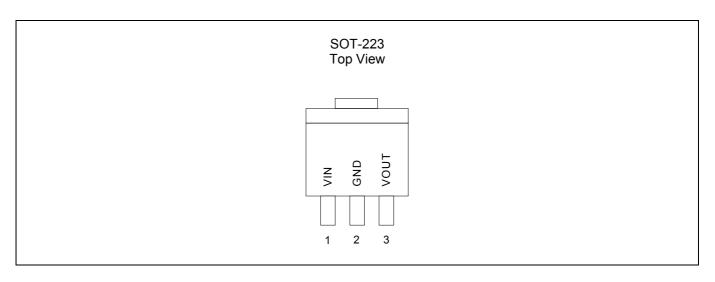
GENERAL DESCRIPTION

The BM9164 family of a linear voltage linear regulators developed utilizing BM unique BiCMOS technology featured low quiescent current (<1mA), low dropout voltage, and high output voltage accuracy. The space-efficient SOT-223 package is attractive for "Pocket" and "Hand Held" applications.

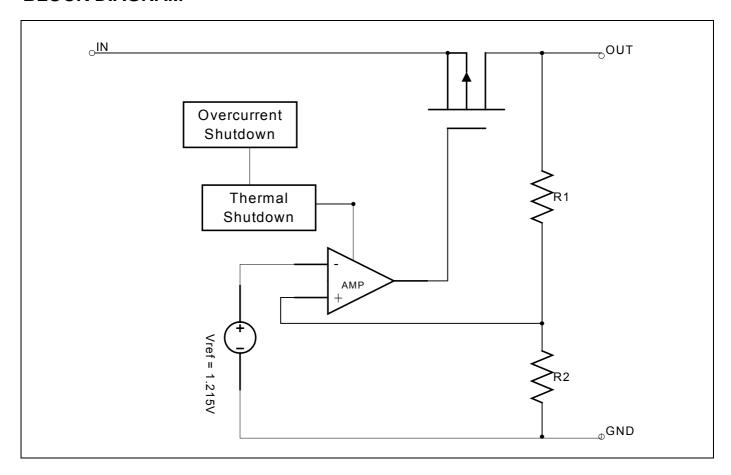
Output voltages are set at the factory and trimmed to 1.5% accuracy. Voltages from 1.8V to 5.0V are available.

These rugged devices have both Thermal Shutdown, and Current Fold-back to prevent device failure under the "Worst" of operating conditions.

The BM9164 is stable with an output capacitance of $22\mu F$ or greater.


APPLICATIONS

- Battery-powered devices
- Personal communication devices
- ♦ Home electric/electronic appliances
- PC peripherals , hard-disk


FEATURES

- Very Low Dropout Voltage , <700mV when 1A
- ♦ Low Current Consumption: Typ. <1mA
- ♦ High Accuracy Output Voltage: +/- 1.5%
- ◆ Guaranteed 1A Output (if Vin-Vout>700mV)
- Thermal Shutdown
- Current Limiting
- ◆ Compact Package: SOT-223
- Factory Pre-set Output Voltages
- Short Circuit Current Fold-Back
- ◆ Low Temperature Coefficient

PIN CONFIGURATION

BLOCK DIAGRAM

ORDERING INFORMATION

Part Number	Output Voltage	Temperature Range	Package
BM9164-1.8	1.8V	-40°C ~ +85°C	SOT-223
BM9164-3.3	3.3V	-40°C ~ +85°C	SOT-223
BM9164-4.9	4.9V	-40°C ~ +85°C	SOT-223

ABSOLUTE MAXIMUM RATINGS

OPERATING RATINGS

Input Voltage		+9V	Supply Voltage	+2V to +8V
Output Current		2.2A	Ambient Temperature Range (T _A)40°C to +85°C
Output Voltage	GND-0.3V to V _{IN} +	0.3V	Junction Temperature Range	40°C to +125°C
ESD Classification	nn	R		

THERMAL INFORMATION

Parameter		Maximum	Unit
Thermal Resistance (⊖ _{jc})	SOT-223	160	°C/W
Internal Power Dissipation (P _D) (△T = 100°C)	SOT-223	625	mW
Maximum Junction Temperature		150	$^{\circ}\mathbb{C}$
Maximum Lead Temperature (10 Sec)		300	°C

^{*}With Junction sink capable of twice times of $\Theta_{\rm jc}$

Caution: Stress above the listed absolute rating may cause permanent damage to the device.

