

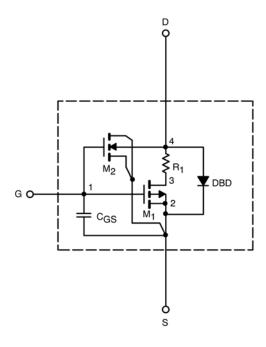
SPICE Device Model Si3433BDV

Vishay Siliconix

P-Channel 1.8-V (G-S) MOSFET

CHARACTERISTICS

- P-Channel Vertical DMOS
- · Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-V to 5-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

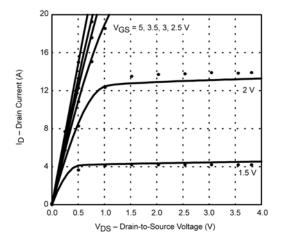
A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

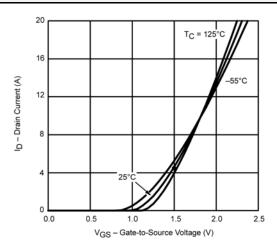
SUBCIRCUIT MODEL SCHEMATIC

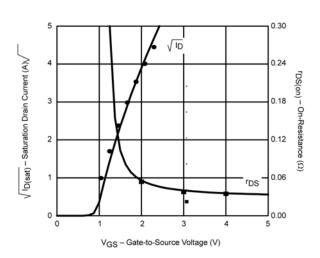
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

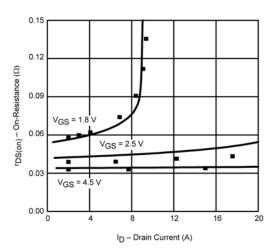
SPICE Device Model Si3433BDV

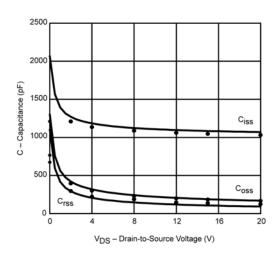
Vishay Siliconix

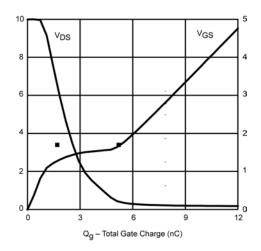

SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static	•		-	•	
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	0.80		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} = -5 \text{ V}, V_{GS} = -4.5 \text{ V}$	156		Α
Drain-Source On-State Resistance ^a	r _{DS(on)}	$V_{GS} = -4.5 \text{ V}, I_D = -5.6 \text{ A}$	0.034	0.034	Ω
		$V_{GS} = -2.5 \text{ V}, I_D = -4.8 \text{ A}$	0.043	0.045	
		V _{GS} = -1.8 V, I _D = -1 A	0.055	0.060	
Forward Transconductance ^a	g _{fs}	$V_{DS} = -5 \text{ V}, I_{D} = -5.6 \text{ A}$	15	10	S
Diode Forward Voltage ^a	V _{SD}	$I_{S} = -1.7 \text{ A}, V_{GS} = 0 \text{ V}$	-0.80	-0.70	V
Dynamic ^b	-		•	-	
Total Gate Charge	Q_g	$V_{DS} = -10 \text{ V}, V_{GS} = -4.5 \text{ V}, I_{D} = -5.6 \text{ A}$	11.6	12	nC
Gate-Source Charge	Q_{gs}		1.7	1.7	
Gate-Drain Charge	Q_{gd}		3.5	3.5	
Turn-On Delay Time	t _{d(on)}	$V_{DD} = -~10~V,~R_L = 10~\Omega$ $I_D \cong -1~A,~V_{GEN} = -4.5~V,~R_G = 6~\Omega$	16	15	ns
Rise Time	t _r		13	45	
Turn-Off Delay Time	$t_{d(off)}$		83	80	
Fall Time	t _f		9	60	


a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.




SPICE Device Model Si3433BDV Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.