

LPV531 Programmable CMOS Input, Rail-to-Rail Output **Operational Amplifier General Description**

The LPV531 is an extremely versatile operational amplifier. A single external resistor gives the system designer the ability to program the quiescent current, gain bandwidth product and output short circuit current. This innovative feature gives the system designer a method to dynamically optimize the performance of the op amp to meet the system design requirements.

The LPV531 can be tailored to a wide variety of applications, it offers the system designer the ability to trade off supply current for bandwidth. The LPV531 is capable of operating from 73 kHz, consuming only 5 µA, to as fast as 4.6 MHz, consuming only 425 µA. The input offset voltage is relatively independent and therefore is not effected by the chosen power level.

Utilizing a CMOS input stage, the LPV531 achieves an input bias current of 50 fA and a common mode input voltage which extends from the negative rail to within 1.2V of the positive supply. The LPV531's rail-to-rail class AB output stage enables this op amp to offer maximum dynamic range at low supply voltage.

Available in the space saving 6-pin SOT23 package, the LPV531 is ideal for use in handheld electronics and portable applications. The LPV531 is manufactured using National's advanced VIP50 process.

A fixed supply current/gain bandwidth is available upon request.

Features

(Typical 5V supply, unless otherwise noted) 2.7V to 5.5V Supply voltage

Supply current	
 Low power mode 	5 µA
 Mid power mode 	42 µA
 Full power mode 	425 µA
Input common mode voltage range	-0.3V to 3.8V
CMRR	95 dB
Output voltage swing	Rail-to-rail
Input offset voltage	1 mV
Bandwidth	
 Low power mode 	73 kHz
 Mid power mode 	625 kHz
 Full power mode 	4.6 MHz

Applications

- AC coupled circuits
- Portable instrumentation
- Active filters

Typical Application

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (Note 2)	
Human Body Model	2000V
Machine Model	200V
V _{IN} Differential	±2V
Supply Voltage (V ⁺ - V ⁻)	6V
Storage Temperature Range	–65°C to +150°C
Junction Temperature (Note 5)	+150°C

Soldering Information					
Infrared or Convection (20 sec)	235°C				
Wave Soldering Lead Temp.					
(10 sec)	260°C				
Derating Ratings (Note 1)					

Operating Ratings (Note 1)

Operating Temperature Range	–40°C to +85°C
Supply Voltage (V ⁺ - V ⁻)	2.7V to 5.5V
Package Thermal Resistance (θ_{JA}) (Note	e 4)
6-Pin SOT23	171°C/W

5V Full Power Mode Electrical Characteristics

Unless otherwise specified, all limits are guaranteed for $T_J = 25$ °C, V⁺ = 5V, V⁻ = 0V, V_{CM} = V_O = V⁺/2, I_{SEL} pin connected to V⁻, R_L = 100 k Ω . **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
			(Note 6)	(Note 5)	(Note 6)	
V _{OS}	Input Offset Voltage			±1	±4.5 ±5	mV
ΔV_{OS}	Input Offset Voltage Difference	V _{OS} in Full Power Mode – V _{OS} in Low Power Mode		±0.1	±2	mV
TC Vos	Input Offset Average Drift	(Note 8)		±2		μV/C
Ι _B	Input Bias Current			50		fA
CMRR	Common Mode Rejection Ratio	V_{CM} Stepped from 0V to 3.5V	72 68	95		dB
PSRR	Power Supply Rejection Ratio	$V^+ = 2.7V$ to 5.5V $V_{CM} = 1V$	74 70	90		dB
CMVR	Input Common Mode Voltage Range	CMRR ≥ 50 dB	-0.3		3.8	V
A _{VOL}	Large Signal Voltage Gain	$V_{\rm O}$ = 0.5V to 4.5V R _L = 1 k Ω to V ⁺ /2	87 84	96		
		$V_{O} = 0.5V$ to 4.5V R _L = 10 k Ω to V ⁺ /2	104 100	114		dB
		$V_{O} = 0.5V$ to 4.5V R _L = 100 k Ω , to V ⁺ /2	108 104	128		
Vo	Output Swing High	$R_L = 1 \ k\Omega$ to V ⁺ /2	180 195	120		
		$R_L = 10 \text{ k}\Omega \text{ to } V^+/2$	80 85	55		mV from V ⁺
		$R_L = 100 \text{ k}\Omega$ to V ⁺ /2	50 60	30		
	Output Swing Low	$R_L = 1 \ k\Omega$ to V ⁺ /2		160	210 230	
		$R_L = 10 \text{ k}\Omega \text{ to } V^+/2$		105	120 135	mV
		$R_L = 100 \text{ k}\Omega$ to V ⁺ /2		95	120 135	
I _{SC}	Output Short Circuit Current	Sourcing, $V_O = 2.5V$ $V_{ID} = 100 \text{ mV}$		-15	-8 -3	m۸
		Sinking, $V_O = 2.5V$ $V_{ID} = -100 \text{ mV}$	13 10	24		
I _S	Supply Current			425	530 650	μΑ

