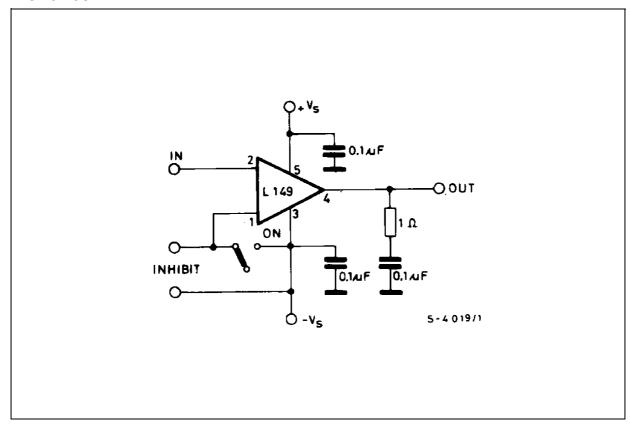

4A LINEAR DRIVER

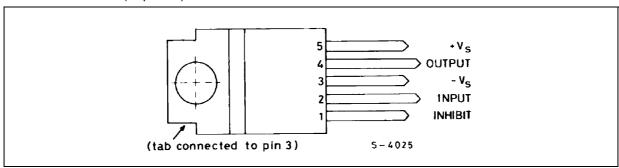
- HIGH OUTPUT CURRENT (4A peak)
- HIGH CURRENT GAIN (10.000 typ.)
- OPERATION UP TO ± 20 V
- THERMAL PROTECTION
- SHORT CIRCUIT PROTECTION
- OPERATION WITHIN SOA
- HIGH SLEW-RATE (30 V/ms)


DESCRIPTION

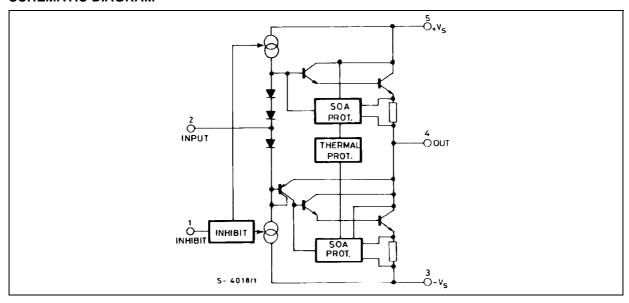
The L149 is a general purpose power booster in Pentawatt ® package consisting of a quasi-complentary darlington output stage with the associated biasing system an inhibit facility.

The device is particularly suited for use with an operational amplifier inside a closed loop configuration to increase output current.

TEST CIRCUIT



July 2003 1/6


ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit	
Vs	Supply Voltage	±20	V	
Vi	Input Voltage		٧s	
V ₅ - V ₄	Upper Power Transistor V _{CE}	40	V	
V ₄ - V ₃	Lower Power Transistor V _{CE}	40	V	
lo	DC Output Current	3	А	
Ιο	Peak Output Current (internally limited)	4	А	
V _{INH}	Input Inhibit Voltage	- Vs + 5	V	
		- Vs - 1.5	V	
P _{tot}	Total Power Dissipation at T _{case} = 75 °C)	25	W	

PIN CONNECTION (Top view)

SCHEMATIC DIAGRAM

THERMAL DATA

Symbol	Parameter	Value	Unit
R _{th-j-case}	Thermal resistance junction-case max	3	°C/W

2/6

ELECTRICAL CHARACTERISTCS ($T_j = 25$ °C, $V_S = \pm 16V$)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vs	Supply Voltage				± 20	V
I _d	Quiescent Drain Current	V _S = ± 16V		30		mA
l _{in}	Input current	$V_S = \pm 16V; V_i = 0V$		200	400	μΑ
hFE	DC current drain	$V_S = \pm 16V; I_O = 3A$	6000	10000		-
G _V	Voltage gain	$V_S = \pm 16V; I_O = 1.5A$		1		-
V _{CEsat}	Saturation voltage (for each transistor)	I _O = 3A			3.5	V
Vos	Input offset voltage	V _S = ± 16V			0.3	V
VINH	Inhibit input voltage (pins 1-3)	ON condition			± 0.3	V
		OFF condition	± 1.8			V
R _{INH}	Inhibit input resistance			2.0		ΚΩ
SR	Slew rate			30		V/μs
В	Power bandwidth	$V_O = \pm 10V$, $d = 1\%$, $R_L = 8\Omega$		200		KHz

APPLICATION INFORMATION

Figure 1. High slew-rate power operational amplifier (SR = $13V/\mu s$)

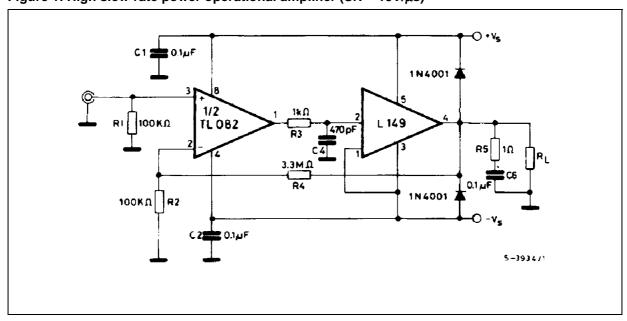


Figure 2. Maximum saturation voltage vs. output current.