ELECTRICAL CHARACTERISTICS

 T_A = +25 $^{\circ}$ C; unless otherwise noted

D	0	Total Constitutions		BM9164			
Parameter	Symbol Test Conditions		Min.	Тур.	Max.	Unit	
Input Voltage	V _{IN}			+2		+8	V
Output Voltage Accuracy	V _{OUT}	I _O = 1mA to 1.5A		-1.5		1.5	%
Dropout Voltage	$V_{DROPOUT}$	V _{OUT} =V _{O(NOM)} -4%,	lout=1A			700	mV
			Iout=600mA			350	
			lout=100mA			100	mV
Output Current	Io	V _{OUT} > 1.5V			1000		mA
Current Limit	I _{LIM}	V _{OUT} > 1.5V		2000	2200		mA
Short Circuit Current	I _{SC}	V _{OUT} < 0.4V			750	1500	mA
Quiescent Current	IQ	I _O = 0mA			1		mA
Ground Pin Current	I _{GND}	I _O = 1mA to 1A			1		mA
Line Regulation	REG _{LINE}	I _{OUT} =5mA	V _{OUT} <= 2.0V			0.15	%
			V _{OUT} > 2.0V		1.5	0.1	%
Load Regulation	REG _{LOAD}	I _O =1mA to 1A			0.2	1.5	%
Over Temperature Shutdown	OTS				150		$^{\circ}\!\mathbb{C}$
Over Temperature Hystersis	OTH				30		$^{\circ}\!\mathbb{C}$
V _{OUT} Temperature Coefficient	TC				30		ppm/°C
Power Supply Rejection	PSRR $I_O = 100$ mA $C_O = 22$ µF ceramic	1 400 4	f=1kHz		70]
		f=10kHz		50		dB	
		C ₀ =22μr ceramic	f=100kHz		40		
Output Valtage Naige	eN f=	f=10Hz to 100kHz	C _O =22µF		30		μVrms
Output Voltage Noise		I _O = 10mA	C _O =47µF		20		

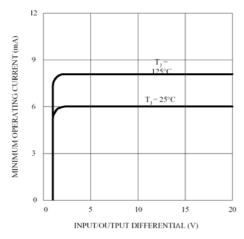
Note 1. V_{IN(MIN)} = V_{OUT} + V_{DROPOUT}

DETAILED DESCRIPTION

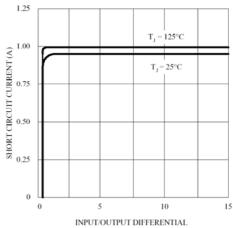
The BM9164 family of BiCMOS regulators contain a pass transistor, voltage reference, error amplifier, over-current protection, thermal shutdown, and short circuit protection.

The P-channel pass transistor receives data from the error amplifier, over-current shutdown, short output protection, and thermal protection circuits. During normal operation, the error amplifier compares the output voltage to a precision reference. Over-current and Thermal shutdown circuits become active when the junction temperature exceeds 150° C, or the current exceeds 2.2A. During thermal shutdown, the output voltage remains low. Normal operation is restored when the junction temperature drops below 120 $^{\circ}$ C.

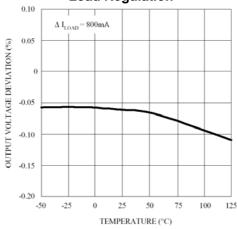
The BM9164 behaves like a current source when the load reaches 2.2A. However, if the load impedance drops below 0.3Ω , the current drops back to 600mA to prevent excessive power dissipation. Normal operation is restored when the load resistance exceeds 0.75Ω .

