
SEMIX 151GD128Ds

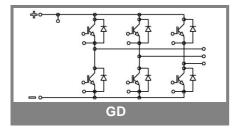
SEMIX[®] 13s

SPT IGBT Modules

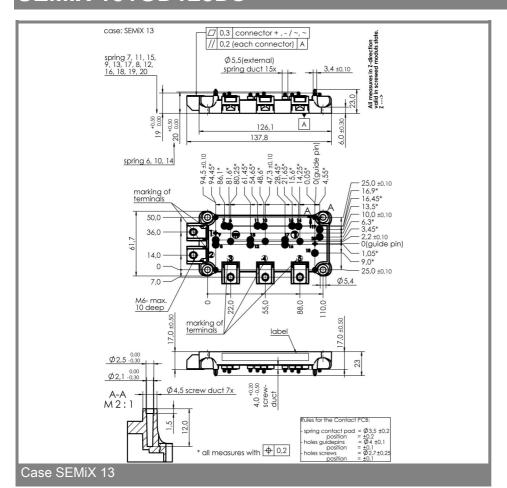
SEMiX 151GD128Ds

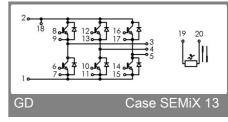
Target Data

Features


- Homogeneous Si
- SPT = Soft-Punch-Through technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability

Typical Applications


- AC inverter drives
- UPS
- Electronic welders f_{sw} up to 20 kHz


Absolute Maximum Ratings T _{case} = 25°C, unless otherwise specifie								
Symbol	Conditions	Values	Units					
IGBT								
V_{CES}		1200	V					
V _{CES}	T _c = 25 (80) °C	150 (110)	Α					
I _{CRM}	$t_p = 1 \text{ ms}$	150	Α					
V_{GES}	r	± 20	V					
T_{vj} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C					
V _{isol}	AC, 1 min.	4000	V					
Inverse diode								
I _F	T _c = 25 (80) °C	100 (70)	Α					
I _{FRM}	t _p = 1 ms	150	Α					
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 25 \text{ °C}$	720	Α					

Characteristics $T_{case} = 25^{\circ}C$, unless otherwise spec								
Symbol	Conditions	min.	typ.	max.	Units			
IGBT								
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 3 \text{ mA}$	4,5	5	6,5	V			
I _{CES}	$V_{GE} = 0, V_{CE} = V_{CES}, T_j = 25 (125) °C$			0,3	mA			
V _{CE(TO)}	$T_j = 25 (125) ^{\circ}C$		1 (0,9)	1,15 (1,05)	V			
r _{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		12 (15)	, ,	mΩ			
V _{CE(sat)}	I _{Cnom} = 75 A, V _{GE} = 15 V,		1,9 (2,1)	2,35 (2,55)	V			
	T _j = 25 (125) °C, chip level							
C _{ies}	under following conditions		6,5		nF			
C _{oes}	V _{GE} = 0, V _{CE} = 25 V, f = 1 MHz		0,9		nF			
C _{res}			0,8		nF			
L _{CE}					nH			
R _{CC'+EE'}	terminal-chip, T _c = 25 (125) °C		0,7 (1)		mΩ			
$t_{d(on)}/t_r$	V _{CC} = 600 V, I _{Cnom} = 75 A				ns			
$t_{d(off)}/t_{f}$	V _{GE} = ± 15 V				ns			
E _{on} (E _{off})	$R_{Gon} = R_{Goff} = 10 \Omega$, $T_j = 125 °C$		8,5 (7,5)		mJ			
Inverse diode								
$V_F = V_{EC}$	I_{Fnom} = 75 A; V_{GE} = 0 V; T_j = 25 (125) °C, chip level		2 (1,8)	2,5 (2,3)	V			
V _(TO)	T _j = 25 (125) °C		1,1	1,2	V			
r _T	T _j = 25 (125) °C		12	18	mΩ			
I _{RRM}	I _{Fnom} = 75 A; T _j = 25 (125) °C				Α			
Q_{rr}	di/dt = 3100 A/μs				μC			
E _{rr}	V _{GE} = -15 V				mJ			
	haracteristics							
R _{th(j-c)}	per IGBT			0,19	K/W			
$R_{th(j-c)D}$	per Inverse Diode			0,5	K/W			
$R_{th(j-c)FD}$	per FWD				K/W			
R _{th(c-s)}	per module		0,04		K/W			
Temperati	ure sensor							
R ₂₅	T _c = 25 °C		5 ±5%		kΩ			
B _{25/85}	$R_2 = R_1 \exp[B(1/T_2 - 1/T_1)]$; T[K];B		3420		K			
Mechanical data								
M_s/M_t	to heatsink (M5) / for terminals (M6)	3/2,5		5 /5	Nm			
w			290		g			

SEMiX 151GD128Ds

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.