5V Full Power Mode Electrical Characteristics (Continued)

Unless otherwise specified, all limits are guaranteed for $T_J = 25^{\circ}C$, $V^+ = 5V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$, I_{SEL} pin connected to V^- , $R_L = 100 \text{ k}\Omega$. **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
			(Note 6)	(Note 5)	(Note 6)		
SR	Slew Rate (Note 7)	$A_V = +1, V_{IN} = 0.5V \text{ to } 3.5V$	1.55	2.5		\//uo	
		C _L = 15 pF	1			v/µs	
GBW	Gain Bandwidth Product	C _L = 20 pF		4.6		MHz	
e _n	Input-Referred Voltage Noise	f = 100 kHz		20		n)// /11=	
		f = 1 kHz		25			
i _n	Input-Referred Current Noise	f = 1 kHz		0.006		pA/ √Hz	

5V Mid Power Mode Electrical Characteristics

Unless otherwise specified, all limits are guaranteed for $T_J = 25^{\circ}C$, $V^+ = 5V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$, I_{SEL} pin connected to V^- through 100 k Ω resistor, $R_L = 100 \text{ k}\Omega$. **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
			(Note 6)	(Note 5)	(Note 6)	
V _{OS}	Input Offset Voltage			±1	±4.5 ±5	mV
ΔV_{OS}	Input Offset Voltage Difference	V _{OS} in Full Power Mode – V _{OS} in Low Power Mode		±0.1	±2	mV
TC V _{os}	Input Offset Average Drift	(Note 8)		±2		μV/C
IB	Input Bias Current			50		fA
CMRR	Common Mode Rejection Ratio	V_{CM} Stepped from 0V to 3.5V	72 68	92		dB
PSRR	Power Supply Rejection Ratio	V ⁺ = 2.7V to 5.5V	72 68	88		dB
CMVR	Input Common Mode Voltage Range	CMRR ≥ 50 dB	-0.3		3.8	V
A _{VOL}	Large Signal Voltage Gain	$V_{O} = 0.5V$ to 4.5V $R_{L} = 10 \text{ k}\Omega$	86 82	96		dB
		$V_{O} = 0.5V$ to 4.5V $R_{L} = 100 \text{ k}\Omega$	100 98	114		GD
Vo	Output Swing High	$R_L = 10 \text{ k}\Omega$ to V ⁺ /2		115	160 175	mV from
		$R_L = 100 \text{ k}\Omega \text{ to } V^+/2$		65	110 120	V+
	Output Swing Low	$R_L = 10 \text{ k}\Omega \text{ to } V^+/2$		150	165 180	
		$R_L = 100 \text{ k}\Omega$ to V ⁺ /2		105	120 135	- mV
I _{SC}	Output Short Circuit Current	Sourcing, $V_O = 2.5V$ $V_{ID} = 100 \text{ mV}$		-4	–1.5 –1	
		Sinking, $V_O = 2.5V$ $V_{ID} = -100 \text{ mV}$	1.5 1	4		mA
I _S	Supply Current			42	55 62	μA
SR	Slew Rate (Note 7)	$A_V = +1, V_{IN} = 0.5V \text{ to } 3.5V$	180 100	250		V/ms
GBW	Gain Bandwidth Product	C _L = 20 pF		625		kHz
e _n	Input-Referred Voltage Noise	f = 100 kHz		20		n)// /Ц-
		f = 1 kHz		25		

5V Mid Power Mode Electrical Characteristics (Continued)

Unless otherwise specified, all limits are guaranteed for $T_J = 25^{\circ}C$, $V^+ = 5V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$, I_{SEL} pin connected to V^- through 100 k Ω resistor, $R_L = 100 \text{ k}\Omega$. **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
			(Note 6)	(Note 5)	(Note 6)	
i _n	Input-Referred Current Noise	f = 1 kHz		0.006		pA/ √Hz