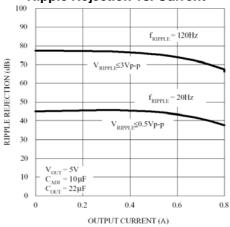

EXTERNAL CAPACITOR

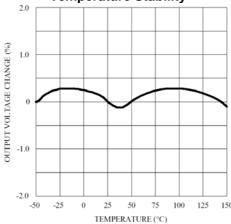
The BM9164 is stable with an output capacitor to ground of $22\mu F$ or greater. Ceramic capacitors have the lowest ESR, and will offer the best AC performance. Conversely, Aluminum Electrolytic capacitors exhibit the highest ESR, resulting in the poorest AC response. Unfortunately, large value ceramic capacitors are comparatively expensive. One option is to parallel a $0.1\mu F$ ceramic capacitor with a $22\mu F$ Aluminum Electrolytic. The benefit is low ESR, high capacitance, and low overall cost.


A second capacitor is recommended between the input and ground to stabilize VIN. The input capacitor should be larger than 22µF to have a beneficial effect. All capacitors should be placed in close proximity to the pins. A "quiet" ground termination is desirable.

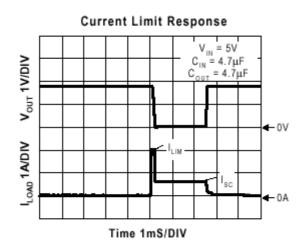
TYPICAL ELECTRICAL CHARACTERISTICS

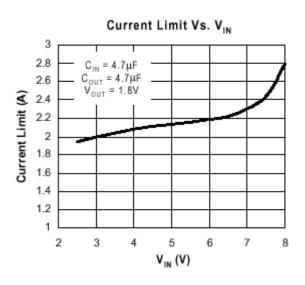

Minimum Operating Current

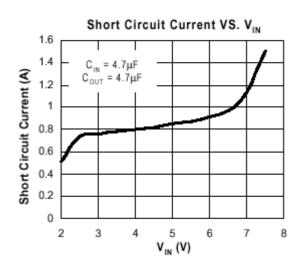


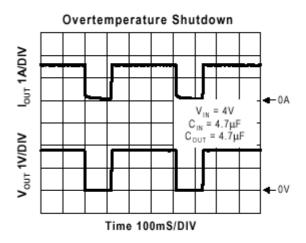

Load Regulation

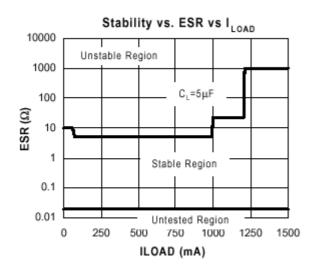
Ripple Rejection vs. Current

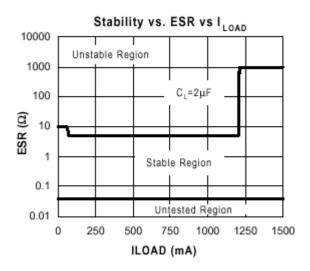


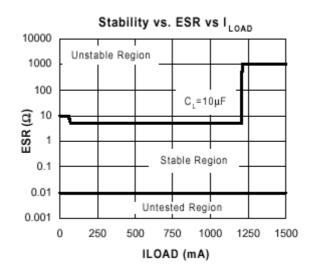

Temperature Stability

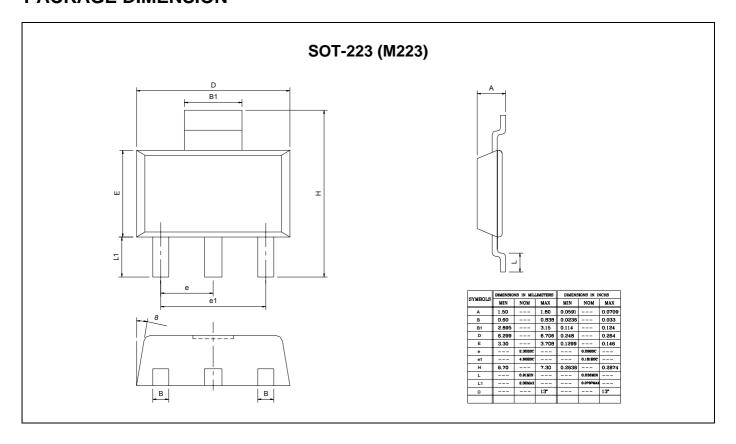



100 90 80 80 80 40 40 20 10 0 -50 -25 0 25 50 75 100 125 150 TEMPERATURE (°C)


GND Pin Current







PACKAGE DIMENSION

