N-Channel Depletion-Mode MOSFET **Ordering Information** | BV _{DSX} / | R _{DS(ON)} | I _{DSS} | Order Number / Package | | | | |---------------------|---------------------|------------------|------------------------|-----------|----------|--| | BV _{DGX} | (max) | (min) | TO-92 | TO-243AA* | Die | | | 500V | 1.0KΩ | 1.0mA | LND150N3 | LND150N8 | LND150ND | | ^{*} Same as SOT-89. Product shipped on 2000 piece carrier tape reels. | Product marking for TO-243AA: | | | | | | |----------------------------------|--|--|--|--|--| | LN1E* | | | | | | | Where * = 2-week alpha date code | | | | | | #### **Features** - ESD gate protection - Free from secondary breakdown - Low power drive requirement - Ease of paralleling - Excellent thermal stability - Integral source-drain diode - ☐ High input impedance and low C_{ISS} #### **Applications** - Solid state relays - Normally-on switches - □ Converters - Power supply circuits - Constant current sources - Input protection circuits #### **Absolute Maximum Ratings** | Drain-to-Source Voltage | BV_{DSX} | |-----------------------------------|-----------------| | Drain-to-Gate Voltage | BV_{DGX} | | Gate-to-Source Voltage | ±20V | | Operating and Storage Temperature | -55°C to +150°C | | Soldering Temperature* | 300°C | ^{*} Distance of 1.6 mm from case for 10 seconds. #### **Advanced DMOS Technology** The LND1 is a high voltage N-channel depletion mode (normally-on) transistor utilizing Supertex's lateral DMOS technology. The gate is ESD protected. The LND1 is ideal for high voltage applications in the areas of normally-on switches, precision constant current sources, voltage ramp generation and amplification. #### **Package Options** ## **Thermal Characteristics** | Package | I _D (continuous)* | I _D (pulsed) | Power Dissipation
@T _A = 25°C | θ _{jc}
°C/W | θ _{ja}
°C/W | I _{DR} | I * | |----------|------------------------------|-------------------------|---|-------------------------|-------------------------|-----------------|------| | TO-92 | 30mA | 30mA | 0.74W | 125 | 170 | 30mA | 30mA | | TO-243AA | 30mA | 30mA | 1.6W [†] | 31 | 105† | 30mA | 30mA | ^{*} I_D (continuous) is limited by max rated T_f. ## Electrical Characteristics (@ 25°C unless otherwise specified) | Symbol | Parameter | Min | Тур | Max | Unit | Conditions | | |----------------------|---|------|------|------|-------|--|--| | BV _{DSX} | Drain-to-Source Breakdown Voltage | 500 | | | V | $V_{GS} = -10V, I_D = 1.0mA$ | | | V _{GS(OFF)} | Gate-to-Source OFF Voltage | -1.0 | | -3.0 | V | $V_{DS} = 25V, I_{D} = 100nA$ | | | $\Delta V_{GS(OFF)}$ | Change in V _{GS(OFF)} with Temperature | | | 5.0 | mV/°C | $V_{DS} = 25V, I_{D} = 100nA$ | | | I _{GSS} | Gate Body Leakage Current | | | 100 | nA | $V_{GS} = \pm 20V, V_{DS} = 0V$ | | | I _{D(OFF)} | Drain-to-Source Leakage Current | | | 100 | nA | $V_{GS} = -10V, V_{DS} = 450V$ | | | | | | | 100 | μΑ | V_{GS} = -10V, V_{DS} = 0.8V max rating T_A =125°C | | | I _{DSS} | Saturated Drain-to-Source Current | 1.0 | | 3.0 | mA | $V_{GS} = 0V, V_{DS} = 25V$ | | | R _{DS(ON)} | Static Drain-to-Source ON-State Resistance | | 850 | 1000 | Ω | $V_{GS} = 0V, I_D = 0.5mA$ | | | $\Delta R_{DS(ON)}$ | Change in RDS(ON) with Temperature | | | 1.2 | %/°C | $V_{GS} = 0V, I_D = 0.5mA$ | | | G _{FS} | Forward Transconductance | 1.0 | 2.0 | | m & | $V_{GS} = 0V, I_D = 1.0mA$ | | | C _{ISS} | Input Capacitance | | 7.5 | 10 | | | | | C _{OSS} | Output Capacitance | | 2.0 | 3.5 | pF | $V_{GS} = -10V, V_{DS} = 25V$
f = 1 MHz | | | C _{RSS} | Reverse Transfer Capacitance | | 0.5 | 1.0 | | | | | t _{d(ON)} | Turn-ON Delay Time | | 0.09 | | | | | | tr | Rise Time | | 0.45 | | | $V_{DD} = 25V$, $I_D = 1.0$ mA,
$R_{GEN} = 25\Omega$ | | | t _{d(OFF)} | Turn-OFF Delay Time | | 0.1 | | μS | | | | t _f | Fall Time | | 1.3 | | | | | | V _{SD} | Diode Forward Voltage Drop | | | 0.9 | V | V _{GS} = -10V, I _{SD} = 1.0mA | | | t _{rr} | Reverse Recovery Time | | 200 | | ns | $V_{GS} = -10V, I_{SD} = 1.0mA$ | | #### Notes: - 1. All D.C. parameters 100% tested at 25 $^{\circ}$ C unless otherwise stated. (Pulse test: 300 μ s pulse, 2% duty cycle.) - 2. All A.C. parameters sample tested. # **Switching Waveforms and Test Circuit** [†] Mounted on FR5 Board, 25mm x 25mm x 1.57mm. Significant P_n increase possible on ceramic substrate. # **Typical Performance Curves** # **Typical Performance Curves** 12/13/010