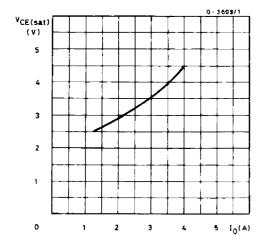


Figure 3. Current limiting characteristics.

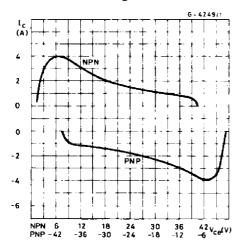


Figure 4. Supply voltage rejection vs. frequency.

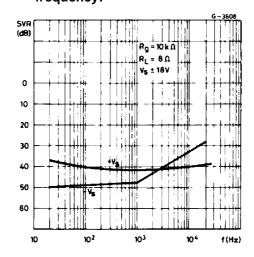


Figure 5. Distorsion vs. output power (f = 1KHz).

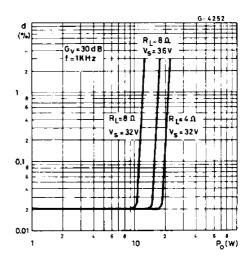
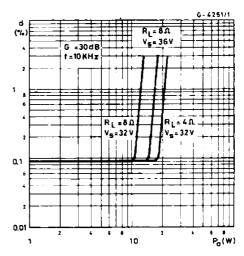
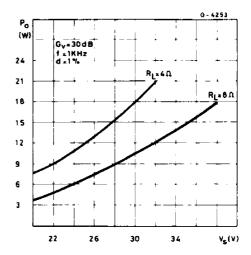
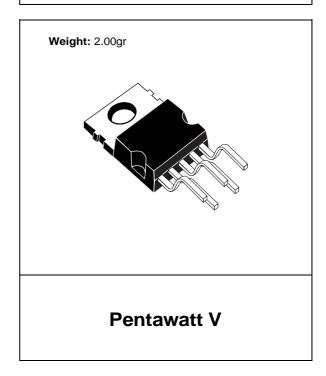
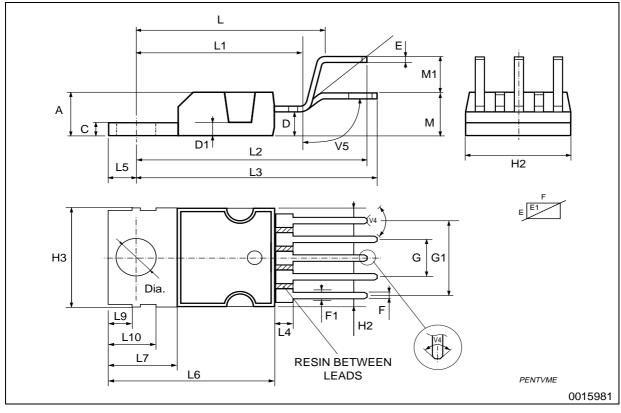


Figure 6. Distorsion vs. output power (f = 1KHz).


Figure 7. Output power vs. supply voltage.



4/6

DIM.	mm		inch			
DIN.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			4.8			0.189
С			1.37			0.054
D	2.4		2.8	0.094		0.110
D1	1.2		1.35	0.047		0.053
Е	0.35		0.55	0.014		0.022
E1	0.76		1.19	0.030		0.047
F	0.8		1.05	0.031		0.041
F1	1.0		1.4	0.039		0.055
G	3.2	3.4	3.6	0.126	0.134	0.142
G1	6.6	6.8	7.0	0.260	0.268	0.276
H2			10.4			0.409
Н3	10.05		10.4	0.396		0.409
L	17.55	17.85	18.15	0.691	0.703	0.715
L1	15.55	15.75	15.95	0.612	0.620	0.628
L2	21.2	21.4	21.6	0.831	0.843	0.850
L3	22.3	22.5	22.7	0.878	0.886	0.894
L4			1.29			0.051
L5	2.6		3.0	0.102		0.118
L6	15.1		15.8	0.594		0.622
L7	6.0		6.6	0.236		0.260
L9	2.1		2.7	0.008		0.106
L10	4.3		4.8	0.17		0.189
М	4.23	4.5	4.75	0.167	0.178	0.187
M1	3.75	4.0	4.25	0.148	0.157	0.167
V4	40° (typ.)					
V5	90° (typ.)					
Dia	3.65		3.85	0.144		0.152

OUTLINE AND MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

STMicroelectronics acknowledges the trademarks of all companies referred to in this document.

The ST logo is a registered trademark of STMicroelectronics © 2003 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