5V Low Power Mode Electrical Characteristics

Unless otherwise specified, all limits are guaranteed for $T_J = 25$ °C, $V^+ = 5V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$, I_{SEL} connected to V^- through 1 M Ω resistor, $R_L = 100 \text{ k}\Omega$. **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Min (Note 6)	Typ (Note 5)	Max (Note 6)	Units
V _{os}	Input Offset Voltage			±1	±4.5 ±5	mV
ΔV_{OS}	Input Offset Voltage Difference	V _{OS} in Full Power Mode – V _{OS} in Low Power Mode		±0.1	±2	mV
TC Vos	Input Offset Average Drift	(Note 8)		±2		μV/C
I _B	Input Bias Current			50		fA
CMRR	Common Mode Rejection Ratio	V_{CM} Stepped from 0V to 3.5V	72 68	90		dB
PSRR	Power Supply Rejection Ratio	V ⁺ = 2.7V to 5.5V	72 68	85		dB
CMVR	Input Common-Mode Voltage Range	CMRR ≥ 50 dB	-0.3		3.8	V
A _{VOL}	Large Signal Voltage Gain	$V_{O} = 0.5V \text{ to } 4.5V$ $R_{L} = 10 \text{ k}\Omega$ $V_{O} = 0.5V \text{ to } 4.5V$ $R_{L} = 100 \text{ k}\Omega$	80 78	90 100		dB
Vo	Output Swing High	$R_L = 10 \ k\Omega$		175	400 1600	mV from
		$R_L = 100 \text{ k}\Omega$		115	200 230	V ⁺
	Output Swing Low	$R_L = 10 \text{ k}\Omega$		250	1200 1800	m)/
		R _L = 100 kΩ		150	165 180	
I _{SC}	Output Short Circuit Current	Sourcing, $V_O = 2.5V$ $V_{ID} = 100 \text{ mV}$		-400	-100 - 35	
		Sinking, $V_O = 2.5V$ $V_{ID} = -100 \text{ mV}$	80 35	300		μΑ
I _S	Supply Current			5	7 8	μA
SR	Slew Rate (Note 7)	$A_V = +1, V_{IN} = 0.5V$ to 3.5V	10 8	28		V/ms
GBW	Gain Bandwidth Product	C _L = 20 pF		73		kHz
e _n	Input-Referred Voltage Noise	f = 100 kHz		40		nV/√Hz
<u> </u>		t = 1 kHz		60		
In	Input-Referred Current Noise	t = 1 kHz		0.06		pA/ √Hz

Power Select Electrical Characteristics

Unless otherwise specified, all limits are guaranteed for $T_J = 25^{\circ}C$, $V^+ = 5V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$, $R_L = 100 \text{ k}\Omega$. Bold-face limits apply at the temperature extremes.

Symbol	nhol Decemptor Conditions Min Typ Max Units							
Symbol	Parameter	Conditions	wiin	тур	wax	Units		
			(Note 6)	(Note 5)	(Note 6)			
t _{LF}	Time from Low Power Mode			210		ns		
	to Full Power Mode							
t _{FL}	Time from Full Power Mode to			500		ns		
	Low Power Mode							
V _{REXT}	Voltage @ I _{SEL} Pin	I _{SEL} Pin Left Open	100	110	125	mV		
R _{INT}			9	11	14.5	kΩ		

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics Tables. **Note 2:** Human Body Model is $1.5 \text{ k}\Omega$ in series with 100 pF. Machine Model is 0Ω in series with 200 pF.

Note 3: Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C.

Note 4: The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} - T_A)/\theta_{JA}$. All numbers apply for packages soldered directly onto a PC board.

Note 5: Typical values represent the most likely parametric norm.

Note 6: All limits are guaranteed by testing or statistical analysis.

Note 7: Slew rate is the slower of the rising or falling slew rates.

Note 8: Offset voltage average drift is determined by dividing the change in V_{OS} at temperature extremes into the total temperature change.

Connection Diagram

Ordering Information

Package	Part Number	Package Marking	Transport Media	NSC Drawing	
	LPV531MK		1k Units Tape and Reel	MKOGA	
6-PIN 50123	LPV531MKX	AV2A	3k Units Tape and Reel	INIKUOA	

